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a b s t r a c t 

Data publish-subscribe service is an effective approach to selectively share and selectively 

receive data. Towards the huge amount of data generated in our daily life, cloud systems, 

with economical but powerful storage and computing resources, are inevitably becoming 

the most appropriate platform for data publication and subscription. However, cloud server 

may also curious about both the published data and the interests of the subscribers. In this 

paper, we propose a privacy-preserving Attribute-Keyword based data Publish-Subscribe 

(AKPS) scheme for cloud platforms. Specifically, in order to protect the privacy of the pub- 

lished data against the cloud server and other none-subscribers, we employ the attribute- 

based encryption with decryption outsourcing to encrypt the published data, such that the 

publishers can control the data access by themselves and the major decryption overhead 

can be shift from the subscribers’ devices to the cloud server. To protect the subscribers’ 

interests, we propose a new searchable encryption to enable the subscribers to selectively 

receive interested data. Different from existing symmetric searchable encryption methods, 

the AKPS can support multiple publishers and multiple subscribers, while none of two 

publishers/subscribers share the same secret keys. Moreover, the publishers cannot act as 

the subscribers, and vice versa. To avoid bypassing access/subscription policy checking pro- 

cedure, the AKPS smartly ties both access policy and subscription policy by two secrets. 

One secret is used to bundle the ciphertext and the tags together, while the other secret 

is used to bundle the subscription trapdoor and the pre-decryption key together. The se- 

curity proof and performance evaluation show that the proposed AKPS scheme is provable 

secure in random oracle model and efficient in practice. 

© 2016 Elsevier Inc. All rights reserved. 

 

 

1. Introduction 

We are now moving into the era of big data, and everyday more than 2.5 quintillion data are generated from various

sources, such as mobile devices, sensors, machines and social networks, etc. Data publish-subscribe service is an effective
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decoupling approach to share and selectively receive data in our daily life [19] . Data subscribers (users) subscribe data of

their interests from data publishers, such as banks, investment firms, or research institutions. Due to the huge volume and

high velocity of big data, it is hard for us to store, manage, share, analyze and visualize them with existing infrastruc-

tures and tools. Cloud computing, as an emerging technique, can provide economical but powerful storage and computing

resources [13] , so that it is inevitably becoming the platform for data publication and subscription. 

When the cloud server is employed as the broker, the privacy issue becomes much more critical in data publish-subscribe

systems as the cloud server cannot be fully trusted. Specifically, there are three major privacy requirements: 1) Data Privacy .

The cloud server and other unauthorized users are not allowed to access the published data; 2) Tag Privacy . The tags as-

sociated with the data should not reveal the keywords that may indicate the data content; and 3) Trapdoor Privacy . The

subscription trapdoors should not reveal any keywords or the subscription policy that may indicate the interests of the

subscribers. 

Data encryption is an effective method to protect data privacy . However, traditional encryption methods are not appropri-

ated for encrypting the huge amount of data, due to the multiple copies of ciphertexts (public key encryption) and compli-

cate key management issues (symmetric encryption). Fortunately, Attribute-Based Encryption (ABE) [7,21] has emerged as a

promising encryption for access control over encrypted data, which only produces one copy of ciphertext for multiple users.

Based on ABE, some attribute-based access control schemes [22,24] have been proposed, which enable the data owner to

encrypt their data under access policies. Only authorized users, whose attributes can satisfy the access policies, can decrypt

the data. 

There are two complementary forms of ABE, namely Key-Policy ABE (KP-ABE) [7] and Ciphertext-Policy ABE (CP-ABE)

[21] , each of which is constructed with only one policy. In [2] , a Dual-policy ABE is proposed to combine CP-ABE with

KP-ABE. Upon first glance, the Dual-policy ABE is quite suitable for data publish-subscribe service, because it enables the

publishers to define access policies over users’ attributes and the subscribers to define subscription policies over keywords.

However, the tag privacy and trapdoor privacy are not considered because the attributes in ABE are public for everyone.

Moreover, the trapdoors in Dual-policy ABE are embedded into the secret key which is generated by the authority, so when

the subscribers want to change a trapdoor, they need to contact the authority and request a new secret key containing the

new trapdoor. 

To protect the keyword privacy in tags and trapdoors, searchable encryption [4,6,9,16,17,26] is a promising primitive.

However, many of them [4,6,17] can only support search queries from a single user, while a data publish-subscribe system

should allow subscription queries from multiple users. On the other hand, although some schemes [9,16,26] can support

search queries from multiple users, the trapdoor privacy cannot be achieved because the tags is encrypted with public key.

Furthermore, many existing schemes can only support single keyword equality match or limited expressions. Although the

PEKS scheme proposed in [6] can support equality, comparison, subset queries, and arbitrary conjunctions of those, it is

only for the case of single user query. Therefore, a cloud-based data publish-subscribe system should not only protect the

privacy of data, tags and trapdoors, but also support multiple publishers/subscribers and expressive trapdoors. 

In this paper, we propose an Attribute-Keyword based data Publish-Subscribe (AKPS) scheme for cloud systems. To sup-

port multiple publishers and subscribers in the system, inspired by the dual-policy ABE [2] , we propose a new dual-policy

framework to enable the publisher to define access policy and the subscriber to define subscription policy. Different from

[2] , these two policies in AKPS are tied by an encryption secret, which appears in both data encryption algorithm and tag

generation algorithm. Both access and subscription policies are expressed with Linear Secret Sharing Scheme (LSSS) struc-

ture [3] , such that our AKPS can support expressive attributes and keywords. To resist the offline keyword-guessing attack ,

besides the public key, we also employ the publisher’s secret key to encrypt the keyword in data tags, and the subscriber’s

secret key to encrypt the keyword in trapdoors. The subscription policy structure will be partially associated with the trap-

door, such that the cloud server cannot guess the keywords in the trapdoor based on the subscription policy structure.

Corresponding to this partial subscription policy, we also propose a keyword localization algorithm to let the cloud server

match the keywords from tags to the ones in trapdoors without leaking any keyword information. To further improve the

decryption efficiency, we let the cloud server do pre-decryption on the ciphertexts, such that the subscribers can decrypt

the data with low computation cost. 

The main contributions of this paper are summarized as follows. 

1. We propose a privacy-preserving Attribute-Keyword based data Publish-Subscribe (AKPS) scheme for cloud systems,

which enables multiple publishers to control the data access, multiple subscribers to selectively receive data, and the

cloud server to evaluate both access policy and subscription policy while still protecting data privacy and interests of

subscribers. 

2. We propose a novel searchable encryption that can support multiple publishers and multiple subscribers, while none of

two publishers/subscribers share the same secret keys. Moreover, the publishers cannot act as the subscribers to enjoy

the data subscription service, while the subscribers either cannot act as the publisher to enjoy the data publication

service. 

3. We propose a new method to tie access policy and subscription policy together, such that the cloud server cannot bypass

any access/subscription policy checking procedure. 

4. We formally define the security models for data privacy, tag privacy as well as trapdoor privacy, and prove that the
proposed AKPS scheme is semantic secure against chosen plaintext/keyword attacks. 
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Fig. 1. System model of data publish-subscribe service on cloud platforms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The remainder of this paper is organized as follows. In Section 2 , we describe the system model, security model and some

other design goals for data publish-subscribe service on cloud platforms. Section 3 describes some preliminaries that are

necessary in our design. Section 4 formally defines the AKPS scheme, as well as its correctness and security. In Section 5 , the

detailed construction of AKPS is described. Then, we prove its correctness and security in Section 6 and give the performance

evaluation in Section 7 . In Section 8 , we show the expressiveness of the trapdoor policy, and discuss on how to extend the

AKPS to support expressive queries and attribute revocation of users. Section 9 presents the related work in the literature.

Finally, this paper is summarized in Section 10 . 

2. Problem statement 

2.1. System model 

We consider a privacy-preserving data publish-subscribe service on cloud platforms, as shown in Fig. 1 . It consists of the

following entities: authority, cloud server (broker), data publishers and data subscribers. 

Authority. The authority is responsible for managing attributes in the system. It assigns a secret key to each subscriber

according to her/his attributes, and a secret key to each publisher for tag generation. Note that we only consider single

authority in this paper. 

Cloud server. The cloud server acts as the broker to evaluate the subscription policy and the access policy, and delivers

the published data to the subscribers if the policies are satisfied. Specifically, for each published data, the cloud server first

evaluates whether the attributes of subscribers can satisfy the access policy defined by the publisher. If the access policy

cannot be satisfied, it terminates; Otherwise, it continues to evaluate whether the tags associated with the data can satisfy

the subscription policy in the trapdoor. If the subscription policy cannot be satisfied, it terminates; Otherwise, it helps the

subscriber pre-decrypt the ciphertext and sends the pre-decrypted data to this subscriber. 

Publishers. The publisher encrypts data under a self-defined access policy, and generates tags for the data, before pub-

lishing onto the cloud server. 

Subscribers. Each subscriber defines subscription policies according to its interests, and generates subscription trapdoors 

under the policies, such that the subscriber only receives the data whose tags satisfy the subscription policies. 

2.2. Security model 

In this cloud-based data publish-subscribe system, we make the following security assumptions. The authority is fully

trusted in the system and the channels between the authority and the publishers/subscribers are secure. The cloud server

is semi-trusted (honest-but-curious) in the system. It obeys the protocol to evaluates the policies and do the pre-decryption

for valid subscribers, but it is also curious about the data and interests of the subscribers (keywords from both data tags

and trapdoors). However, the cloud will not collude with any publishers and subscribers. The publishers are fully trusted

in the system. The subscribers are dishonest in the sense that they may collude to try to access some unauthorized data.

Specifically, we define the privacy of data, tags and trapdoors as follows. 

• Trapdoor privacy . Subscription trapdoors submitted by the subscribers should not reveal any keyword information. For-

mally, the construction of trapdoor should be semantic secure (indistinguishable) against chosen keyword attacks ( IND-CKA ).

Informally, a trapdoor generation scheme is IND-CKA secure if an adversary A cannot distinguish the trapdoors of two

arbitrary keywords (chosen by A ) unless the corresponding tag is revealed. Moreover, the IND-CKA also implies that the
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Fig. 2. Concept LSSS Structure of access/subscription policy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

trapdoors generated over the same keywords and subscription policies should also be distinguishable. Obviously, in order

to avoid the statistical analysis, deterministic trapdoor generation methods are not applicable. 

• Tag privacy . Data tags associated with the data should not reveal any keyword information. The tag generation should be

indistinguishable secure against chosen keyword attacks ( IND-CKA ). In other words, the tag generation scheme is IND-CKA

secure if an adversary A cannot distinguish the tags of two arbitrary keywords (chosen by A ) unless the corresponding

trapdoor is revealed. 

• Data privacy . The published data can only be accessed by authorized subscribers. The data encryption scheme should be

indistinguishable secure against chosen plaintext attacks ( IND-CPA ), which means that an adversary A cannot distinguish

the encryptions of two arbitrary data (chosen by A ), even if A can adaptively query secret keys and pre-decryption keys.

Moreover, the pre-decryption algorithm should not leak any information about the data. 

2.3. Other design goals 

Besides the privacy preservation requirement, a data publish-subscribe system on cloud platforms should also have the

following properties: 

• Correctness . The published data will be delivered to the subscriber if and only if the following two conditions are satis-

fied: 1) the attributes possessed by the subscriber can satisfy the access policy defined by the publisher; and 2) the tags

associated with the data can satisfy the subscription policy defined by the subscriber. In other words, data can only be

delivered to authorized subscribers that are of interests. 

• Multiple publishers/subscribers . The system should enable multiple publishers to publish data on the cloud server and

multiple subscribers to subscribe data from the cloud server. 

• Policy expressiveness . Access policies defined by the publishers should be able to support any boolean formulas of at-

tributes. Subscription policies defined by the subscribers should also be able to support various expression of keywords,

such as conjunctive keywords, disjunctive keywords, subset keywords, etc. 

3. Preliminaries 

3.1. Linear secret-sharing scheme (LSSS) structure 

Before defining our scheme, we first recall the definition of Linear Secret-Sharing Scheme (LSSS) structure [3] as 

Definition 1 (LSSS) . A secret-sharing scheme � over a set of parties P is called linear (over Z p ) if 

1. The shares for each party form a vector over Z p . 

2. There exists a matrix M called the share-generating matrix for �. The matrix M has n rows and l columns. For all

i = 1 , . . . , n, the i th row of M is labeled by a party ρ( i ) ( ρ is a function from {1, ���, n } to P). If the column vector

v = (s, r 2 , . . . , r l ) is considered, where s ∈ Z p is the secret to be shared and r 2 , . . . , r l ∈ Z p are randomly chosen, then Mv
is the vector of n shares of the secret s according to �. The share (Mv ) i belongs to party ρ( i ). 

According to the above definition, the LSSS structure enjoys the linear reconstruction property: Suppose that � is an LSSS

for the access/subscription structure A . Let S ∈ A be any authorized set, and let I ⊂ {1, 2, ���, n } be defined as I = { i : ρ(i ) ∈ S} .
Then, there exist constants { c ∈ Z p } i ∈ I , s.t. for any valid shares { λi } of a secret s according to �, we have 

∑ 

i ∈ I c i λi = s . These

constants { c i } can be found in time polynomial in the size of the share-generating matrix M , and for unauthorized sets, no

such constants { c i } exist. 

As shown in Fig. 2 , in our scheme, the party is represented as the attribute in the access policy and the keyword in the

subscription policy, respectively. 
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Table 1 

Notations. 

msk master key of the authority 

pk public key of the system 

sk pub secret key of publisher 

sk sub secret key of subscriber 

pdk sub pre-decryption key of subscriber 

dk sub decryption key of subscriber 

Td sub trapdoor submitted by subscriber 

S sub attribute set assigned to subscriber 

m data to be published in plaintext 

S m keyword set with data m 

C m published data m in ciphertext 

T m tags associated with published data 

C ′ m pre-decrypted ciphertext of data m 

 

 

 

 

 

 

 

 

 

 

 

3.2. Bilinear Diffie–Hellman (BDH) assumption 

We then review the definitions of the Bilinear Diffie-Hellman (BDH) problem associated with bilinear pairings [5] and

decisional q-parallel BDHE problem in [21] . 

Definition 2 (BDH) . Let G and G T be two groups of order p , where p > 2 k is a prime. Let g be a generator of G . Suppose

that there exists a bilinear map e : G × G → G T . Let A be an attacker modeled as a probabilistic Turing machine, whose

running time is polynomial in a security parameter k . Given ( g , g a , g b , g c ) for a, b, c ∈ Z 

∗
p , A tries to compute the BDH value

e ( g , g ) abc . 

We define A ’s advantage in solving the BDH problem as Adv 
BDH 
G , A (k ) = Pr [ A (g, g a , g b , g c ) = e (g, g) abc ] . 

Assumption 1. The BDH problem is said to be computationally intractable if Adv 
BDH 
G , A (k ) is negligible in k . 

3.3. Decisional q-parallel bilinear Diffie–Hellman assumption 

Definition 3 (Decisional q-parallel BDHE) . Let a, s, b 1 , . . . , b q ∈ Z p be chosen randomly and g be a generator of G . If an

adversary is given by 

�
 y = (g, g s , g 1 /z , g a/z , . . . , g (a q /z) , g a , . . . , g (a q ) , , g (a q +2 ) , . . . , g (a 2 q ) , 

∀ 1 ≤ j≤q g s ·b j , g a/b j , . . . , g (a q /b j ) , , g (a q +2 /b j ) , . . . , g (a 2 q /b j ) , 

∀ 1 ≤ j,k ≤q,k 	 = j g a ·s ·b k /b j , . . . , g (a q ·s ·b k /b j ) ) , 

it must be hard to distinguish a valid tuple e (g, g) a 
q +1 s ∈ G T from a random element R in G T . 

An algorithm B that outputs z ∈ {0, 1} has advantage ε in solving q-parallel BDHE in G if ∣∣Pr [ B( � y , T = e (g, g) a 
q +1 s ) = 0] − Pr [ B( � y , T = R ) = 0] 

∣∣ ≥ ε. 

Assumption 2. The decisional q-parallel BDHE assumption holds if no polynomial time algorithm has a non-negligible ad-

vantage in solving the q-parallel BDHE problem. 

4. Definitions 

We first give some notations that will appear in our AKPS scheme as shown in Table 1 . 

4.1. Definition of AKPS 

To meet all the requirements illustrated in Section 2.3 , we define an attribute-keyword based data publish-subscribe

scheme as 

Definition 4 (AKPS) . An Attribute-Keyword based data Publish-Subscribe scheme consists of the following polynomial-time

algorithms: 

• Setup (k ) → ( msk , pk ) . The setup algorithm takes a security parameter k as input. It outputs the master secret key msk

and the public key pk for the system. 

• SKeyGen ( msk , pk , { S sub } , { pub} ) → ({ sk sub } , { sk pub } ) . The secret key generation algorithm takes as inputs the master secret

key msk , the public key pk , a set of subscribers’ attributes { S sub }, and a set of publishers’ ID { pub }. It outputs a secret

key sk sub for each subscriber sub and a secret key sk pub for each publisher pub . 
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• TdGen ( sk sub , pk , SP ) → ( Td sub , pdk sub , dk sub ) . The trapdoor generation algorithm takes as inputs the subscriber’s secret

key sk sub , the public key pk and subscription policy SP . It outputs a trapdoor Td sub , a pre-decryption key pdk sub and a

decryption key dk sub . 

• Encrypt (m, S m 

, pk , sk pub , AP ) → (C m 

, T m 

) . The encryption algorithm takes as inputs the data m with a set of keywords

S m 

, the public key pk , the secret key of the publisher sk pub and an access policy AP . It consists of two subroutines 2 : 

– DataEnc (m, pk , AP ) → C m 

. The data encryption subroutine generates the data ciphertext C m 

. 

– TagGen (S m 

, pk , sk pub ) → T m 

. The tag generation subroutine generates the data tags T m 

corresponding to the keywords

of the data. 

It outputs a tuple (C m 

, T m 

) . 

• PolicyTest (C m 

, T m 

, Td sub , pdk sub ) → C 

′ 
m 

or ⊥ . The policy test algorithm takes as inputs the encrypted data C m 

and its

tags T m 

, the trapdoor Td sub and the pre-decryption key pdk sub . It contains two subroutines: 

– KwdLocate (T m 

, Td sub ) → I t . The keyword localization subroutine searches the trapdoor and locates the corresponding

row number in the subscription matrix for each tag. It then returns an index set I t to denote the corresponding

keyword position in the trapdoor for all the tags. 

– PreDecrypt (C m 

, pdk sub , I t ) → C 

′ 
m 

or ⊥ . The pre-decryption subroutine takes the index set I t from the KwdLocate as

input. If T m 

satisfies the subscription policy and the subscriber’s attributes satisfy the access policy, it pre-decrypts

the ciphertext and outputs the pre-decrypted data C 

′ 
m 

. Otherwise, it outputs ⊥ . 

• Decrypt ( C 

′ 
m 

, dk sub ) → m . The decryption algorithm takes as inputs the pre-decrypted ciphertext T 

′ 
m 

and the decryption

key dk sub . It outputs the data m . 

4.2. Correctness definition of AKPS 

Definition 5 (Correctness) . An AKPS scheme AKPS = ( Setup , SKeyGen , TdGen , Encrypt , PolicyTest , Decrypt ) is correct, if ∀ k ∈
N , AP (S sub ) = 1 and SP (S m 

) = 1 , we have 

Pr [ Decrypt 
(
C 

′ 
m 

, dk sub 

)
= m ] = 1 , 

where the probability is taken over the choice of 

( msk , pk ) ← Setup (k ) , 
( sk pub , sk sub ) ← SKeyGen ( msk , pk , S sub , pub) , 

(C m 

, T m 

) ← Encrypt (m, S m 

, pk , sk pub , AP ) , 
( Td sub , pdk sub ) ← TdGen ( sk sub , pk , SP ) , 

C 

′ 
m 

← PolicyTest 
(
(C m 

, T m 

) , ( Td sub , pdk sub ) 
)
. 

4.3. Security definition of AKPS 

For the Trapdoor Privacy of AKPS, we define a Td-IND-CKA-Game to prove trapdoors are indistinguishable secure against

chosen keyword attacks where data tags can be adaptively queried. 

Definition 6 (Td-IND-CKA-Game) . The Td-IND-CKA-Game is defined between a challenger C and an adversary A whose

running time is probabilistic polynomial in a security parameter k as follows. 

• Setup : C runs the Setup (k ) algorithm to generate msk , pk . It gives pk to A , but does not divulge msk . 

• Phase 1 : A is allowed to query data tags for sets of keywords S j . 

• Challenge : A submits two equal-length keyword vectors w 

∗
0 

= (w 0 , 1 , . . . , w 0 ,n ∗ ) , w 

∗
1 

= (w 1 , 1 , . . . , w 1 ,n ∗ ) . A also provides

a challenge subscription policy SP 

∗ such that SP (w b, 1 , w b, 2 , . . . , w b,n ∗ ) = 1 where b ∈ {0, 1}. The only restriction is that

w b, j (b ∈ { 0 , 1 } , j = 1 , . . . , n ∗) has not been appeared in any queried sets in Phase 1 . C first flips a random coin b , and

responses the trapdoor Td b to A by querying the trapdoor generation oracle. 

• Phase 2 : Same as Phase 1 as long as the challenged keywords are not queried. 

• Guess : A outputs a guess b ′ of b . 

We define A ’s advantage in Td-IND-CKA-Game by Adv 
Td-IND-CKA-Game 
AKPS, A = 2 Pr [ b ′ = b] − 1 . 

Remark 1. In order to describe the security definition clearly, we separate the security games for tag privacy and data

privacy. Considering that the data and tags are associated in a tuple (C m 

, T m 

) , without loss of generality, we just make the

same challenged data in tag privacy game and make the same challenged keywords in data privacy game. 

For the Tag Privacy of AKPS, we defined a Tag-IND-CKA-Game to prove the tags are indistinguishable secure against chosen

keyword attacks where trapdoors can be adaptively queried. 
2 The data encryption and tag generation algorithms will share a common randomly chosen parameter, so we put these two algorithms in an encryption 

algorithm as different subroutines. 
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Definition 7 (Tag-IND-CKA-Game) . The Tag-IND-CKA-Game is defined between a challenger C and an adversary A whose

running time is probabilistic polynomial in a security parameter k as follows. 

• Setup : C runs the Setup (k ) algorithm to generate msk , pk . It gives pk to A , but does not divulge msk . 

• Phase 1 : A is allowed to query trapdoors for sets of keywords S j and a subscription policy SP S j 
constructed over S j . 

• Challenge : A submits two equal-size keyword sets S ∗
0 

= { w 0 , 1 , . . . , w 0 ,n ∗ } , S ∗
1 

= { w 1 , 1 , . . . , w 1 ,n ∗ } . The only restriction is

that w b, j ( b ∈ {0, 1}) has not been appeared in any queried sets in Phase 1 for all j = 1 , . . . , n ∗. C first flips a random coin

b , and responses the tags T b to A by querying the tag generation oracle. 

• Phase 2 : Same as Phase 1 as long as the challenged keywords are not queried. 

• Guess : A outputs a guess b ′ of b . 

We define A ’s advantage in Tag-IND-CKA-Game by Adv 
Tag-IND-CKA-Game 
AKPS, A = 2 Pr [ b ′ = b] − 1 . 

For the Data Privacy of AKPS, we define a Data-IND-CPA-Game to prove the data encryption is indistinguishable secure

against chosen plaintext attacks . 3 

Definition 8 (Data-IND-CPA-Game) . The Data-IND-CPA-Game is defined between a challenger C and an adversary A whose

running time is probabilistic polynomial in a security parameter k as follows. 

• Setup : C runs the Setup (k ) algorithm to generate msk , pk . It gives pk to A , but does not divulge msk . 

• Phase 1 : A makes repeated secret key queries corresponding to sets of attributes S 1 , . . . , S q 1 . Moreover, A can also query

pre-decryption keys corresponding to sets of attributes ˆ S 1 , . . . , ̂  S q 1 . 

• Challenge : A submits two equal-length messages m 0 and m 1 . In addition, the adversary gives a challenge access structure

( M 

∗, ρ∗), which must satisfy the constraint that none of the sets S 1 , . . . , S q 1 from Phase 1 satisfy the chosen access

structure. C flips a random coin b , and encrypts m b under ( M 

∗, ρ∗). Then, the ciphertext C 

∗
m b 

is given to the A . 

• Phase 2 : A may query more secret keys and pre-decryption keys, as long as they do not violate the constraint on the

challenge access structures. 

• Guess : A outputs a guess b ′ of b . 

We define A ’s advantage in Data-IND-CPA-Game by Adv 
Data-IND-CPA-Game 
AKPS, A = 2 Pr [ b ′ = b] − 1 . 

Definition 9 ( Td-IND-CKA ) . An AKPS scheme is Td-IND-CKA secure if all probabilistic polynomial-time adversaries have

at most a negligible advantage in the above Td-IND-CKA-Game . 

Definition 10 ( Tag-IND-CKA ) . An AKPS scheme is Tag-IND-CKA secure if all probabilistic polynomial-time adversaries have

at most a negligible advantage in the above Tag-IND-CKA-Game . 

Definition 11 ( Data-IND-CPA ) . An AKPS scheme is Data-IND-CPA secure if all probabilistic polynomial-time adversaries

have at most a negligible advantage in the above Data-IND-CPA-Game . 

Definition 12 (AKPS Security) . An AKPS scheme is secure if it is Td-IND-CKA secure, Tag-IND-CKA secure and Data-IND-

CPA secure. 

5. Construction of AKPS 

We construct the AKPS in five phases: System Initialization by Authority, Trapdoor Generation by Subscribers, Data Pub-

lication by Publishers, Policy Checking and Pre-decryption by Cloud Server, and Data Decryption by Subscribers. 

5.1. System initialization by authority 

The authority initializes the system by running the setup algorithm as 

Setup (1 k ) → ( msk , pk ) . It chooses two multiplicative groups G and G T with the same prime order p ( p > 2 k ) and the

bilinear map e : G × G → G T between them. Let g be a generator of G . Let H 1 : { 0 , 1 } ∗ → G be the hash function that maps

an arbitrary attribute to an element in group G . Let H 2 : { 0 , 1 } ∗ → G be the hash function mapping any arbitrary keyword

to an element in group G . It chooses random numbers α, β, γ , a ∈ Z 

∗
P 

and sets the master secret key as 

msk = (g a , α, β, γ ) . 

The public key is set as 

pk = (p, g, G , G T , e, e (g, g) a , g α, g β, g γ , H 1 , H 2 ) . 

The authority generates secret keys for each publisher and subscriber by running the secret key generation algorithm as 
3 Here we can also extend the security model for encryption to RCCA-Secure ( secure against replayable chosen-ciphertext attackers ) by using the techniques 

provided in [8] . 
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SKeyGen ( msk , pk , { S sub } , { pub} ) → ({ sk sub } , { sk pub } ) . For each subscriber sub who possesses the attribute set S sub , it

chooses a random number r sub ∈ Z 

∗
p and generates the secret key as 

sk sub = (K 1 ,sub = g αβr sub , K 2 ,sub = g αr sub · g αγ , 

K 3 ,sub = g a · g γ r sub , K 4 ,sub = g r sub , 

∀ att ∈ S sub : K sub,att = H 1 (att) r sub ) . 

For each publisher pub , it generates the secret key as 

sk pub = (K 1 ,pub = g αβr pub , K 2 ,pub = g βr pub · g βγ ) , 

where r pub is randomly chosen from Z 

∗
p . 

5.2. Trapdoor generation by subscribers 

To subscribe some interested data, the subscriber first defines a subscription policy over a set of keywords. In AKPS, the

subscription policy is also described by an LSSS structure as ( M t , ρt ), where M t is an n t × l t subscription matrix with ρt

mapping its rows to keywords. ρt here is injective, which means that different rows of the matrix M t will not be mapped to

the same keyword. The subscriber then generates a trapdoor Td sub , a pre-decryption key pdk sub and a decryption key dk sub

by running the following trapdoor generation algorithm. 

TdGen ( sk sub , pk , (M t , ρt )) → ( Td sub , pdk sub , dk sub ) . It first generates a decryption key dk sub = z t by selecting a random

number z t ∈ Z 

∗
p . It then selects a trapdoor secret s t ∈ Z 

∗
p and a random vector � v t = (s t , y t, 2 , . . . , y t,l ) ∈ Z 

l t 
p , where y t , 2 , ���,

y t , l are used to share the trapdoor secret s t . For j = 1 to n t , it computes λt, j = M t, j · � v t , where M t , j is the vector correspond-

ing to the j th row of M t , j . It then computes t j = λt, j · z t and use it to compute 

Td j = ( Td 1 , j = 

(
K 1 ,sub · H 2 (ρt ( j)) 

)t j 
, Td 2 , j = (K 2 ,sub ) 

t j , 

Td 3 , j = (g α) t j , Td 4 , j = g t j ) . 

It outputs the trapdoor as 

Td sub = (M t , { j, Td j } j=1 , ... ,n t ) . 

In order to protect the keyword leakage from the subscription policy, only M t of the subscription policy ( M t , ρt ) will be sent

to the cloud together with the trapdoor, while ρt is kept secret against the cloud server. 

The pre-decryption key pdk sub is generated as 

pdk sub = (K 

′ 
sub = (K 3 , sub ) 

z t , L ′ sub = (K 4 , sub ) 
z t , 

∀ att ∈ S sub : K 

′ 
sub,att = (g γ s t · K sub,att ) 

z t ) . 

The subscriber sub then sends the subscription query ( Td sub , pdk sub ) to the cloud server. 

5.3. Data publication by publishers 

To publish some data, the publisher first defines an access policy over attributes of subscribers. The access policy is also

described by an LSSS structure ( M , ρ), where M is an n × l access matrix and ρ maps the rows of M to attributes. The

publisher then runs the following encryption algorithm to encrypt the data m . 4 

Encrypt (m, S m 

, pk , sk pub , (M, ρ)) → (C m 

, T m 

) . It consists of two subroutines: data encryption and tag generation. 

• DataEnc (m, pk , (M, ρ)) → C m 

The data encryption subroutine chooses two random encryption secrets s 1 , s 2 ∈ Z 

∗
p . Then,

it chooses two random vectors � v 1 = (s 1 , y 
′ 
2 
, . . . , y ′ 

l 
) and 

�
 v 2 = (s 2 , y 

′′ 
2 
, . . . , y ′′ 

l 
) to share the encryption secrets s 1 and s 2 ,

respectively. For i = 1 to n , it computes λi = M i · � v 1 and μi = M i · � v 2 , where M i is the vector corresponding to the i th row

of M . It outputs the ciphertext C m 

as 

C m 

= ((M , ρ) , C = m · e (g , g ) as 1 , C 

′ = g s 1 , 

for i = 1 to n : C i = g γ λi · H 1 (ρ(i )) −μi , D i = g μi ) . 

• TagGen (S m 

, pk , sk pub , s 2 ) → T m 

The tag generation subroutine also takes the same random number s 2 as input. It chooses

a random number r m 

∈ Z 

∗
p and outputs the tags as 

T m 

= { W i , T i } w i ∈ S m , 

where W i is used to locate the keyword w i in the subscription matrix M t , and T i is used to pre-decrypt the data. 
4 In real application, data m is first encrypted with a content key by using symmetric encryption methods. The content key is derived by a pseudorandom 

function with some random string. Then, the random string is further encrypted by running the encryption algorithm Encrypt . For simplification, we directly 

use the data m . 
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The W i is generated by choosing a random number r i ∈ Z 

∗
p as 

W i = (W 1 ,i = 

(
K 1 ,pub · H 2 (w i ) 

)r i 
, W 2 ,i = (K 2 ,pub ) 

r i , 

W 3 ,i = (g β ) r i , W 4 ,i = g r i ) , 

and T i is generated by choosing a different random number r ∗
i 

∈ Z 

∗
p as 

T i = (T 1 ,i = 

(
K 1 ,pub · H 2 (w i ) 

)r ∗
i · g γ s 2 , T 2 ,i = (K 2 ,pub ) 

r ∗
i , 

T 3 ,i = (g β ) r 
∗
i , T 4 ,i = g r 

∗
i ) . 

The publisher then releases the data and its tags to the cloud server in a tuple (C m 

, T m 

) . Note that the access policy ( M ,

ρ) is explicitly associated with the ciphertext. 

Remark 2. If we use the same random numbers in the construction of T i , i.e., r ∗
i 

= r i , intuitively, it can save the space by

setting T i = W i · g γ s 2 , which, however, may leak the knowledge g γ s 2 . With this knowledge, the cloud server can compute

e (g γ s 2 , g t j ) and use it to pre-decrypt the data directly (shown in the next phase), which means that the cloud server can

bypass the trapdoor checking and directly send whatever data to the subscriber. 

5.4. Policy checking and pre-decryption by cloud server 

Once some new data are published, the cloud server evaluates both the access policy and the subscription policy by

running the following policy test algorithm as 

PolicyTest (C m 

, T m 

, Td sub , pdk sub ) → C 

′ 
m 

or ⊥ . The policy test algorithm consists of both access policy test and trapdoor

policy test, and if and only if both policies are satisfied, the algorithm continue to pre-decrypt the data, otherwise it termi-

nates. 

• Access policy test: Access policy test is much more easy than the subscription policy test, because the attributes are

not hidden in both the access policy and the transformed secret key, while the keywords are hidden in both trapdoors

and tags. 5 Therefore, the policy test algorithm first evaluates whether the access policy associated with the data can be

satisfied by the attributes of the subscriber. If the access policy is not satisfied, the policy test algorithm will terminate

with a reject output ⊥ . 

• Subscription policy test: If the access policy is satisfied, it continues to test whether the tags can satisfy the subscription

policy in the trapdoor by running the following subroutines: 

– KwdLocate (T m 

, Td sub ) → I t . Due to the obfuscation of keyword in both the trapdoor and the tags, the algorithm first

locates the row number in M t for each tag. For each tag, the algorithm searches the trapdoor and get the correspond-

ing row number in M t if there is a matched keyword in the trapdoor. When finished search for all the tags, it outputs

an index set I t = { j | ρt ( j ) = w i , ∀ w i ∈ S m 

} , with which the subscription policy can be easily verified. Note that, with-

out any information of ρt , it is not easy to find such an index set. To test whether the tag W i and the tradpoor Td j 
are corresponding to the same keyword (i.e., ρt ( j) = w i ), it checks the following equation 

e (W 1 ,i , Td 4 , j ) · e ( Td 2 , j , W 3 ,i ) 

e ( Td 1 , j , W 4 ,i ) · e (W 2 ,i , Td 3 , j ) 

? = 1 (1) 

For each matched keyword ρt ( j) = w i , let φ be an invert keyword mapping such that i = φ( j) . 

• Data pre-decryption: If both access policy and subscription policy are satisfied, the algorithm further pre-decrypt the

data as follows. 

– PreDecrypt (C m 

, pdk sub , I t ) → C 

′ 
m 

or ⊥ . If T m 

does not satisfy the subscription policy, it will terminate and output ⊥ .

Otherwise, it can find a set of constants { c t , j }, s.t. 
∑ 

j∈ I t c t, j · λt, j = s t . Then, the cloud server computes TK 1 from the

trapdoor and the data tags as 

TK 1 = 

∏ 

j∈ I t 

(
e (T 1 ,φ( j) , Td 4 , j ) · e ( Td 2 , j , T 3 ,φ( j) ) 

e ( Td 1 , j , T 4 ,φ( j) ) · e (T 2 ,φ( j) , Td 3 , j ) 

)c t, j 

= e (g, g) γ s 2 s t z t . 

Similarly, because the subscriber’s attributes can satisfy the access policy, it can find a set of constants { c i }, s.t., 
∑ 

i ∈ I c i ·
M i = (1 , 0 , . . . , 0) , where I is defined as I = { i : ρ(i ) ∈ S sub } . Recall λi = M i · � v 1 and μi = M i · � v 2 , we have 

∑ 

i c i λi = s 1
and 

∑ 

i c i μi = s 2 . The cloud server further computes TK 2 from the ciphertext by using the pre-decryption secret key

as 

TK 2 = 

e (C ′ , K 

′ 
sub 

) 

∏ 

i ∈ I 

(
e (C i , L 

′ 
sub 

) · e (D i , K 

′ 
sub,ρ(i ) 

) 
)c i 

= 

e (g s 1 , g a ) z t 

e (g, g) γ s 2 s t z t 
. 
5 This is for the efficiency purpose, we can also apply the same techniques of keyword hiding to protect the attribute privacy. 
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When obtaining both TK 1 and TK 2 , it further computes the token as 

TK = TK 1 · TK 2 = e (g, g) as 1 z t 

The pre-decrypted data C 

′ 
m 

is denoted in an ElGamal encryption form as 

C 

′ 
m 

= (C, TK ) = 

(
m · e (g, g) as 1 , e (g, g) as 1 z t 

)
. 

The cloud server then sends the pre-decrypted data C 

′ 
m 

to the subscriber. 

5.5. Data decryption by subscribers 

Upon receiving the pre-decrypted data, the subscriber can efficiently decrypt the data by running the decryption algo-

rithm: 

Decrypt ( C 

′ 
m 

, dk sub ) → m . The data can be easily decrypted as 

m = 

C 

TK 

1 
z t 

= 

m · e (g, g) as 1 

e (g, g) as 1 
. 

It is easy to find that the subscriber only performs simple decryption computation, which is independent with the number

of attributes in the ciphertext and the number of tags in the trapdoor. The lightweight decryption algorithm can be easily

implemented in many mobile devices with limited computation resources. 

6. Correctness and security proofs 

6.1. Correctness proof 

According to Definition 5 , we need to prove the correctness of subscription policy test and data decryption. To prove the

subscription policy test, we first give the correctness proof for the keyword localization in the trapdoor, i.e., Eq. (1) . 

e (W 1 ,i , Td 4 , j ) · e ( Td 2 , j , W 3 ,i ) 

e ( Td 1 , j , W 4 ,i ) · e (W 2 ,i , Td 3 , j ) 
= 

e 

((
g αβr pub · H 2 (w i ) 

)r i 
, g t j 

)
· e 

((
g αr sub · g αγ

)t j 
, g βr i 

)

e 

((
g αβr sub · H 2 (ρt ( j)) 

)t j 
, g r i 

)
· e 

((
g βr pub · g βγ

)r i 
, g αt j 

)

= 

e 
(
H 2 (w i ) , g 

)r i t j 

e 
(
H 2 (ρt ( j)) , g 

)r i t j 

If w i = ρt ( j) , we have H 2 (w i ) = H 2 (ρt ( j)) . So, the equation Eq. (1) can hold. Moreover, due to the collision resistance of

hash function H 2 , it is difficult to find two different keywords w i and ρt ( j ), such that H 2 (w i ) = H 2 (ρt ( j)) . Once all the tags

have located their positions (row number) in M t , it is easy to evaluate whether the tags can satisfy the subscription policy. 

To prove the correctness of data decryption, we first prove the correctness of TK 1 and TK 2 as follows. 

TK 1 = 

∏ 

j∈ I t 

(
e (T 1 ,φ( j) , Td 4 , j ) · e ( Td 2 , j , T 3 ,φ( j) ) 

e ( Td 1 , j , T 4 ,φ( j) ) · e (T 2 ,φ( j) , Td 3 , j ) 

)c t, j 

= 

∏ 

j∈ I t 

⎛ 

⎝ 

e 

((
g αβr pub H 2 (w i ) 

)r ∗
i g γ s 2 , g t j 

)
e 

((
g αr sub g αγ

)t j 
, g βr ∗

i 

)

e 

((
g αβr sub H 2 (ρt ( j)) 

)t j 
, g r 

∗
i 

)
e 

((
g βr pub g βγ

)r ∗
i , g αt j 

)
⎞ 

⎠ 

c t, j 

= 

∏ 

j∈ I t 

(
e (g γ s 2 , g t j ) 

)c t, j 

= e (g γ s 2 , g) 
∑ 

j∈ I t c t, j λt, j z t 

= e (g, g) γ s 2 s t z t . 

and 

TK 2 = 

e (C ′ , K 

′ 
sub 

) ∏ 

i ∈ I 

(
e (C i , L 

′ 
sub 

) · e (D i , K 

′ 
sub,ρ(i ) 

) 
)c i 

= 

e 

(
g s 1 , 

(
g a g γ r sub 

)z t 
)

∏ 

i ∈ I 

(
e (g γ λi (H 1 (ρ(i )) −μi , g r sub z t ) e (g μi , 

(
g γ s t H 1 (ρ(i )) r sub 

)z t 
) 
)c i 
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= 

e (g s 1 , g a ) z t · e (g s 1 , g γ r sub z t ) 

e (g γ , g r sub z t ) 
∑ 

i ∈ I c i λi · e (g, g γ s t z t ) 
∑ 

i ∈ I c i μi 

= 

e (g s 1 , g az t ) 

e (g, g) γ s t s 2 z t 
. 

6.2. Security proof 

Theorem 1. The AKPS scheme is Td-IND-CKA secure in the random oracle model if the BDH problem is intractable. 

Proof. Suppose there is a polynomial-time attacker A with non-negligible advantage Adv 
Td-IND-CKA-Game 
AKPS, A in the Td-IND-CKA-

Game against our construction. We show how A can solve the BDH problem with non-negligible advantage through the

following game: 

Setup : The challenger C runs the Setup (k ) algorithm and sets msk = (α, β, γ ) and pk = (g, G , G T , g 
α, g β, g γ ) . The pk is

sent to A . 

Phase 1 : A queries data tags by submitting a set of keywords S ′ . To simulate the data tags, C first generates a secret

key as a publisher as sk pub = (K 

∗
1 ,pub 

= g αβr pub , K 

∗
2 ,pub 

= g βr pub g βγ ) by randomly choosing r pub ∈ Z 

∗
p . It also simulates the hash

function H 2 by letting H 2 (w i ) = g τi with a random number τi ∈ Z 

∗
p . Then, it maintains a table to record (w i , g 

τi ) . If an existing

w i is queried from the oracle H 2 (), then the value g τi is returned. Otherwise, it creates a new tuple by selecting a new

distinct random number and store the tuple into the table. 

Then, it randomly chooses s 2 ∈ Z 

∗
p . It also choose two random numbers r i , r 

∗
i 

∈ Z 

∗
p for each keyword w i , and returns

T 

′ = { W i , T i } w i ∈ S ′ , where 

W i = (W 1 ,i = (K 

∗
1 ,pub · H 2 (w i )) 

r i , W 2 ,i = (K 

∗
2 ,pub ) 

r i , W 3 ,i = (g β ) r i , W 4 ,i = g r i ) , 

and 

T i = (T 1 ,i = (K 

∗
1 ,pub · H 2 (w i )) 

r ∗
i · g γ s 2 , T 2 ,i = (K 

∗
2 ,pub ) 

r ∗
i , 

T 3 ,i = (g β ) r 
∗
i , T 4 ,i = g r 

∗
i ) . 

Challenge : A submits two equal-length keyword vectors w 

∗
0 

= (w 0 , 1 , . . . , w 0 ,n ∗ ) , w 

∗
1 

= (w 1 , 1 , . . . , w 1 ,n ∗ ) . For any keywords

in this two vectors, it has not been queried in the previous tag query phase. A also provides a challenge subscription policy

(M 

∗
t , ρ

∗
t ) which can be satisfied by both w 

∗
0 

and w 

∗
1 
. C first flips a random coin b , and simulates the trapdoor Td b . It first

generates a secret key sk sub = (K 

∗
1 ,sub 

= g αβr sub , K 

∗
2 ,sub 

= g αr sub g αγ ) with a random number r sub . Then, it simulates the trapdoor

Td (b) 
sub 

as 

Td 
(b) 
sub 

= (M 

∗
t , { j, Td 

(b) 
j 

} j=1 , ... ,n ∗ ) , 

where 

Td 
(b) 
j 

= ( Td 
(b) 
1 , j 

= 

(
K 

∗
1 ,sub · H 2 (w b, j ) 

)t j 
, Td 

(b) 
2 , j 

= (K 

∗
2 ,sub ) 

t j , Td 
(b) 
3 , j 

= (g α) t j , Td 
(b) 
4 , j 

= g t j ) . 

Phase 2 : Same as Phase 1 . 

Guess : A outputs a guess b ′ of b . 

Then, we show that if the adversary have non-negligible advantages in the above Td-IND-CKA-Game, the adversary can

solve the BDH problem with non-negligible advantages. Given g β, g γ , g c = g αt j , the adversary can compute 

e (g, g) βγαt j = 

e ( Td 
(b) 
2 , j 

, g β ) · e (H(w b ′ , j ) , Td 
(b) 
4 , j 

) 

e ( Td 
(b) 
1 , j 

, g) 

= 

e 

((
g αr sub g αγ

)t j 
, g β

)
· e 

(
H(w b ′ , j ) , g 

t j 
)

e 

((
g αβr sub H(w b, j ) 

)t j 
, g 

)

= e (g αγ t j , g β ) · e (H(w b ′ , j ) , g 
t j ) 

e (H(w b, j ) , g 
t j ) 

If the adversary can guess b ′ = b with non-negligible advantage, then it can compute e (g, g) βγαt j with non-negligible

advantage. �

Theorem 2. The AKPS scheme is Tag-IND-CKA secure in the random oracle model if the BDH problem is intractable. 

Proof. Suppose there is a polynomial-time attacker A with non-negligible advantage Adv 
Tag-IND-CKA-Game 
AKPS, A in the Tag-IND-

CKA-Game against our construction. We show how A can solve the BDH problem with non-negligible advantage. The
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simulated tag generation oracle and the trapdoor generation oracle are the same with the game provided in the proof of

Theorem 1 . Here, we only give the tags T b corresponding to the keyword set S ∗
b 

that the simulator chooses as 

T 

(b) 
sub 

= { W b,i , T b,i } w b,i ∈ S ∗b , 

where 

W 

(b) 
i 

= (W 

(b) 
1 ,i 

= 

(
K 

∗
1 ,pub · H 2 (w i ) 

)r i 
, W 

(b) 
2 ,i 

= (K 

∗
2 ,pub ) 

r i , W 

(b) 
3 ,i 

= (g β ) r i , W 

(b) 
4 ,i 

= g r i ) , 

and 

T 

(b) 
i 

= (T 

(b) 
1 ,i 

= 

(
K 

∗
1 ,pub · H 2 (w i ) 

)r ∗
i · g γ s 2 , T 

(b) 
2 ,i 

= (K 

∗
2 ,pub ) 

r ∗
i , T 

(b) 
3 ,i 

= (g β ) r 
∗
i , T 

(b) 
4 ,i 

= g r 
∗
i ) . 

Similar to Theorem 1 , we can prove that the adversary cannot distinguish each pair of W 

(0) 
i 

and W 

(1) 
i 

with non-negligible

advantage. Now, let’s prove that the adversary cannot distinguish each pair of T 

(0) 
i 

and T 

(1) 
i 

with non-negligible advantage

either. Note that given the ciphertext C m 

and the access policy M , ρ , s s 2 can be reconstructed by the adversary as 

g s 2 = 

∏ 

i ∈ I 
g μi c i . 

Given g α, g γ , g c = g βr ∗
i , if the Adv 

Td-IND-CKA-Game 
AKPS, A is non-negligible, the adversary can compute 

e (g, g) αγβr ∗
i = 

e 
(
T 

(b) 
2 ,i 

, g α
)

· e ( g γ , g s 2 ) · e 
(
H(w b ′ ,i ) , T 

(b) 
4 ,i 

)
e 
(
T 

(b) 
1 ,i 

, g 
)

= 

e 
(
(K 

∗
2 ,pub 

) r 
∗
i , g α

)
· e ( g γ , g s 2 ) · e 

(
H(w b ′ ,i ) , g 

r ∗
i 

)
e 

((
K 

∗
1 ,pub 

· H 2 (w b,i ) 
)r ∗

i · g γ s 2 , g 

)

= 

e 

((
g βr pub · g βγ

)r ∗
i , g α

)
· e 

(
H(w b ′ ,i ) , g 

r ∗
i 

)
e 

((
g αβr pub · H 2 (w b,i ) 

)r ∗
i , g 

)

= e (g βγ t j , g α) · e (H(w b ′ ,i ) , g 
r ∗

i ) 

e (H(w b,i ) , g 
r ∗

i ) 

with non-negligible advantage. �

Theorem 3. The AKPS is Data-IND-CPA secure in the random oracle model if the decisional q-parallel BDHE assumption holds. 

Proof. The encryption algorithm is constructed based on the CP-ABE proposed in [21] , which is proved to be secure in stan-

dard model. To enable the cloud server to pre-decrypt the data, the pre-decryption key generation algorithm is constructed

by employing the technique from [8] , which is proven to be semantic security against chosen plaintext attacks. Similarly,

we can prove that our AKPS is also Data-IND-CPA secure. Due to the space limitation here, we do not describe the detailed

simulation of the Data-IND-CPA-Game . For details, please refer to [8] . �

Now, we can say that the AKPS scheme is secure in random oracle model if the BDH is intractable and decisional q-

parallel BDHE assumption hold. 

7. Performance evaluation 

We first summarize the size of each component in the AKPS scheme, as shown in Table 2 . 

The decryption outsourcing method in AKPS can significantly reduce the communication cost. From Table 2 , we can see

that the pre-decrypted data C 

′ 
m 

is constant and independent with the number of attributes used for encryption. Even though

we consider the pre-decryption key pdk , the total communication cost of pre-decrypted data and pre-decryption key is still

lower than the communication cost of an original ciphertext C m 

. For each trapdoor, only one pre-decryption key is sent to
Table 2 

Size of each component in AKPS. 

Component Size (| p |) Note 

C m 2 + 2 N m,att N m , att : # of attributes in m 

T m 8 N m,kwd N m,kwd : # of keywords for m 

Td 4 N td,kwd N td,kwd : # of keywords in Td 

pdk N sub,att + 2 N sub , att : # of attribute with sub 

C ′ m 2 N/A 

| p |: element size of G and G T 
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Fig. 3. Computation overhead on the publishers. 

Fig. 4. Computation overhead on the subscribers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

the cloud server. As long as this trapdoor is still valid, the pre-decryption key can be applied to pre-decrypt all the satisfied

ciphertexts. 

To evaluate the computation overhead of AKPS, we do the simulation on a Unix system with an Intel Core i5 CPU at

2.4GHz and 8.00GB RAM. The code uses the Pairing-Based Cryptography (PBC) library version 0.5.12, and a symmetric elliptic

curve α-curve, where the base field size is 512-bit and the embedding degree is 2. All the simulation results are the mean

of 20 trials. 

Fig. 3 shows the computation overhead on the publishers including data encryption time and tag generation time. The

computation time of data encryption and tag generation is linear with the number of associated attributes and keywords,

respectively. Fig. 4 shows the computation overhead on the subscribers, which mainly comes from trapdoor generation, pre-

decryption key generation and data decryption. It is easy to find that the trapdoor generation and the pre-decryption key

generation is linear with the number of keywords and attributes, respectively. However, the data decryption time on the

subscribers is independent with the number of attributes in the ciphertexts. 

Fig. 5 a shows the computation overhead for subscription policy test between the tags and the trapdoors. For each data

tag, the keyword localization algorithm KwdLocate should search over the trapdoor to locate the position in the subscription

matrix. Thus, the complexity of KwdLocate is O (N m,kwd N td,kwd ) , where N m,kwd is the number of keywords associated with

the data m and N td,kwd is the number of keywords involved in the trapdoor Td . The results in Fig. 5 (a) also show that the
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Fig. 5. Computation overhead on the cloud. 

 

 

 

 

 

 

 

 

 

computation overhead for subscription policy test is linear with the product of the number of keywords in tags and the

number of keywords in trapdoors. 

To pre-decrypt the ciphertext, the pre-decryption algorithm in AKPS first computes TK1 and TK2 . The computation of

TK1 is linear with the number of the keywords that satisfy the subscription policy, while the computation of TK2 is lin-

ear with the number of attributes that satisfy the access policy. Fig. 5 (b) shows this linear relationship between the pre-

decryption time and two variables (i.e., number of attributes and keywords). 

8. Trapdoor expressiveness and discussions 

The access policy and subscription policy in AKPS scheme are both expressed in LSSS structure. As described in [23] ,

the LSSS structure can be freely transformed to any boolean formulas and any threshold gates. Therefore, AKPS can support

conjunctive keywords queries ( AND -gate), disjunctive keywords queries ( AND -gate and OR -gate), and subset queries (( t , n )-

gate). 

Now, we discuss how to extend AKPS to support more expressive trapdoors as follows. 

• Support for comparison and range queries In AKPS, if the keyword w 

∗
i 

in the tag equals to w 

∗ in the trapdoor, the key-

word localization algorithm KwdLocate outputs the corresponding row number in the subscription structure M t . The
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comparison here is only for the equality. However, we can also assign values to each keyword to support the inequality

value comparison. To protect the value privacy, we can leverage the homomorphic addition encryption proposed in [14] .

Furthermore, we may also apply the interval tree introduced [15] to support range query. 

• Support for fuzzy/similarity queries We can also extend the AKPS to support fuzzy/similarity queries by leveraging the

Locality-Sensitive Hashing (LSH) as in [1] . If the Hamming distance between the keyword w i in the tags and the keyword

w 

∗ in trapdoors is small , the LSH outputs the same hash value ( LSH(w i ) = LSH(w 

∗) ) with a high probability. 

Towards the dynamic change of the subscribers’ attributes, we can apply the attribute revocation methods [22,24] to

protect the forward and/or backward secrecy. 

9. Related work 

9.1. Attribute-based encryption 

Data encryption is an effective method to protect data privacy. However, traditional encryption methods are not ap-

propriated for encrypting the huge amount of data, due to the multiple copies of ciphertexts (public key encryption) and

complicate key management issues (symmetric encryption). Attribute-based encryption (ABE) [7,21] is a promising technique

for access control of encrypted data. Based on ABE, several attribute-based access control (ABAC) schemes [22,24] have been

proposed for fine-grained control of data access in cloud storage systems. Specifically, ABAC allows data owners to define

an access structure on attributes and encrypt the data under this access structure. Different from traditional public key en-

cryption, ABE produces only one copy of ciphertext, which can significantly reduce the storage overhead. In [25] , Yuen et al.

apply CP-ABE to encrypt data, such that the data can be delivered if the subscriber’s attributes can satisfy the access policy.

However, it does not allow the subscriber to specify a subscription policy. 

9.2. Searchable encryption 

Searchable encryption is an important primitive to protect the privacy of keywords. Song et al. [17] proposed one of the

first schemes for searching on encrypted data, which leverages symmetric key techniques and allows a party that encrypted

the data to generate keyword search trapdoors. Boneh et al. [4] proposed Public Key Encryption with Keyword Search (PEKS),

where any party possessing the public key can encrypt and the owner of the corresponding secret key can generate keyword

search trapdoors. Boneh and Waters [6] also developed a PEKS scheme for conjunctive keyword searches by using Hidden

Vector Encryption (HVE), which can support equality, comparison, general subset queries, and arbitrary conjunctions of

those. However, these methods only support single user query. 

Hwang and Lee [9] first considered the multiuser settings and introduced a multiuser public key encryption with con-

junctive keyword search scheme. However, their scheme only supports conjunctive keyword search and may suffer from

offline keyword-guessing attack to trapdoors. To cope with this attack, Tang et al. [18] proposed the concept of public key

encryption with registered keyword search, which allows a publisher to build searchable content only for the keywords

previously registered by the subscriber. However, the pre-registered keywords are not suitable for large-scale cloud systems.

Li et al. [10] propose a multi-keyword ranked search on encrypted data by employing a secure k-NN scheme. In [12] , a

privacy-preserving framework is proposed to outsource the functional computation into the cloud, which may be applied

for queries on encrypted data. 

9.3. Attribute-based encryption with keyword search 

Due to the advantages of ABE, attentions are paid to combine ABE with PEKS by constructing attribute-based encryp-

tion with keyword search (ABEKS) schemes. In [11] , the authors employ an attribute-based proxy-reencryption method to

support keyword search. In [20] , an extended CP-ABE scheme is proposed to support single keyword search. However, the

extension of keyword search (i.e., the query secret key sk query ) may break the security of the CP-ABE. It is easy to get the

master secret key of the system msk = g α from the secret key of ABE sk abe and the query secret key sk query by calculating

sk abe / sk query = g αg at /g at g uα = (g α) 1 −u , because u is selected by users. Upon obtaining the master key, the user can decrypt

all the ciphertexts regardless of his/her attributes. 

In [26] , a verifiable attribute-based keyword search scheme is proposed for outsourced encrypted data, but the trapdoor

privacy cannot be guaranteed in this method. In [16] , the authors proposed an authorized keyword search method on en-

crypted data. They leverage ABE to encrypt the keywords, such that only the authorized users are allowed to search. To

protect the attribute privacy in access policies and the keyword privacy in subscription policies, the authors construct their

scheme based on composite group order and use elements from “orthogonal groups” to hide attributes and keywords. How-

ever, the subscription policy ( ̂  A , ˆ ρ) is submitted together with the trapdoor, where ˆ ρ can map each row of ˆ A to a keyword.

Therefore, the trapdoor privacy is still an opening problem in the existing ABEKS. 
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10. Conclusion 

In this paper, a privacy-preserving Attribute-Keyword based data Publish-Subscribe (AKPS) scheme has been proposed for

cloud platforms, which enables a cloud server to be the data publish-subscribe broker that can serve for multiple publishers

and subscribers. In order to protect the data privacy, an attribute-based encryption with decryption outsourcing method

is employed to encrypt the published data, which can also reduce the decryption overhead on the subscribers’ devices. To

allow the cloud server to evaluate the subscription policy in a privacy-preserving way, a novel searchable encryption scheme

has been proposed to generate data tags and trapdoors. Different from existing symmetric searchable encryption methods,

the AKPS can support multiple publishers and multiple subscribers, while none of two publishers/subscribers share the same

secret keys. Moreover, the publishers cannot act as the subscribers to enjoy the data subscription service, and vice versa.

In order to avoid the cloud server to skip any access/subscription policy checking procedure, a new method has also been

proposed to tie access policy and subscription policy together. We have further discussed on how the AKPS can support or

can be extended to support expressive keywords queries. 
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