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Abstract—How to control the access of the huge amount
of big data becomes a very challenging issue, especially when
big data are stored in the cloud. Ciphertext-Policy Attribute-
based Encryption (CP-ABE) is a promising encryption technique
that enables end-users to encrypt their data under the access
policies defined over some attributes of data consumers and
only allows data consumers whose attributes satisfy the access
policies to decrypt the data. In CP-ABE, the access policy is
attached to the ciphertext in plaintext form, which may also
leak some private information about end-users. Existing methods
only partially hide the attribute values in the access policies,
while the attribute names are still unprotected. In this paper,
we propose an efficient and fine-grained big data access control
scheme with privacy-preserving policy. Specifically, we hide the
whole attribute (rather than only its values) in the access policies.
To assist data decryption, we also design a novel Attribute Bloom
Filter to evaluate whether an attribute is in the access policy and
locate the exact position in the access policy if it is in the access
policy. Security analysis and performance evaluation show that
our scheme can preserve the privacy from any LSSS access policy
without employing much overhead.

Index Terms—Big Data; Access Control; Privacy-preserving
Policy; Attribute Bloom Filter; LSSS Access Structure

I. INTRODUCTION

In the era of big data, a huge amount of data can be
generated quickly from various sources (e.g., smart phones,
sensors, machines, social networks, etc.). Towards these big
data, conventional computer systems are not competent to
store and process these data. Due to the flexible and elastic
computing resources, cloud computing is a natural fit for
storing and processing big data [1], [2]. With cloud computing,
end-users store their data into the cloud, and rely on the cloud
server to share their data to other users (data consumers). In
order to only share end-users’ data to authorized users, it is
necessary to design access control mechanisms according to
the requirements of end-users.

When outsourcing data into the cloud, end-users lose
the physical control of their data. Moreover, cloud service
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providers are not fully-trusted by end-users, which makes the
access control more challenging. For example, if the traditional
access control mechanisms (e.g., Access Control Lists) are
applied, the cloud server becomes the judge to evaluate the
access policy and make access decision. Thus, end-users may
worry that the cloud server may make wrong access decision
intentionally or unintentionally, and disclose their data to some
unauthorized users. In order to enable end-users to control the
access of their own data, some attribute-based access control
schemes [3]–[5] are proposed by leveraging attribute-based
encryption [6], [7]. In attribute-based access control, end-users
first define access policies for their data and encrypt the data
under these access policies. Only the users whose attributes
can satisfy the access policy are eligible to decrypt the data.

Although the existing attribute-based access control
schemes can deal with the attribute revocation problem [3]–
[5], they all suffer from one problem: the access policy may
leak privacy. This is because the access policy is associated
with the encrypted data in plaintext form. From the plaintext
of access policy, the adversaries may obtain some privacy
information about the end-user. For example, Alice encrypts
her data to enable the “Psychology Doctor” to access. So,
the access policy may contain the attributes “Psychology” and
“Doctor”. If anyone sees this data, although he/she may not
be able to decrypt the data, he/she still can guess that Alice
may suffer from some psychological problems, which leaks
the privacy of Alice.

To prevent the privacy leakage from the access policy, a
straightforward method is to hide the attributes in the access
policy. However, when the attributes are hidden, not only the
unauthorized users but also the authorized users cannot know
which attributes are involved in the access policy, which makes
the decryption a challenging problem. Due to this reason,
existing methods [8]–[12] do not hide or anonymize the
attributes. Instead, they only hide the values of each attribute
by using wildcards [8], [9], Hidden Vector Encryption [10],
and Inner Product Encryption [11], [12]. Hiding the values of
attributes can somehow protect user privacy, but the attribute
name may also leak private information. Moreover, most of
these partially hidden policy schemes only support specific
policy structures (e.g., AND-gates on multi-valued attributes).

In this paper, we aim to hide the whole attribute instead
of only partially hiding the attribute values. Moreover, we
do not restrict our method to some specific access structures.
The basic idea is to express the access policy in LSSS access
structure (M,ρ) where M is a policy matrix and ρ matches
each row Mi of the matrix M to an attribute [6], and hide the
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attributes by simply removing the attribute matching function
ρ . Without the attribute matching function ρ , it is necessary to
design an attribute localization algorithm to evaluate whether
an attribute is in the access policy and if so find the correct
position in the access policy. To this end, we further build a
novel Attribute Bloom Filter to locate the attributes to the
anonymous access policy, which can save a lot of storage
overhead and computation cost especially for large attribute
universe.

Our contributions are summarized as follows.
1) We propose an efficient and fine-gained big data access

control scheme with privacy-preserving policy, where
the whole attributes are hidden in the access policy rather
than only the values of the attributes.

2) We also design a novel Attribute Bloom Filter to eval-
uate whether an attribute is in the access policy and
locate the exact position in the access policy if it is in
the access policy.

3) We further give the security proof and performance
evaluation of our proposed scheme, which demonstrate
that our scheme can preserve the privacy from any LSSS
access policy without employing much overhead.

The remainder of this paper is organized as follows. We
first describe the related work in Section II. In Section III,
we introduce some preliminary knowledge. Section IV first
defines the system model, and then defines our scheme and
its security model. The detailed construction of our scheme
is described in Section V. Section VI provides the security
analysis and performance evaluation of our scheme. Finally,
the conclusion is drawn in Section VII.

II. RELATED WORK

In order to enable end-users to control the access of
their own data stored on untrusted remote servers (e.g.,
cloud servers), encryption-based access control is an effective
method, where data are encrypted by end-users and only
authorized users are given decryption keys. This can also
prevent the data security during the transmission over wireless
networks which are vulnerable to many threats [13]–[15].
However, traditional public key encryption methods are not
suitable for data encryption because it may produce multiple
copies of ciphertext for the same data when there are many
data consumers in the system. In order to cope with this
issue, some attribute-based access control schemes [3], [5]
are proposed by leveraging attribute-based encryption [6],
which only produces one copy of ciphertext for each data and
does not need to know how many intended data consumers
during the data encryption. Moreover, once the cloud data are
encrypted, some searchable encryption algorithms [16], [17]
are proposed to support search on encrypted cloud data.

Towards this problem, some works [8]–[12], [18]–[21]
have been proposed to hide the access policy. In [8], two
constructions are proposed to partially hide the access policy.
However, the access policy only supports AND-gates on multi-
valued attributes with wildcards. Li et al. [9] followed this
work and hided the attribute value by using a hash value to
denote the value of an attribute. Considering that [8] and [9]

are selectively secure, Lai et al. [12] proposed a fully secure
CP-ABE scheme with partial hidden access policy. However,
this scheme is only restricted to a specific access policy (i.e.,
AND-gates with multi-valued attributes with wildcards) as in
[8] and [9]. To support more expressive access policy, Lai et al.
[20] also proposed a method to hide attribute values in access
policy expressed in LSSS structure. Besides, there are also
some policy hiding schemes using Hidden Vector Encryption
[10] and Inner Product Encryption [11]. However, all of these
existing schemes can only partially hide the access policy (i.e.,
hiding the values of the attributes). The attribute names are not
hidden in the access policy.

III. PRELIMINARIES

A. Linear Secret-Sharing Schemes (LSSS)

Definition 1 (LSSS [6]). A secret sharing scheme Π over a
set of parties P is called linear over Zp(p is a prime) if

1) The shares for each party form a vector over Zp.
2) There exists a matrix A called the share-generating

matrix for Π. The matrix A has l rows and n columns.
For i = 1, . . . , l, the ith row of A is labeled by a party
ρ(i)(ρ is a function from {1, . . . , l} to P). When we
consider the column vector ~v = (s,r2, . . . ,rn), where
s ∈ Zp is the secret to be shared and r2, . . . ,rn ∈ Zp
are randomly chosen, then A~v is the vector of l shares
of the secret s according to Π. The share (A~v)i belongs
to party ρ(i).

It is shown in [22] that every linear secret-sharing scheme
according to the above definition also enjoys the linear recon-
struction property, defined as follows: Suppose that Π is an
LSSS for access structure A. Let S ∈ A be an authorized set,
and let I ⊂ {1,2, . . . , l} be defined as I = {i : ρ(i) ∈ S}. There
exist constants {ωi ∈ Zp}i∈I such that if {λi} are valid shares
of any secret s according to Π, then ∑i∈I ωiλi = s. Furthermore,
these constants {ωi} can be found in time polynomial in the
size of the share-generating matrix A. For any unauthorized
set, no such constants exist.

B. Bilinear Pairing

Let G1, G2 and GT be three multiplicative groups with
the same prime order p. A bilinear mapping is a mapping
ê :G1×G2→GT with the following properties:
• Bilinearity: ê(ua,vb) = ê(u,v)ab for all u ∈ G1, v ∈ G2

and a,b ∈Zp.
• Non-degeneracy: There exist u ∈ G1, v ∈ G2 such that

ê(u,v) 6= I, where I is the identity element of GT .
• Computability: ê can be efficiently computed.

Such a bilinear mapping is called a bilinear pairing.

C. Bloom Filter

The concept of Bloom Filter, proposed by Bloom [23] in
1970, is a space-efficient probabilistic data structure, which
is used to test whether an element is a member of a set.
Specifically, a Bloom Filter (BF) consists of a bit array of
m bits and k independent hash functions defined as follows:
hi : {0,1}∗ 7→ [1,m] for 1≤ i≤ k.
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Fig. 1. An Example Bloom Filter for set {x,y}

Initially, all the positions of the array are set to 0. To add
an element e to the set, the Bloom Filter Building algorithm
computes all the position indices as {hi(e)}i∈[1,k] and sets the
values at the corresponding positions in the bit array to 1.
Fig. 1 gives an example of Bloom Filter for set {x,y}, where
the values at positions indexed by h1(x), h2(x), h3(x), h1(y),
h2(y), h3(y) are set to 1.

To check whether a given element x belongs to the set S, the
Bloom Filter Query algorithm computes all the hash values
{hi(x)}i∈[1,k] to get k array positions. If any of the bits at
these positions are 0, the element x is definitely not in the set.
However, if all of the bits are 1, we can say the element x is
probably belong to the set S. There is a possibility for some
x /∈ S, all of the bits at the corresponding positions of hi(x) are
1, which is called the False Positive. For example, the element
w in Fig. 1 is not in the set x,y but all the corresponding
positions of hi(w) are 1.

D. Decisional q-BDHE Assumption

The Decisional q-Bilinear Diffie-Hellman Exponent (Deci-
sional q-BDHE) problem is defined as:

Choose a group G of prime order p according to the
security parameter λ . Let a,s ∈ Z∗p be chosen at random and
g be a generator of G. Let gi denote gai

. When given ~y =
(g,g1, ...,gq, ,gq+2, ...,g2q,gs), the adversary must distinguish
ê(g,g)aq+1s ∈GT from a random element R in GT .

An algorithm B has advantage ε in solving decisional q-
BDHE problem in G if

|Pr[B(~y,T = ê(g,g)aq+1s) = 0]−Pr[B(~y,T = R) = 0]| ≥ ε.

Definition 2. We say that the Decisional q-BDHE assumption
holds if no polynomial time algorithm has a non-negligible
advantage in solving the q-BDHE problem.

IV. DEFINITIONS

In this section, we first describe the system model of big
data storage and sharing. Then, we define our proposed big
data access control scheme and its security model.

A. Definition of System Model

We consider the big data access control system, as shown
in Fig. 2. The system consists of five entities, namely Cloud
Servers, Attribute Authority, End-users, and Data Consumers.

PK S, SK, PK

(CT, M, ABF)
Cloud Servers

Data ConsumersEnd-Users

Attribute Authority

(CT, M, ABF)

Fig. 2. System Model

Cloud Servers Cloud Servers are employed to store, share
and process big data in the system. The cloud servers are
managed by cloud service providers, who are not in the same
trust domain as end-users. Thus, cloud servers cannot be
trusted by end-users to enforce the access policy and make
access decisions. We also assume that the cloud server cannot
collude with any End-users or Data Consumers.

Attribute Authority The attribute authority manages all the
attributes in the system and assigns attributes chosen from
the attribute space to end-users. It is also a key generation
center, where the public parameters are generated. It also
grants different access privileges to end-users by issuing secret
keys according to their attributes. The attribute authority is
assumed to be fully trusted in the system.

End-user End-users are the data owners/producers who
outsource their data into the cloud. They also would like to
control the access of their data by encrypting the data with
CP-ABE. End-users are assumed to be honest in the system.

Data Consumers Data consumers request the data from
cloud servers. Only when their attributes can satisfy the access
policies of the data, data consumers can decrypt the data.
However, data consumers may try to collude together to access
some data that are not accessible individually.

B. Definition of Our Scheme

Definition 3. Our big data access control scheme consists
of the following algorithms: Setup, KeyGen, Encrypt, and
Decrypt.

• Setup(1λ )→ (PK,MSK). The setup algorithm takes as
input a security parameter λ . It outputs the public key
and master secret key.

• KeyGen(PK,MSK,S)→ SK. The key generation algo-
rithm takes as inputs the public key PK, the master key
MSK and a set of attribute S. It outputs the corresponding
secret key SK.

• Encrypt(PK,m,(M,ρ))→ (CT,ABF). The data encryp-
tion algorithms contains: data encryption subroutine Enc
and Attribute Bloom Filter building subroutine ABFBuild.

– Enc(PK,m,(M,ρ))→CT . The data encryption sub-
routine takes as inputs the public key PK, the mes-
sage m and access structure (M,ρ). It outputs a
ciphertext CT .
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– ABFBuild(M,ρ) → ABF . The ABF building sub-
routine takes as input the access policy (M,ρ). It
outputs the Attribute Bloom Filter ABF .

• Decrypt(M,ABF,PK,SK,CT )→ m. The decryption al-
gorithm consists of two subroutines: ABFQuery and Dec.

– ABFQuery(S,ABF,PK)→ ρ ′. The ABF query al-
gorithm takes as inputs the attribute set S, the At-
tribute Bloom Filter ABF and the public key PK.
It outputs a reconstructed attribute mapping ρ ′ =
{(rownum,att)}S, which shows the corresponding
row number in the access matrix M for all the
attributes att ∈ S.

– Dec(SK,CT,(M,ρ ′))→ m or ⊥. The data decryp-
tion algorithm takes as inputs the secret key SK, the
ciphertext CT as well as the access matrix M and the
reconstructed attribute mapping ρ ′. If the attributes
can satisfy the access policy, it outputs the message
m. Otherwise, it outputs ⊥.

C. Definition of Security Model

We consider the indistinguishability against selectively cho-
sen plaintext attacks. It is based on the following game
between an adversary A and a simulator B.

Init: The adversary A chooses a challenge access structure
(M∗,ρ∗), where M∗ is an l∗ × n∗ matrix, and ρ∗

maps each row of M∗ to an attribute.
Setup:The challenger runs the Setup algorithm and gives

the public parameters PK to the adversary A.
Phase 1: In this phase, the adversary A issues queries for

secret keys related to some attributes Satt .
• If Satt satisfies (M∗,ρ∗), then abort.
• Otherwise, the simulator generates a secret key

related to Satt for the adversary A.
Challenge: The adversary A submits two equal length mes-

sages m0 and m1 to B. The simulator B randomly
chooses b ∈ {0,1} and encrypts mb under the chal-
lenge access structure (M∗,ρ∗). Finally it sends the
generated challenge ciphertext CT ∗ to the adversary.

Phase 2: Phase 2 is the same as Phase 1.
Guess:The adversary outputs a guess b′ of b.

The advantage of A in this game is defined as Adv(A) =
|Pr[b′ = b]−1/2|.

V. CONSTRUCTION OF THE PROPOSED SCHEME

The construction of our big data access control is based
on the ciphertext-policy attribute-based encryption in [6].
However, our access policy privacy preserving method can
also be applied for any CP-ABE methods with LSSS structured
access policies. According to the definition in Section IV-B,
our big data access control scheme consists of four phases:
System Setup, Key Generation, Data Encryption and Data
Decryption.

A. System Setup

During the system setup phase, the attribute authority runs
the Setup algorithm. Let U denote the attribute space in the

system. Let G and GT be cyclic multiplicative groups of prime
order p, and ê : G×G→GT be a bilinear map. Let Latt be the
maximum bit length of attributes in the system. Let Lrownum be
the maximum bit length of the row numbers of access matrix.
Let LABF be the size of bit array of the Attribute Bloom Filter.
Let k be the number of hash functions associated with the ABF.

The attribute authority randomly chooses a generator g∈G,
α,a∈Z∗p, and U = |U| random group elements h1,h2, . . . ,hU ∈
G. It also generates k hash functions H1(),H2(), · · · ,Hk() that
maps an element to a position in the range of [1,LABF ].

The public key is published as

PK = 〈 g, ê(g,g)α ,ga,Latt ,Lrownum,LABF ,

h1,h2, . . . ,hU , H1(),H2(), · · · ,Hk() 〉.

The master secret key is set as MSK = gα .

B. Key Generation

Each data consumer should register and authenticate to the
attribute authority. If the data consumer is not legal, it aborts.
Otherwise, the attribute authority will evaluate the role of the
data consumer in the system and assign a set of attributes S
chosen from the attribute space U 1 to this data consumer.
Together with these attributes, the authority also generates a
corresponding secret key for this data consumer by running
the following algorithm:
• KeyGen(PK,MSK,S)→ SK: The algorithm takes as in-

put the public key PK, the master key MSK and a set of
attributes S. It computes

K = gα gat ,L = gt ,{Kx = ht
x}x∈S,

where t ∈ Z∗p is chosen at random. Finally, the secret key
is set as

SK = 〈K,L,{Kx}x∈S,S〉.

C. Data Encryption

Before outsourcing data into the cloud, end-users encrypt
the data by running the Encrypt algorithm. It first calls the
data encryption subroutine to encrypt the data into ciphertexts
under access policies expressed in LSSS structure. Other
access structure, such as Boolean Formulas and Threshold
Gates, can also be transformed into LSSS structure [24].
• Enc(PK,m,(M,ρ))→CT . The data encryption subrou-

tine takes as inputs the public key PK, the message m and
access structure (M,ρ). As shown in Fig 3, M is an l×n
access matrix and the injective function ρ maps rows of
M to attributes. The algorithm first chooses an encryption
secret s ∈ Z∗p randomly and then selects a random vector
~ν = (s,y2, ...,yn), where y2, ...,yn are used to share the
encryption secret s. For i= 1, ..., l, it calculates λi =Mi ·~ν ,
where Mi is the vector corresponding to the i-th row of
M. Then, it outputs the ciphertext as

CT = 〈 C = mê(g,g)αs,C′ = gs,{Ci = gaλih−s
ρ(i)}i=1,...,l 〉.

1The attribute space should be large such that it would be time-consuming
for cloud servers to exhaustively search the attribute space
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Fig. 3. The LSSS Access Policy and Attribute Bloom Filter

In traditional attribute-based encryption scheme, the access
policy (M,ρ) will be attached to the ciphertext CT . However,
the access policy is in plaintext, which may leak some private
information about the end-users. Based on our observation,
the attributes are leaked from the attribute mapping function
ρ . So, in order to prevent the privacy leakage, we remove this
attribute mapping function ρ . However, when ρ is removed,
it becomes difficult for data consumers to decrypt the data, as
they do not know which attributes are involved in the access
policy. To cope with this problem, we propose an efficient
attribute localization algorithm by utilizing the Bloom Filter.

However, traditional Bloom Filter only provides the mem-
bership query for a large set, while our purpose goes further:
we not only need to evaluate whether an attribute is in the
access policy, but also need to locate the attribute to the
precise row number in the access matrix. Moreover, due to
the false positive property, traditional Bloom Filter cannot be
applied for the attribute localization. To this end, we employ a
Garbled Bloom Filter [25] as the building block of our attribute
localization algorithm (Attribute Bloom Filter). Instead of
using an array of bits in traditional Bloom Filter, the Garbled
Bloom Filter uses an array of λ -bit, where λ is the security
parameter. Different from the traditional Bloom Filter, the false
positive probability is much lower, because it not only depends
on the collision probability of hash functions, but also depends
on the probability of string matching.

Although the Garbled Bloom Filter achieves much lower
false positive, it is still designed for membership query only.
In order to precisely locate attributes to the corresponding row
number in the access matrix, we employ a specific string as
the element of the Garbled Bloom Filter. As shown in Fig.
4, the element is a concatenation of two fixed length strings:
one string represents the row number with Lrownum-bit, and
the other string represents the attribute with the bit length of
Latt -bit, where Lrownum +Latt = λ .

When the data encryption is finished, the end-users then

Row	Number Attributes

!"#$%&' -bit !()) -bit	

*-bit

Fig. 4. A λ -bit Element of ABF with Lrownum-bit row number string and
Latt(= λ −Lrownum)-bit attribute string

build the Attribute Bloom Filter by running the following
subroutine.

• ABFBuild(M,ρ)→ ABF . The ABF building subroutine
takes as input the access policy (M,ρ). It first binds
the attributes involved in the access policy and its cor-
responding row number in the access matrix M together
and obtains a set of elements Se = {i||atte}i∈[1,l], where
the i-th row of the access matrix maps to the attribute
atte = ρ(i). Both of the row number i and the attribute
atte are expanded to the maximum bit length by filling
with zeros on the left of the bit strings. By taking the
set of elements Se as an input, the Attribute Bloom Filter
can be constructed by calling the Garbled Bloom Filter
Building algorithm in [25]. To add an element e in the
set Se to the ABF, the algorithm first shares the element e
with (k,k) secret sharing scheme by randomly generating
k−1 λ -bit strings r1,e, r2,e, · · · , rk−1,e, and setting

rk,e = r1,e⊕ r2,e · · ·⊕ rk−1,e⊕ e.

Then, it hashes the attribute atte associated with the
element e with k independent and unified hash functions
H1(), · · · ,Hk() and gets

H1(atte),H2(atte), · · · ,Hk(atte)

where each Hi(atte) (i ∈ [1,k]) represents the position
index of ABF. As shown in Fig. 5, it then stores the
i-th element share ri to the position indexed by Hi(atte)
in the ABF as

r1,e→H1(atte) position in ABF
...

rk,e→Hk(atte) position in ABF.

When we continue to add elements to the ABF, some
location j = Hi(e) may have been occupied by a pre-
viously added element. If such situation happens, we
reuse this existing share as one share of the new element.
For example, as shown in Fig. 5, the position H j(atte2)
of element e2 is the same as the position Hi(atte1) of
element e1. Considering that this position of the ABF
has already been occupied by ri,e1 , instead of randomly
selecting a λ -bit string, we set r j,e2 = ri,e1 . If we change
this position with another string, the previously inserted
element cannot be recovered.

The entire ABF building algorithm is shown in Alg. 1.
Finally, the end-users will outsource the data in the form of
(CT,M,ABF) to cloud servers.
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Fig. 5. An Example of ABF

Algorithm 1 ABFBuild

Input: An LSSS access policy (M,ρ), λ , LABF
Input: k hash functions {H1(), · · · ,Hk()}
Output: ABF

1: Generate an element set Se from the access policy (M,ρ)
2: ABF = new LABF element array of bit strings
3: for i = 0 to LABF −1 do
4: ABF [i] = NULL . Initialize the ABF with “NULL”
5: for each element e = i||atte ∈ Se do
6: emptyPos =−1, f inalShare = x
7: for i = 0 to k−1 do
8: j = Hi+1(atte) . get the index of the position
9: if ABF [ j] == NULL then

10: if emptyPos ==−1 then
11: . reserve this position for the finalShare
12: emptyPos = j
13: else . generate a new share
14: generate a random string r j,e with λ bits
15: ABF [ j] = r j,e
16: f inalShare = f inalShare⊕ABF [ j]
17: else . reuse an existing share
18: f inalShare = f inalShare⊕ABF [ j]
19: ABF[emptyPos] = finalShare
20: for i = 0 to LABF −1 do
21: if ABF [i] == NULL then
22: . fill the empty position with random strings
23: generate a random string ri with λ bits
24: ABF [i] = ri

D. Data Decryption

When accessing the data stored in the cloud, data consumers
can download the encrypted data according to their interests.
However, the access control happens during the decryption,
which means that data consumers can decrypt the data only
when their attributes can satisfy the access policies used to
encrypt the data. In traditional ABE systems, the access policy
(M,ρ) is attached to the ciphertext. So, the data consumers
can easily check whether their attributes can satisfy the access
policy. However, in our scheme, we hide the attributes map-
ping function ρ , so data consumers should first check which
attributes they owned are in the access matrix by running the
ABF query subroutine as follows.

• ABFQuery(S,ABF,PK)→ ρ ′. It takes as inputs the at-
tribute set S, the Attribute Bloom Filter ABF and the
public key PK. For each attribute att ∈ S owned by the
data consumer, the algorithm first computes the position
indices by feeding the attribute att with the k hash

!"#$%&'-bit !())-bit

000…00101 00000…00000string(*++,)

-./012 = 101 *++,=	string(*++,)

Most	Significant	Bits Least	Significant	Bits

Fig. 6. String Abstraction from the Element

functions H1(), · · · ,Hk() and gets

H1(att),H2(att), · · · ,Hk(att).

Then, it fetches the corresponding strings from the posi-
tions indexed by Hi(att) (i∈ [1,k]) in the ABF as follows.

H1(att) position in ABF→ r1,e

...
Hk(att) position in ABF→ rk,e.

After that, it reconstructs the element e as

e =r1,e⊕ r2,e⊕·· ·⊕ rk−1,e⊕ rk,e

=r1,e⊕ r2,e⊕·· ·⊕ rk−1,e⊕ r1,e⊕ r2,e⊕·· ·⊕ rk−1,e⊕ e.

Note that the element e is in the format of e = i||atte
as shown in Fig. 4. Then, it takes the last Latt bits from
the string e, and removes all the zero bits on the left
of the string to obtain the string atte. As shown in Fig.
6, if atte is the same as the attribute att, we say that
this attribute att is in the access matrix. Then, it obtains
the first Lrownum bits from the string e to obtain the
corresponding row number by removing all the zero bits
at the left as well. Otherwise, atte is not the same as the
attribute att, it means that the attribute att does not exist
in the access policy. Finally, it outputs the reconstructed
attribute mapping as

ρ
′ = {(rownum,att)}att∈S,

which shows the corresponding row number in the access
matrix M. The ABF query algorithm is shown in Alg. 2.

When obtaining the access policy (M,ρ), the data con-
sumer can run the data decryption subroutine as in traditional
attribute-based encryption systems.

• Dec(SK,CT,(M,ρ ′)) → m or ⊥. The data decryption
algorithm takes as inputs the secret key SK, the ciphertext
CT as well as the access matrix M and the reconstructed
attribute mapping ρ ′. If the attributes can satisfy the
access policy, it can leverage the Lagrange Interpolation
Formula to find coefficients {ci|i∈ I} such that ∑i∈I ciλi =
s, where I = {i : ρ ′(i) ∈ S} ⊂ {1,2, · · · , l}. Then, the data
consumer can compute

ê(C′,K)

∏i∈I(ê(Ci,L)ê(C′,Kρ ′(i)))ci
= ê(g,g)αs,

and recover the data as m = C/ê(g,g)αs. Otherwise, it
outputs ⊥ to denote that the decryption fails.
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Algorithm 2 ABFQuery

Input: An Attribute Bloom Filter ABF , a set of attributes S
Input: k hash functions {H1(), · · · ,Hk()}
Input: Maximum attribute string length Latt
Input: Maximum row number string length Lrownum
Output: ρ ′ = {(rownum,att)}att∈S

1: for each att ∈ S do
2: ReStr = {0}λ . initialize the reconstructed string
3: for i = 0 to k−1 do
4: j = Hi+1(att) . get the index of the position
5: ReStr = ReStr⊕ABF [ j]
6: atteStr = LSBLatt (ReStr)
7: . get Latt least significant bits
8: atte = RmLeadingZeroBits(atteStr)
9: . remove all the leading zero bits

10: if atte == att then
11: rownumStr = MSBLrownum(ReStr)
12: . get Lrownum most significant bits
13: rownum = RmLeadingZeroBits(rownumStr)
14: . remove all the leading zero bits
15: Add (rownum,att) into ρ ′

VI. ANALYSIS OF OUR SCHEME

A. Security Analysis

Theorem 1. No polynomial time adversary can selectively
break our big data access control scheme with an l∗ × n∗

(n∗ ≤ q) challenge access matrix, under the decisional q-
BDHE assumption.

Proof. Our big data access control scheme is constructed on
top of the attribute-based encryption scheme in [6], which
is proved to be selective secure against the chosen plaintext
attacks under the decisional q-BDHE assumption. It is shown
in [6] that if there is an adversary A with non-negligible
advantage ε = AdvA in the selective security game (which is
the same as the security game defined in Section IV-C), they
can build a simulator B that solves the decisional q-BDHE
problem with non-negligible advantages.

Similarly, to prove the security of our big data access control
scheme, we show that if there is an adversary A with non-
negligible advantage ε = AdvA in the selective security game,
we can build a simulator B′ that also solves the decisional
q-BDHE problem with non-negligible advantages. The con-
struction of B′ is similar to the simulator B in [6]. The Init
phase in the B′ is the same as the one in the B. In the Setup
phase, besides the steps from B, B′ also chooses some random
oracles as the Bloom Filter hash functions. The secret key
query phases are also the same, which means that B′.Phase1=
B.Phase1 and B′.Phase2=B.Phase2. The differences are in
the Challenge phase: the encryption algorithm in B′ consists
of two subroutines. To simulate the ABF building subroutine,
the simulator B′ queries from the ABFBuild oracle. As for
the data encryption subroutine, B′.Enc=B.Encrypt. Because
the challenge matrix is selected by the adversary before the
Init phase, so the constructed ABF is the same no matter
which plaintext is selected for encryption, which means that

the ABF will not increase the advantages of the adversary
A in the security game. Similar to the proof in [6], we can
show that B′ plays the q-BDHE problem with non-negligible
advantages.

Theorem 2. Our big data access control scheme is privacy-
preserving against the adversaries with polynomial time in the
security parameter λ .

Proof. In our scheme, only the data consumers who hold the
attributes can obtain the string of attribute from the attribute
space U. Adversaries who have no knowledge about the
attribute string cannot launch the brute force attack to guess the
attribute string within polynomial time. So, they cannot obtain
the private information from the access policy consisting of the
matrix M and the Attribute Bloom Filter ABF .

Data consumers are only allowed to check whether their
owned attributes are in the access policy. Unless the data
consumer has all the attributes of the attribute space or several
data consumers collude together, they cannot check all the
attributes from the attribute space in the system. Since the
ABF is constructed with a Garbled Bloom Filter where λ -bit
strings are embedded into the bloom filter, the false positive
probability of the ABF can be reduced to 1

2λ
.

B. Performance Analysis

To resist the privacy leakage from the access policy, we
employ an Attribute Bloom Filter to enable data consumers to
locate the position of attributes in the access policy. Specif-
ically, the ABF building algorithm is added during the data
encryption and the ABF query algorithm is added during the
data decryption. In order to show how much computation
overhead incurred by the ABF, we do the experiment on a
Unix system with an Intel Core i5 CPU at 2.4GHz and 8.00GB
RAM. The code uses the Pairing-Based Cryptography (PBC)
library version 0.5.12, and a symmetric elliptic curve α-curve,
where the base field size is 512-bit and the embedding degree
is 2, such that the security parameter is equal to 1024-bit. To
implement the ABF, we employ the MurmurHash created by
Austin Appleby in 2008 2. All the experimental results are the
mean of 20 trials.

Fig. 7(a) shows the encryption time versus the number of
attributes involved in the access policy. The traditional ABE
line in Fig. 7(a) is the implementation of the ABE without
privacy-preserving policy from the [6]. The encryption time in
our scheme consists of both ABF building and data encryption.
The lines of our scheme in this figure apply 8 hash functions
and 16 hash functions to build ABF, respectively. Fig. 7(b)
shows the decryption time versus the number of attributes
involved in the decryption. The decryption time in our scheme
consists of both the ABF query time and data decryption time.
The attribute number here also means how many attributes are
tested by running the ABF query algorithm. Therefore, our
scheme can preserve the privacy of the access policy without
increasing much computation overhead for both data encryp-
tion on end-users and data decryption on data consumers.

2https://sites.google.com/site/murmurhash/
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Fig. 7. Computation Time Comparison between the ABE in [6] and Our Scheme (data size: 1KB, security parameter: 1024)

VII. CONCLUSION

In this paper, we have proposed an efficient and fine-grained
data access control scheme for big data, where the access
policy will not leak any privacy information. Different from the
existing methods which only partially hide the attribute values
in the access policies, our method can hide the whole attribute
(rather than only its values) in the access policies. However,
this may lead to great challenges and difficulties for legal
data consumers to decrypt data. To cope with this problem,
we have also designed an attribute localization algorithm to
evaluate whether an attribute is in the access policy. In order to
improve the efficiency, a novel Attribute Bloom Filter has been
designed to locate the precise row numbers of attributes in the
access matrix. We have also demonstrated that our scheme is
selectively secure against chosen plaintext attacks. Moreover,
we have implemented the ABF by using MurmurHash and the
access control scheme to show that our scheme can preserve
the privacy from any LSSS access policy without employing
much overhead. In our future work, we will focus on how to
deal with the offline attribute guessing attack that check the
guessing “attribute strings” by continually querying the ABF.
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