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Abstract—Smart grid enables two-way communications be-
tween operation centers and smart meters to collect power
consumption and achieve demand response to improve flexibility,
reliability and efficiency of electricity system. However, power
consumption data may contain users’ privacy, e.g., activities,
references and habits. Many smart metering schemes have been
proposed utilizing homomorphic encryption for users’ privacy
preservation. Unfortunately, some abnormality of smart meter
reading, e.g., caused by electricity theft, cannot be discovered
since data is encrypted. Meanwhile, operation centers could
become curious in reality. To address the above issues, we
propose a new privacy-preserving smart metering scheme for
smart grid, which supports data aggregation, differential privacy,
fault tolerance and range-based filtering simultaneously. Specif-
ically, we extend Lifted ElGamal encryption to aggregate users’
consumption reports at the gateway to reduce communication
overhead, while supporting fault tolerance of malfunctioning
smart meters effectively. We also leverage zero-knowledge range
proof to filter abnormal measurements caused by electricity
theft or false data injection attacks without exposing individual
measurements. In addition, our scheme can resist differential
attacks, by which the curious operation center can violate users’
privacy through comparing two aggregations of the similar data
set. Finally, we discuss the properties of the proposed scheme
and evaluate its performance in terms of security and efficiency.

Keywords: Smart grid, privacy preservation, data security,
smart meters.

I. INTRODUCTION

Smart grid is the evolution of the aging power grid, which
integrates the traditional power grid with information and
communication technologies to achieve two-way electricity
and information exchange between operation centers and smart
meters, making it more reliable, efficient, secure and green
[1]. The primary breakthrough of smart grid is to make sure
that electricity generation matches the demand of users for
avoiding system instability due to voltage changes. To achieve
this, users’ real-time electricity consumption is measured, col-
lected and analyzed by the operation center through advanced
metering infrastructure for learning the electricity demand in
a residential area, thereby adjusting the electricity generation
to guarantee the balance of demand and supply [2].

Although the advantages of smart grid are attractive, the
infrastructure is confronted with various cyber security threats

Jianbing Ni, Kuan Zhang, Ning Zhang and Xuemin (Sherman) Shen are
with Department of Electrical and Computer Engineering, University of
Waterloo, Waterloo, Ontario, Canada N2L 3G1. Email: {j25ni,k52zhang,
n35zhang, sshen}@uwaterloo.ca.

Khalid Alharbi and Xiaodong Lin is with Faculty of Business and Infor-
mation Technology, University of Ontario Institute of Technology, Oshawa,
Ontario, Canada L1H 7K4, Email: {Khalid.Alharbi, xiaodong.lin}@uoit.ca.

[3], [4], [5], [6]. The consequences of security incidents may
range from benign disruptions to deliberate acts of sabotage,
threatening lives of citizens and even national security. For
example, in December 2015, more than 225,000 people in
Ukraine suffered from a blackout due to a devastating cyber
attack on a power station [7]. Moreover, from the perspective
of users, privacy is a primary concern as it is possible to
infer their daily activities, habits and other privacy witnessable
references from the electricity consumption data. It is reported
that the determination of personal behavior patterns is the sec-
ond most serious privacy consequences of smart grid systems
in 14 threat types defined by Electronic Privacy Information
Center [8]. A relatively low and static daily consumption of a
household may indicate that no one is at home; power variation
every several hours throughout every night might indicate that
this family has a new baby [9]. End-to-end encryption is a
straightforward way to hide the communication content and
preserve users’ privacy, but at the same time increases heavy
overhead on communication and computation.

To address these issues, many secure data aggregation
schemes [10], [11] have been proposed using homomorphic
encryption to allow a semi-trust gateway to aggregate con-
sumption reports in a specific residential area. These schemes
usually assume that the smart meters are honest to report the
users’ power consumption without any corruption. Unfortu-
nately, in reality, smart meters cannot provide solid security
guarantee, although they are physically protected and tamper-
proofing. Electricity theft [12] is not unusual, as reported
that B.C hydro lost up to 3% of electricity to theft and the
legitimate users had to bear at least 850 GWh in 2013 [13].
An attacker can simply place a strong magnet on a smart
meter to stop counting, while still providing electricity to the
user [14]. Utilities invest a lot to detect electricity theft by
observing any abnormality of electricity consumption of users.
However, it will not work after data is encrypted. Moreover,
attackers may attempt to introduce malicious measurements
by directly compromising smart meters to inject false data
to affect power grid status assessment, thereby reducing the
operation center’s level of situational awareness. For example,
an IOActive security consultant proved the weaknesses of
smart metering architecture and designed a self-propagating
worm to get remote control of about 15,000 smart meters in
a 24-hour time at US Black Hat 2009 [15]. Therefore, it is
of importance to design an efficient scheme to eliminate the
false measurements in smart grid.

Meanwhile, operation centers are usually considered fully
trusted, but in reality, may share the users’ consumption data to
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their cooperators. As a result, the private information of users
is directly disclosed to unauthorized and untrusted entities. To
prevent a curious operation center and dishonest cooperators
from invading users’ privacy, some schemes [16], [17] utilize
a subtle key management technique, i.e., the sum of all keys
are zero, to decentralize the operation center’s capacity so as
to enhance the security of smart metering schemes. However,
one major limitation of these schemes is that they cannot
support fault tolerance [18]. In other words, the smart metering
schemes may be disrupted if one of the individual consumption
reports is invalid or one of the malfunctioning smart meters
fails to submit the measurement. Another challenging issue is
that these schemes are vulnerable to differential attacks [18],
launched by a curious operation center. If the operation center
obtains two aggregations of individual reports, one is for n
users, the other is for n− 1 users in n users, the difference of
two aggregations may expose the privacy of the user absent
from the second aggregation. The differential attack has been
discussed in several works [18], [19], [20], [21], while a few
of them [18], [20], [21] are able to support fault tolerance, but
seldom can prevent electricity theft and false data injection
attacks, such that they are impractical in real scenarios. Hence,
how to design an efficient privacy-preserving, differentially
private and fault tolerant smart metering scheme that can resist
electricity theft and detect false data in smart grid still deserves
further investigations and efforts.

Motivated by the aforementioned challenges, in this paper,
we propose a novel Differentially Private smart metering
scheme (DiPrism) with fault tolerance and range-based filter-
ing. Initiatively, to achieve range-based filtering, we consider
that the user’s habit of electricity usage keeps unchanged over-
time, and utilize the historical power usage data to determine
the range of current measurements and thereby discover the
abnormal readings. The goal of fault tolerance is to handle
general consumption report failures. These failures include
the malfunction of smart meters and the occasions that the
measurements do not fall in the required range. Specifically,
the main contributions of this paper are as follows.

• We propose the DiPrism with the desirable features of
data aggregation and differential privacy, under a new
security model, in which both the gateway and the
operation center are honest-but-curious and the users
may be malicious, e.g., stealing electricity. By employing
Lifted ElGamal encryption [22] and Laplace noise [23],
we realize efficient data aggregation without exposing
individual measurements to other parties, including other
users, the gateway and the operation center.

• We utilize the zero-knowledge range proof [24] to elimi-
nate abnormal measurements in smart metering. Specifi-
cally, the operation center predicts the range of electricity
consumption according to historical power consumption
data, load of appliances and types of users, i.e., communi-
ty residents, factories and commercial residents. Based on
this range, a user generates a zero-knowledge range proof
to prove that his/her power consumption falls in the range
with privacy preservation, and the center can determine
that the measurement is polluted with high probability if

it is not in this range. Therefore, all the measurements can
be filtered based on the predicted range and the abnormal
readings can be eliminated and also recorded for further
investigation of possible electricity theft.

• We extend Lifted ElGamal encryption to support fault tol-
erance. Each user utilizes the public key of the operation
center and a specific secret key, which is assigned by a
trusted authority, to encrypt the individual measurement.
The gateway transforms the ciphertexts generated by
users to pairing-based ciphertexts and aggregates them to
generate a compressed ciphertext, along with an auxiliary
ciphertext, which is computed from users’ public keys
and can be used to decrypt the aggregated ciphertext even
if some smart meters fail to report the measurements or
some measurements are corrupted and eliminated.

The remainder of this paper is organized as follows. In
section II, we define the system model, security threats and
security goals. Then, we revisit the preliminaries in III and
describe our DiPrism in section IV, followed by the security
discussion in section V. We evaluate the performance in
section VI and review the related work in section VII. Finally,
we conclude our paper in section VIII.

II. PROBLEM STATEMENT

In this section, we state the problem by formalizing system
model and security threats, and identifying security goals.

A. System Model

Advanced metering infrastructure of smart grid consists
of four entities, operation center, gateways, users and smart
meters, as depicted in Fig. 1. The operation center has the
supply of electricity from plants and controls electricity trans-
mission system to distribute electricity to users. To achieve the
balance of demand and supply, the operation center measures,
collects the users’ electricity consumption via advanced me-
tering infrastructure. It also determines the range of electricity
consumption for each user according to the historical power
usage data and the load of appliances, which is used to filter
the abnormal readings. Each user, equipped with a smart meter,
consumes the electricity provided by the operation center
and accesses his/her daily consumption and electricity prices
through the Internet. The smart meter provides smart grid
interface between the user and the operation center. It counts
the electricity consumed by the appliances in the household
through a home energy management system and submits the
measurement to the operation center at every reporting point.
The gateway, which is a wireless access point or base station,
is deployed to connect the operation center and smart meters
in home area network. They mainly perform two functions:
aggregation and relaying. The system time is divided into
several time slots, e.g., every 15 minutes, and all smart meters
are synchronous in time slots. At the beginning of each slot,
i.e., the reporting point, a smart meter submits real-time elec-
tricity consumption to the gateway via a local area network,
along with a zero-knowledge range proof, proving that the
measurement is in the pre-defined range. Upon receiving the
consumption reports from smart meters in the residential area,
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Fig. 1. System Model for Smart Metering

the gateway firstly verifies the range proofs to ensure that
all the individual reports are valid, and then aggregates the
reports to be a compressed one and forwards it to the center.
The center recovers the sum of power consumption from the
aggregated ciphertext and monitors electricity distribution and
dynamic pricing to achieve the balance of demand and support.

B. Security Threats

Security threats in smart grid may come from both external
and internal attackers. An external attacker may compromise a
smart meter to inject false data or eavesdrop on the communi-
cation channel to violate user’s privacy. The internal attackers
include the users, the gateway and the operation center. The
honest-but-curious gateway and operation center cannot tam-
per with the smart metering protocol, for example, they do not
maliciously drop or distort any received message, but try all
sorts of methods to seek and infer knowledge about users from
their measurements and intermediate results. Meanwhile, we
assume that the operation center and the gateway would not
collude to pollute electricity measurements. A malicious user
may not only be interested in the privacy of their neighbors,
but also try to compromise smart meter for stealing electricity.
The smart meters have protection against physical damage
by using sophisticated microcontrollers from manufacturers,
such as Analog Devices, Atmel and NXP Semiconductors.
However, they are still vulnerable to electricity theft and false
data injection attacks. In addition, a trusted authority (TA) is a
fully trusted party, whose responsibility to issue random secret
keys to users and the operation center through secure channels.

C. Security Goals

To enable smart metering under the aforementioned system
model and resist the security threats, our scheme should
achieve the following security goals.

• Privacy Preservation: Neither the individual power con-
sumption reports nor the aggregated report would disclose
any personal information of users. Therefore, an attacker
cannot violate any user’s privacy from the interactions
between smart meters and the operation center.

• Differential Privacy: There should be a solid mechanism
to resist the differential attacks. External attackers, the
operation center and the local gateway are unable to infer
any knowledge about users from the aggregations of two
differential data sets.

• Fault Tolerance: The operation center should efficiently
decrypt the aggregation of functioning smart meters, even
in the presence of malfunctioning ones. It should also
enable to recover the sum of the power consumption
from the aggregation even if some individual readings
are eliminated or some smart meters fail to report the
measurements.

• Range-Based Filtering: The operation center should iden-
tify and filter the measurements those are illegally cor-
rupted according to the range of electricity consumption.

III. PRELIMINARIES

In this section, we briefly revisit the preliminaries used to
construct the DiPrism, including Lifted ElGamal encryption
scheme and differential privacy.

A. Lifted ElGamal Encryption

The Lifted ElGamal encryption scheme [22] is a variant
of ElGamal encryption scheme, which is widely utilized in
privacy-preserving applications due to its appealing additive
homomorphism. Specifically, the cipherext of Lifted ElGa-
mal encryption has two components. Given two ciphertexts
C = (C1, C2) and C ′ = (C ′

1, C
′
2) of plaintexts m and

m′, respectively, anyone can compute the ciphertext C ′′ of
m′′ = m +m′ by computing the product C ′′ = (C ′′

1 , C
′′
2 ) =

(C1C
′
1g

r, C2C
′
2h

r) for a random r ∈ Z∗
p. Note that the

calculation of C ′′ only requires two ciphertexts C and C ′.

B. Differential Privacy

We use differential privacy to model the adversary model
and discuss the noise generation technique. Generally, differ-
ential privacy guarantees that the presence or absence of any
individual element in the database has only a limited impact
on any output of a query.

ϵ-differential privacy [23]: A randomized algorithm A is ϵ-
differential privacy if and only if for any datasets D and D′

that differ on one element, and for all T ⊆ Range(A),

Pr[A(D) ∈ T ] ≤ eϵ Pr[A(D′) ∈ T ]. (1)

More generally, differential privacy can be defined by
requiring the equation above to hold on D and D′ that are
neighboring. An algorithm A provides ϵ-differential privacy if
two outputs of a query on two datasets that differ on a single
element only are not distinguishable. Therefore, an adversary
cannot infer the value of any single element in the dataset. A
smaller value of ϵ implies better privacy insurance, but lower
accuracy of the query output.

The Laplace mechanism [23] is widely used to achieve ϵ-
differential privacy by adding i.i.d Laplace noise Lap(λ) to
the accurate output of a query. The noise Lap(λ) is sampled
from a Laplace distribution, whose pdf is Pr[Lap(λ) = x] =
1
2λe

|x|/λ. Assume a differentially private algorithm A is to
answer a query on two datesets D and D′ that differ on a
single element, we have

Pr(A(D) = s)

Pr(A(D′) = s)
=

1
2λe

|s−f(D)|
λ

1
2λe

|s−f(D′)|
λ

≤ e
|f(D)−f(D′)|

λ ≤ e
∆f
λ . (2)
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Here f is the numerical function and one wants to publish
f(D) in a way that satisfies ϵ-differential privacy. ∆f denotes
the global sensitivity of the function f , which is the maximum
change of f between two neighboring datasets D and D′,
that is, ∆f = maxD≃D′ |f(D) − f(D′)|, where D ≃ D′

denotes that D and D′ are neighboring. Let ϵ = ∆f/λ, we
have that Pr[A(D) ∈ T ] ≤ eϵPr[A(D′) ∈ T ], i.e., adding
i.i.d Laplace noise Lap(λ) to a query result for achieving ϵ-
differential privacy, where λ denotes noise scale. The Laplace
distribution Lap(λ) is infinitely divisible. For every n > 1,
Lap(λ) =

∑n
i=1(G(n, λ) − G′(n, λ)), in which G(n, λ) and

G′(n, λ) are i.i.d with Gamma distribution g(x, n, λ). The
Gamma distribution is defined as

g(x, n, λ) =
( 1λ )

1
n

Γ( 1n )
x

1
n−1e

x
λ , (3)

where Γ( 1n ) is the Gamma function evaluated at 1/n.
In smart metering, f is the electricity consumption of a

residential area and ∆f is the maximum amount that any user
can consume in a constant period. If the number of smart
meters in a residential area is N , for each smart meter SMi,
we can add Gi(N,λ)−G′

i(N,λ) to its measurement mi before
reporting. Thus, the sum of the power consumption in the
residential area is

N∑
i=1

mi+

N∑
i=1

(Gi(N,λ)−G′
i(N,λ)) =

N∑
i=1

mi+Lap(λ). (4)

In this way, ϵ-differential privacy is satisfied.

IV. THE PROPOSED SCHEMES

In this section, we propose the DiPrism, which includes
four phases: system initialization, report generation, report
aggregation and report reading. Then, we apply differential
privacy to the DiPrism to against differential attacks.

A. The Basic DiPrism

The basic DiPrism mainly focuses on providing measure-
ment aggregation, fault tolerance and range-based filtering
for smart metering. Specifically, by means of Lifted ElGamal
encryption scheme, the measurements of smart meters can be
aggregated at the gateway in the residential area to improve the
efficiency of smart metering. We also expand the Lifted ElGa-
mal encryption to achieve ciphertext transformation, indicating
that the ciphertexts obtained from Lifted ElGamal encryption
can be transformed to pairing-based ciphertexts. The curious
operation center can only decrypt the aggregated pairing-based
ciphertext and handle general failures of measurement reports,
but it is unable to decrypt the original ciphertexts generated by
users. In addition, the electricity consumption of a household
in a constant time period can be predicted since the residents
generally follow their energy usage habits. Therefore, the
measurement should lie in a specific range, which is pre-
committed by the users or learnt from their historical data.
The information flow of smart metering is shown in Fig.2.
The construction of the basic DiPrism is described as follows:

Fig. 2. Information Flow

1) System Initialization: The TA bootstraps the whole sys-
tem at the beginning. Concretely, for the system initialization,
given the security parameter κ, the TA generates a tuple
(p,G,G1, ê, g,H, f), where p is a big prime. G and G1 are
groups of the order p, ê : G × G → G1 is a bilinear map,
g ∈R G is a random generator of G, H : {0, 1}∗ → Z∗

p is
a cryptographic hash function and f : Z∗

p × Z∗
p → Z∗

p is a
pseudo-random function with a secret key. The TA releases
the system parameters (p,G,G1, ê, g,H, f).

Besides, the TA is responsible for assigning secret key
materials to the residential users U = {U1, · · · , UN} and the
operation center OC, where N is the number of users in the
residential area. For each user Ui ∈ U , the TA firstly picks a
random si ∈ Zp and assigns si to Ui as its secret key through
secure channels. The TA also chooses a random k ∈ Zp, which
is assigned to all the residential users in U . To achieve the
secure distribution of each (si, k), one recommended approach
is to insert (si, k) in a trusted platform module and install this
module on the smart meter during production. The TA also
computes s0 ∈ Z∗

p, such that s0 + s1 + · · ·+ sN = 0 mod p,
and assigns s0 to OC as its secret key.

The OC initializes the system by selecting a random x ∈R

Z∗
p to compute h = gx ∈ G. OC releases h as its public key

and keeps the corresponding secret key x secretly.
The gateway with an identifier GW also has its secret-public

key pair (y, Y ), where y is randomly picked from Z∗
p and

Y = ê(g, g)y ∈ G1.
A user Ui in the residential area is equipped with a smart

meter with an identifier SMi. Ui uses the assigned secret key
si to compute the corresponding public key as Si = gsi .
In addition, Ui determines the range of the electricity con-
sumption in a reporting period, [Wi,W ′

i], according to his/her
usage habits and loads of appliances. This range [Wi,W ′

i]
also can be resolved by OC based on the historical records
of Ui’s electricity usage. By means of [Wi,W ′

i], OC can
determine the possible discrete readings of smart meters that
fall in the range of [Wi,W ′

i], i.e., wij ∈ [Wi,W ′
i]. Then, OC

chooses a random value vi ∈ Z∗
p and computes Vi = gvi ,

Wi,wij = g
1

vi+wij for each wij ∈ [Wi,W ′
i]. Finally, OC

publishes (Vi,Wi,wij ) for Ui.
In addition, a digital signature scheme, e.g., DSA, is em-

ployed by users and the gateway to achieve the authentication
and integrity of consumption reports during transmission from
smart meters to the operation center.
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2) Report Generation: Denote the reporting time points,
e.g., every 15 min, as T = {t1, t2, · · · , tmax} for a long time
period. To report the real-time electricity consumption mi at a
specific time point tl ∈ T , Ui generates a consumption report
Pi as follows:

• Compute rl = f(k, tl), Cl = grl , Di = gmihrlsi ;
• Randomly pick ui ∈ Z∗

p to compute Zi = Wui
i,mi

;
• Pick random values ρi1, ρi2, ρi3 ∈ Z∗

p, and compute Ti =
gρi1hrlρi2 , Xi = ê(Zi, g)

−ρi1 ê(g, g)ρi3 ;
• Compute ci = H(Cl, Di, Zi, tl), zmi = ρi1−cimi, zsi =

ρi2 − cisi and zui = ρi3 − ciui;
• Set Pi = (SMi, Cl, Di, Zi, Ti, Xi, ci, zmi , zsi , zui).

Finally, Ui sends Pi to the gateway GW .
3) Report Aggregation: Upon receiving the individual con-

sumption reports from users in U , Pi ∈ {P1, P2, · · · , Pn},
GW firstly checks whether all the measurements in con-
sumption reports are valid by verifying whether the following
equations are satisfied for each report Pi:

ê((TiD
−ci
i g−zmi )z

−1
si , g)

?
= ê(Cl, h), (5)

Xi
?
= ê(Zi, Vi)

ci ê(Zi, g)
−zmi ê(g, g)zui . (6)

If either of them does not hold for Pî, the corresponding smart
meter SMî is compromised or the measurement is corrupted.
GW removes the report Pî and aggregates the remaining
individual reports into a compact report P . Otherwise, GW
aggregates all the received reports to generate P . The proce-
dures to generate P are described as follows:

• If all N smart meters work correctly, i.e., n = N , for
each report Pi, GW uses its secret key y to compute

C = ê(gy, Cl) = ê(gy, grl),

D =
∏N

i=1 ê(g
y, Di) =

∏N
i=1 ê(g

y, gmihrlsi).
For the range proofs, GW aggregates the individual
reports as

D̃ =
∏N

i=1 D
ci
i =

∏N
i=1 g

micihrlsici ,

Z =
∏N

i=1 ê(Zi, Vi)
ci =

∏N
i=1 ê(Wi,mi

, g)viuici ,
F =

∏N
i=1 ê(Zi, g) =

∏N
i=1 ê(W

ui
i,mi

, g),

T =
∏N

i=1 Ti =
∏N

i=1 g
ρi1hrlρi2 ,

X =
∏N

i=1 Xi =
∏N

i=1 ê(Zi, g)
−ρi1 ê(g, g)ρi3 ,

zm =
∑N

i=1 zmi =
∑N

i=1 ρi1 − cimi,

zs =
∑N

i=1 zsi =
∑N

i=1 ρi2 − cisi,

zu =
∑N

i=1 zui =
∑N

i=1 ρi3 − ciui.

GW sets P = (GW,Cl, C,D, D̃, Z, F, T,X, zm, zs, zu).
• If the smart meters of some users Û ⊂ U do not work,

that is, Û do not report their data at time point tl or report
polluted measurements, GW uses y to compute

C = ê(gy, Cl) = ê(gy, grl),
D =

∏
i∈U\Û ê(gy, Di) =

∏
i∈U\Û ê(gy, gmihrlsi),

D̂ =
∏

î∈Û ê(Cy
l , Sî) =

∏
î∈Û ê(grly, gsî).

In addition, GW calculates
D̃ =

∏
i∈U\Û Dci

i =
∏

i∈U\Û gmicihrlsici ,

Z =
∏

i∈U\Û ê(Zi, Vi)
ci =

∏
i∈U\Û ê(Wi,mi , g)

viuici ,
F =

∏
i∈U\Û ê(Zi, g) =

∏
i∈U\Û ê(Wui

i,mi
, g),

T =
∏

i∈U\Û Ti =
∏

i∈U\Û gρi1hrlρi2 ,

X =
∏

i∈U\Û Xi =
∏

i∈U\Û ê(Zi, g)
−ρi1 ê(g, g)ρi3 ,

zm =
∑

i∈U\Û zmi =
∑

i∈U\Û ρi1 − cimi,

zs =
∑

i∈U\Û zsi =
∑

i∈U\Û ρi2 − cisi,

zu =
∑

i∈U\Û zui =
∑

i∈U\Û ρi3 − ciui.

GW sets P = (GW,Cl, C,D, D̂, D̃, Z, F, T,X, zm, zs, zu).
Finally, GW forwards P to OC.

4) Report Reading: Upon receiving the aggregated report
P from the gateway, OC performs the following operations to
recover the sum of power consumption in the residential area:

• If all N smart meters work correctly, OC verifies whether

T
?
= D̃gzmCxzs

l , X
?
= ZF−zm ê(g, g)zu .

If both hold, OC computes M = DCxs0 =
ê(g, g)y

∑N
i=1 mi and recovers the discrete log of M base

Y using Pollard’s lambda method [25] to obtain m =∑N
i=1 mi, which is the sum of the power consumption

of residential users in U . Otherwise, OC has to use
the divide-and-conquer approach to find the corrupted
individual report, in which mi does not fall in the pre-
defined range [Wi,W ′

i].
• If the smart meters of some users Û ⊂ U do not work,

OC verifies whether
T

?
= D̃gzmCxzs

l , X
?
= ZF−zm ê(g, g)zu .

If both hold, OC computes M = DCxs0D̂x =
ê(g, g)y

∑
i∈U\Û mi , and recovers the discrete log of M

base Y using Pollard’s lambda method [25] to obtain
m =

∑
i∈U\Û mi, which is the sum of the correct power

consumption of residential users in U . Otherwise, OC
also uses the divide-and-conquer approach to find the
corrupted individual report.

B. The Enhanced DiPrism

To resist differential attacks, we propose the enhanced
DiPrism with additional privacy preservation. In the enhanced
DiPrism, the noise is added to the individual consumption and
encrypted by the user, such that SO can only learn the sum of
electricity measurements with noise. In addition, the noise is
generated from a distributed approach by means of the infinite
divisibility of Laplace distribution in Section III. In case that
some smart meters fail to report the correct measurements,
GW can complement the noise for malfunctioning smart
meters. As a result, through the collaboration of smart meters
and the gateway, ϵ-differential privacy can be achieved.

1) System Initialization: The TA bootstraps the whole sys-
tem, the operation center, the gateway and the users U setup
following the same procedures as those in the basic DiPrism.

2) Report Generation: To report the real-time electricity
consumption mi at tl ∈ T , Ui generates the consumption
report Pi as follows:

• Use the secret values (si, k) to compute rl = f(k, tl),
Cl = grl , αi = Gi,tl(N,λ) − G′

i,tl
(N,λ), Di =

gmi+αihrlsi , where Gi,tl(N,λ) and Gi,tl(N,λ) are two
random values independently sampled from the Gamma
distribution. Thus, Gi,tl(N,λ) and Gi,tl(N,λ) are i.i.d
random variables having Gamma distribution with pdf
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g(x,N, λ), where x ≥ 0, and N is the number of users
in the residential area;

• Randomly pick ui ∈ Z∗
p to compute Zi = Wui

i,mi
;

• Pick random values ρi1, ρi2, ρi3, ρi4 ∈ Z∗
p and compute

Ti = gρi1+ρi4hrlρi2 , Xi = ê(Zi, g)
−ρi1 ê(g, g)ρi3 ;

• Compute ci = H(Cl, Di, Zi, tl), zmi = ρi1−cimi, zsi =
ρi2 − cisi, zui

= ρi3 − ciui, zαi
= ρi3 − ciαi;

• Set Pi = (SMi, Cl, Di, Zi, Ti, Xi, ci, zmi , zsi , zui , zαi).

Finally, Ui sends Pi to GW .
3) Report Aggregation: Upon receiving Pi ∈

{P1, P2, · · · , Pn} from users in U , GW firstly checks
whether all the measurements in consumption reports are
valid by verifying whether the following equations are
satisfied for each report Pi:

ê((TiD
−ci
i g−zmi

−zαi )z
−1
si , g)

?
= ê(Cl, h), (7)

Xi
?
= ê(Zi, Vi)

ci ê(Zi, g)
−zmi ê(g, g)zui . (8)

If either of them does not hold for Pî, GW removes the report
Pî and aggregates the remaining individual reports into P .
Otherwise, GW aggregates all the received reports to generate
P . The procedures to generate P are described as follows:

• If all N smart meters work correctly, i.e.,
n = N , for each report Pi, GW generates
(Cl, C,D, D̃, Z, F, T,X, zm, zs, zu) following the
same procedures as those in the basic DiPrism
and calculates zα =

∑N
i=1 zαi

. GW sets
P = (GW,Cl, C,D, D̃, Z, F, T,X, zm, zs, zu, zα).

• If the smart meters of some users Û ⊂ U do not work,
GW uses its secret key y to compute

β =
∑

î∈Û Gi,tl(N,λ)−G′
i,tl

(N,λ),
C = ê(gy, Cl),

D =
∏

i∈U\Û ê(gy, Di)ê(g
y, gβ),

D̂ =
∏

î∈Û ê(Cy
l , Sî).

In addition, GW generates (D̃, Z, F, T,X, zm, zs, zu)
following the same procedures as those in basic DiPrism
and calculates zα =

∑
i∈U\Û zαi . GW sets P =

(GW,Cl, C,D, D̂, D̃, Z, F, T,X, zm, zs, zu, zα).

Finally, GW forwards P to OC.
4) Report Reading: Upon receiving P from GW , OC per-

forms the following operations to recover
∑n

i=1 mi +Lap(λ)
as follows:

• If all N smart meters work correctly, OC verifies the e-
quations T

?
= D̃gzm+zαCxzs

l and X
?
= ZF−zm ê(g, g)zu .

If both hold, OC computes M = DCxs0 and uses
Pollard’s lambda method [25] to recover the discrete log
of M base Y , that is, m =

∑N
i=1 mi + Lap(λ).

• If the smart meters of some users Û ⊂ U do not
work, OC verifies the equations T

?
= D̃gzm+zαCxzs

l

and X
?
= ZF−zm ê(g, g)zu . If both hold, OC computes

M = DCxs0D̂x and uses Pollard’s lambda method
[25] to recover the discrete log of M base Y , that is,
m =

∑
i∈U\Û mi + Lap(λ).

V. SECURITY DISCUSSION

In this section, we demonstrate that our schemes can achieve
all the security goals defined in II-C, namely, privacy preser-
vation, differential privacy, fault tolerance and range-based
filtering.

Privacy Preservation. In basic DiPrism, we utilize the
Lifted ElGamal encryption scheme with distributed random
secret keys to protect the individual consumption of users.
Since Lifted ElGamal encryption is key-less reproducible [26],
the re-use of rl among users in U does not affect the confiden-
tiality of mi. Because the Lifted ElGamal encryption scheme
[22] is semantic secure against chosen plaintext attacks, an
adversary A is not able to recover mi or learn any knowledge
about mi without the private key of OC. Similarly, the
ciphertexts of individual power measurements are aggregated
to be (C,D), which has the same format as the individual
report (Cl, Di). Since (C,D) is still a ciphertext of Lifted
ElGamal encryption in G1, A cannot learn any information
about the individual measurements and the sum of all users’
power consumption.

Differential Privacy. In DiPrism, although the user’s power
usage data is encrypted to prevent privacy disclosure, A still
can launch differential attacks to threaten user’s privacy, if
it obtains the aggregated data of two adjacent data sets.
To prevent differential attacks, in the enhanced DiPrism,
we allow the normal smart meters and gateways to add
appropriate Laplace noise collaboratively into the electricity
consumption for achieving ϵ-differential privacy [23]. Specif-
ically, through sampling from Gamma distribution, each s-
mart meter integrates G(N,λ)−G′(N,λ) into the individual
measurement mi before reporting and the sum of N random
variables with Gamma distribution is Laplace distribution.∑N

i=1 mi+Lap(λ) or
∑

i∈U\Û mi+Lap(λ) is calculated by
OC in Report Reading phase. Therefore, the difference of the
aggregated adjacent data sets does not expose the individual
consumption to the operation center.

Fault Tolerance. We design a new approach to realize
fault tolerance of smart meters’ malfunction. Even if some
smart meters Û ⊂ U do not report their electricity measure-
ments correctly, OC still can use the secret key (k, s0) to
decrypt (C,D, D̂) and recover m =

∑
i∈U\Û mi. Specifically,

if only the aggregated ciphertext of electricity consumption
from normal smart meters, i.e., D =

∏
i∈U\Û ê(gy, Di) =

ê(gy, g
∑

i∈U\Û mihrl
∑

i∈U\Û si) is provided, OC cannot recov-
er

∑
i∈U\Û mi since it does not know the value of

∑
i∈U\Û si.

In order to give the decryption capability to OC, GW gen-
erates D̂ =

∏
î∈Û ê(Cy

l , Sî) for OC, which can be employed
to aggregate with (C,D) for making s0 + s1 + · · ·+ sN = 0
mod p hold. Therefore, OC can utilize its secret key (k, s0)
to obtain

∑
i∈U\Û mi, even some smart meters do not work

correctly or fault measurements are eliminated.
Range-based Filtering. We utilize the range proof [24]

to determine whether the individual consumption falls in
the predicted or preset range. If a measurement mi is
out of the range [Wi,W ′

i], we deem that the measurement
is corrupted. Specifically, each user Ui generates a proof
(Zi, Ti, Xi, ci, zmi , zsi , zui) to prove that mi ∈ [Wi,W ′

i]
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without disclosing the detailed measurement mi to the ad-
versary. GW checks the proof to determine whether there
is a measurement mi that does not fall in the preset range
[Wi,W ′

i] and discards the corrupted measurement. Then,
GW aggregates the valid proofs from users in U to obtain
(Z,F, T,X, zm, zs, zu), which can prove that the sum of
measurements (m1, · · · ,mn) are in the preset range for all the
individual reports. Now we show that the soundness of range
proof follows the extraction property of zero-knowledge proof
and BBS signature [27]. The extraction property implies that
if there is a user U∗

i can convince OC with a non-negligible
probability ϵ, there exists an extractor, which interacts with
U∗
i and outputs a witness (mi, si, ui) with a probability

ploy(ϵ). Furthermore, if we assume the extractor’s input
consists of two transcripts, i.e., (Zi, Ti, Xi, ci, zmi , zsi , zui)
and (Zi, Ti, Xi, c

′
i, z

′
mi

, z′si , z
′
ui
), we can obtain the witness as

mi =
zmi

−z′
mi

c′i−ci
, si =

zsi−z′
si

c′i−ci
, ui =

zui
−z′

ui

c′i−ci
. It is obvious

that the extractor succeeds if c′i − ci is invertible in Z∗
p. If

mi /∈ [Wi,W ′
i], U

∗
i cannot generates a range proof to convince

OC that mi ∈ [Wi,W ′
i] with a non-negligible probability

poly(ϵ), which is the probability that BBS signature is broken
under chosen-message attacks.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of DiPrism in
terms of computational and communication overhead.

A. Computational Overhead

We count the number of the time-consuming cryptographic
operations to demonstrate the computational overhead of the
enhanced DiPrism. Exp, Exp1, BP , Mul and Mul1 denote
the operations of exponentiation in G, exponentiation in G1,
bilinear pairing, multiplication in G and multiplication in G1.
In System Initialization phase, OC initializes the system by
executing (N + |W1|+ · · ·+ |WN |+1)Exp operations for N
users in the residential area, where |Wi| denotes the number of
possible discrete readings in range [Wi,W ′

i] of Ui. GW needs
to perform BP + Exp operations to compute Y = ê(g, g)y

and each user Ui is required to run Exp operation to generate
Si. In Report Generation phase, each user Ui generates Pi by
running 6Exp+ 2BP + 2Exp1 + 2Mul +Mul1 operations.
To further reduce the computational burden for Ui, OC can
pre-compute ĝ = ê(g, g) and Ŵi,wij = ê(Wi,wij , g) for
each wij ∈ [Wi,W ′

i], such that Xi can be calculated as
Xi = Ŵ−uiρi1

i,mi
ĝρi3 . Therefore, the computation overhead of

Ui can be reduced to 6Exp + 2Exp1 + 2Mul + Mul1 and
no bilinear pairing is required for Ui, which is the most
time-consuming operation in these five operations. In Report
Aggregation phase, GW receives n′ individual reports and
aggregates n reports to generate P , where n is the number
of uncorrupted measurements and N − n is the number of
malfunctioning or compromised smart meters. To aggregate
the reports, GW should perform (3n′ + n + 5)BP + (5n′ +
2n+2)Exp+ n′Exp1 + (N +3n− 5)Mul+ (2n− 2)Mul1
operations. Nevertheless, the verification of range proofs can
be only performed by OC since electricity theft does not

frequently happen. If (D̃, Z, F, T,X, zm, zs, zu, zα) does not
succeed, OC can further check the individual range proof.
In this way, GW is only required to perform (n + 4)BP +
(2n+2)Exp+(N +3n−5)Mul+(2n−2)Mul1 operations
to aggregate the individual reports. In Report Reading phase,
OC verifies whether the power consumption is in the desired
range and recovers the sum of measurements by executing
2Exp+ 4Exp1 + 2Mul + 4Mul1 operations.

We conduct an experiment on a notebook with Intel Core
i5-4200U CPU @ 2.29GHz and 4.00GB memory. We use
the MIRACL library to implement number-theoretic based
methods of cryptography. The parameter p is approximately
160 bits and the elliptic curve is defined as y = x3+1 over Fq ,
where q is 512 bits. We simulate a smart metering scenario
where an operation center manages the power consumption
of 100,000 smart meters with 100 gateways. The operation
center receives the aggregated reports from 100 gateways and
each gateway controls 1000 smart meters. It costs 7.422ms
for each user Ui to generate Pi and sends Pi to GW . After
receiving n (i.e. n=1000) reports from users, GW executes
24124ms to aggregate the reports and sends the result to OC.
OC receives 100 aggregated reports and spends 64324ms to
recover the sum of the power consumption from all aggregated
reports.

We also compare the computational overhead with some
existing schemes, e.g., EPPA [10], DPAFT [18] and JKL [28].
Since EPPA [10], DPAFT [18] and JKL [28] do not support
range-based filtering, we remove the computations of range-
based filtering in DiPrism and compare the computational
overhead on data aggregation. Firstly, due to the limitation
of computational capability of smart meters, the computational
overhead in Report Generation phase should be relatively low.
We compare the enhance DiPrism with EPPA [10], DPAFT
[18] and JKL [28] in terms of the execution time of encryption
algorithm in Report Generation phase. As shown in Fig 3(a),
our scheme costs less time than EPPA, JKL and DPARF for
n smart meters to generate the ciphertexts of measurements,
since the Lifted ElGamal scheme is more efficient than the
Paillier encryption and BGN encryption used in EPPA, JKL
and DPARF, respectively. Since each smart meter performs
the encryption algorithm in Report Generation phase individ-
ually, the time cost for each smart meter is relatively low.
Each gateway would receive 1000 individual reports from
1000 smart meters. Fig 3(b) shows the comparison results of
computational overhead on GW when the number of smart
meters increases from 1 to 1000. Our DiPrism is more efficient
than EPPA and DPAFT because GW in DiPrism is required to
perform less bilinear pairing than that in EPPA and DPAFT,
in which two bilinear pairings are performed to check the
availability of each user’s signature. In Report Reading phase,
OC prefers to execute the decryption algorithm for each
aggregated report to obtain the sum of power consumption,
rather than decrypting each report and then adding the re-
covered individual consumption together. Therefore, with data
aggregation, computational time of OC can be significantly
reduced. In Fig. 3(c), OC maximally receives 100 aggregated
reports from gateways and decrypts each aggregated report to
obtain the sum of power consumption of 1000 smart meters in
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Fig. 3. Performance Evaluation

its coverage area. DiPrism is more efficient than the traditional
method (Trad), in which OC reads 100,000 individual reports
one by one.

B. Communication Overhead

To report the real-time power consumption to the
operation center, each user Ui has to send Pi =
(SMi, Cl, Di, Zi, Ti, Xi, ci, zmi , zsi , zui , zαi) to GW at a re-
porting time point tl ∈ T . The binary length of Pi is 504
bytes, if the identifier of SMi is assumed to be 20 bytes.
Thus, GW can receive 504n bytes if there are n smart
meters reporting the measurements correctly. To reduce the
communication overhead on the channel between GW and
SO, GW aggregates n individual reports into a compact report
P = (GW,Cl, C,D, D̂, D̃, Z, F, T,X, zm, zs, zu, zα), which
is a bit-string of 996 bytes, if the identifier of GW is 20 bytes.
Therefore, with data aggregation, the length of transmission
message from GW to OC can decrease from 504n bytes
to 996 bytes, a constant length that does not depend on the
number of workable smart meters. In Fig. 3(d), we demonstrate
the efficiency of reports transmission between GW and OC.
Each gateway would send the aggregated report generated
from 1000 individual reports to OC and OC could maximally
receive 100 aggregated reports. In DiPrism, each GW is only
required to send 996 bytes to OC, which is shorter than that
in the traditional method (Trad), where GW forwards all 1000
individual reports to OC without aggregation.

C. Implementation

We give a detailed description to show how to implement
our DiPrism scheme. The implementation is quite important
because a secure cryptographic scheme cannot provide suffi-
cient security to systems if it is not implemented correctly. To
implement DiPrism, public-key infrastructure (PKI) is needed
to facilitate secure information transmission, which has been
widely used in our daily life. In PKI, a Certificate Authority

(CA) is responsible to issue and sign public certificates for
both gateways and the operation center. The TA in DiPrism can
be the CA or a trusted government institution, who bootstraps
the smart metering system and assigns secret key materials
to the residential users. All the secret keys should be kept
securely and prevented from being lost, stolen or forged. They
can be encrypted using passwords and stored on secure disks.
The trusted platform module (TMP) can be used to generate
secure keys and ensure their security. These keys are required
to be at least 160 bits. The elliptic curve can be defined
as y = x3 + 1 over Fq , where q is 512 bits. Moreover,
there are several programming languages (e.g., C, C++, Java,
Python) and cryptographic libraries (e.g., Miracl, PBC, NTL)
to be used to implement DiPrism. Based on the PKI, proper
parameters and the description in section IV, each algorithm
in DiPrism can be implemented on the corresponding entities.
For example, the report generation algorithm is deployed
on smart meters, the report aggregation algorithm should be
implemented on gateways and the report reading algorithm
is executed on the operation center. In short, to implement
DiPrism, just a short and simple program is required to be
inserted into a proper position of the original code in each
entity for data processing.

VII. RELATED WORK

Privacy-preserving data aggregation is a critical technique in
smart grid, which achieves crucial data collection with user’s
privacy preservation in an efficient manner. In past decade,
many privacy-preserving data aggregation schemes [10], [11],
[16], [17] have been proposed. Lu et al. [10] integrated super-
increasing sequence with Paillier homomorphic encryption to
design a privacy-preserving multi-dimensional data aggrega-
tion scheme, which guarantees data confidentiality, authen-
tication and multi-dimensional data compression in a semi-
honest model. Li et al. [11] adopted homomorphic encryption
and aggregation tree to achieve distributed incremental data
aggregation without exposing users’ privacy. To prevent the
failure of a single gateway, Garcia and Jacobs [17] combined
homomorphic encryption and data sharing to propose an
interactive energy metering scheme, in which the individual
measurement is sliced into several shares and the gateways
collaboratively aggregate all the received shares for the op-
eration center. Consequently, to protect user’s privacy against
internal attackers, Fan et al. [16] designed a privacy-enhanced
data aggregation scheme to against internal attackers, such
as the operation center, by injecting blinding factors into
the consumption data. Unfortunately, Bao and Lu [29] found
that Fan et al.’s scheme cannot achieve their design goals
since the user’s private key can be easily derived from public
parameters. As a result, the integrity of consumption data
are violated. Ni et al. [30] utilized homomorphic signature
and homomorphic encryption to propose a security-enhanced
smart metering scheme that prevents malicious gateways from
injecting false data into consumption reports. Jo et al. [28] uti-
lized Paillier homomorphic encryption to design a lightweight
privacy-preserving metering protocol and proposed a new
distributed authentication method to improve the efficiency
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of message authentication. Abdallah and Shen [31] proposed
a privacy-preserving data aggregation scheme by leveraging
lightweight NTRU cryptosystem to protect user’s privacy and
integrity of power consumption with low computational and
communication overhead.

In addition, some works [18], [32] extended privacy-
preserving data aggregation schemes to support various ap-
pealing properties, including fault tolerance, error detection
and differential privacy. Jia et al. [33] formally defined a
human-factor-aware differential aggregation attack and pro-
posed a privacy-preserving smart metering scheme to achieve
efficient data aggregation without leaking the individual power
consumption and thwart differential aggregation attacks. Bao
and Lu [18] proposed a privacy-preserving data aggregation
scheme with differential privacy and fault tolerance. A novel
key agreement protocol is designed to support fault tolerance
of malfunctioning smart meters flexibly, and the BGN cryp-
tosystem is employed to achieve data aggregation with user’s
privacy protection. Furthermore, differential privacy technique
is integrated to resist differential attacks. However, this scheme
requires two-way interactions to distribute random values and
collect power consumption in each time period of reading
reporting. Shi et al. [32] introduced a diverse grouping-based
aggregation protocol by considering the lifetime of smart
meters as exponential distribution and utilizing differential
privacy to achieve grouping-based private stream aggregation
and efficient error detection. Different from the existing works,
we propose a privacy-preserving smart metering scheme in
smart grid using Lifted ElGamal encryption and differential
privacy, which supports data aggregation, user’s privacy p-
reservation, fault tolerance, range-based filtering and resistant
to differential attacks simultaneously.

VIII. CONCLUSIONS

In this paper, we have proposed a differentially private
data aggregation scheme with fault tolerance and range-based
filtering in smart grid. This scheme is secure under a more
challenging threat model, in which the operation center and
gateways are semi-honest and the users may launch electricity
theft and false data injecting attacks. DiPrism can prevent
the curious operation center from acquiring the individual
electricity consumption, and ensure the measurements are in
the acceptable range without disclosing the exact readings.
In addition, we have extended Lifted ElGamal encryption to
support power consumption collection even some smart meters
fail to report measurements and utilized differential privacy
technique to resist differential attacks. In the further work, we
will design a privacy-preserving demand response scheme with
error detection for two-way communications in smart grid.
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