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Abstract—In this paper, we study resource management
and allocation for Energy Harvesting Cognitive Radio Sensor
Networks (EHCRSNs). In these networks, energy harvesting
supplies the network with a continual source of energy
to facilitate self-sustainability of the power-limited sensors.
Furthermore, cognitive radio enables access to the underutilized
licensed spectrum to mitigate the spectrum-scarcity problem in
the unlicensed band. We develop an aggregate network utility
optimization framework for the design of an online energy
management, spectrum management and resource allocation
algorithm based on Lyapunov optimization. The framework
captures three stochastic processes: energy harvesting dynamics,
inaccuracy of channel occupancy information, and channel
fading. However, a priori knowledge of any of these processes
statistics is not required. Based on the framework, we propose
an online algorithm to achieve two major goals: first, balancing
sensors’ energy consumption and energy harvesting while
stabilizing their data and energy queues; second, optimizing
the utilization of the licensed spectrum while maintaining
a tolerable collision rate between the licensed subscriber
and unlicensed sensors. Performance analysis shows that
the proposed algorithm achieves a close-to-optimal aggregate
network utility while guaranteeing bounded data and energy
queue occupancy. Extensive simulations are conducted to verify
the effectiveness of the proposed algorithm and the impact of
various network parameters on its performance.

Index Terms—Wireless Sensor Network, cognitive radio,
energy harvesting, energy management, channel allocation,
Lyapunov optimization

I. I NTRODUCTION

Energy Harvesting Sensor Networks (EHSNs) are promising
for long-term data collection over a wide range of applications
[1], and become a fundamental enabling technology for the
coming era of Big Data [2] and the Internet of Things
(IoTs) [3]. By exploiting the EH technology, sensors can
harvest energy from the renewable energy sources in the
area of interest, such as solar, illumination and vibration [4].
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Therefore, it facilitates the self-sustainability of the power-
constrained sensors and effectively extends the network
lifetime.

EHSNs typically operate on the unlicensed Industrial,
Scientific, and Medical (ISM) band for data transmission.
However, the ISM band has become increasingly crowded
due to the massive growth of wireless devices operating
in this band. This massive growth has introduced the
spectrum-scarcity problem which significantly degrades
the performance of EHSNs. In addition, a large portion
of the licensed spectrum remains underutilized, e.g., the
spatial and temporal variations in the licensed spectrum
utilization range from 15% to 85%, according to a report by
Federal Communications Commission [5]. The integration
of Cognitive Radio (CR) technology into EHSNs mitigates
these licensed spectrum-underutilization and unlicensed
spectrum-scarcity problems. It facilitates the transmission of
sensed data over the underutilized licensed channels without
disrupting the primary network operation. Such networks are
referred to as Energy Harvesting Cognitive Radio Sensor
Networks (EHCRSNs) in which sensors are secondary users
(SUs) and primary network subscribers are primary users
(PUs) [6]. The typical applications of EHCRSNs include the
data collection indoors, where the sensors overlap with WiFi
networks [7], the body sensor networks in pervasive health
monitoring, and real-time monitoring in smart city [8]–[10].

Although EHCRSNs are spectrum and energy-efficient,
they face several new challenges compared with the
traditional sensor networks [11]. First, the energy harvesting
process is stochastic and dynamic, which makes balancing
energy consumption and energy replenishment challenging.
Depleting a sensor’s battery at a rate slower or faster than
the replenishment rate leads to either energy underutilization
or sensor failure, respectively [12]. Second, the spectrum
utilization by sensors in EHCRSNs has to adapt to the
dynamic activity of PUs over the licensed spectrum [13]. For
example, the spectrum occupation of cellular users is in the
range of seconds or minutes [14]. When sensors transmit
over the channels licensed to cellular users, the sensors may
have to frequently disrupt their transmission and vacate the
channels to avoid collisions with cellular users. Under these
highly stochastic and dynamic conditions, managing and
allocating resource for EHCRSNs becomes challenging.

To address the above challenges, we develop an aggregate
utility optimization framework to facilitate the design
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of an online algorithm that couples energy management
with spectrum access management as well as sensing and
transmission rate control for a single-hop EHCRSN. The
considered EHCRSN consists of a sink and a number of
sensors equipped with EH modules and CR transceivers. The
sensors harvest energy to sense data and transmit it to the
sink over the unoccupied licensed spectrum. The developed
framework is Lyapunov optimization-based, and captures the
dynamic and stochastic system of EHCRSN resources. Based
on the framework, an online algorithm is designed to achieve
a close-to-optimal time-average aggregate network utility,
which captures the data sensing efficiency of the network
[15], while ensuring protection of PUs and a deterministic
bound on the battery capacity of sensors. Summarily, the
main contributions of this work are as follows:

1) We propose a stochastic formulation of the network utility
optimization problem for the EHCRSN subject to the
stability of sensors’ data queues and PUs’ protection.
The proposed formulation accounts for the multiple
dynamic and stochastic processes, including the energy
consumption of data sensing and transmission, energy
harvesting, PU activity on each channel and collisions
with sensors, and channel fading.

2) We develop a framework to decompose the problem into
three deterministic subproblems: battery management,
sampling (i.e., sensing) rate control, and resource
(i.e., channel and data rate) allocation on the basis of
Lyapunov optimization. Under the developed framework,
we propose an online and low-complexity algorithm
which makes decisions at the beginning of each time
slot and does not require any priori knowledge of
the stochastic processes. Furthermore, we apply an
unbalanced matching method to assign channels to
sensors while considering the limited number of CR
transceivers mounted on the sink.

3) We analyze the performance of the proposed algorithm
in terms of PU protection and the stability of the sensors
data queues. Furthermore, we compute the required
battery capacity to support the operation of the proposed
algorithm, which depends on the energy consumption of
data sensing and transmission. The finding theoretically
provides the required capacity of sensors’ data buffer
and battery for a desired network utility.

The remainder of this paper is organized as follows.
Related works are reviewed in Section II. The network model
and problem formulation are presented in Section III. The
proposed framework is presented in Section IV. Section V
analyzes the stability and optimality of the proposed solution.
Simulation results are provided to evaluate the performance of
the proposed algorithm in Section VI. Section VII concludes
this paper and outlines future work.

II. RELATED WORKS

Utility-optimal energy management policy design for
EHWSNs has been widely addressed in the literature [16]–
[20]. In [18], Liu et al. design two algorithms to optimize
the network utility by exploiting convexity of the network

flow problem. The first algorithm computes the data sampling
rate and routing based on dual decomposition. To deal
with the fluctuations in the EH process, the other algorithm
maintains the battery at a target level. In [19], Zhang et al.
propose a distributed algorithm to schedule data sensing and
perform routing for EHWSNs with limited battery capacity.
Furthermore, the proposed algorithm mitigates the estimation
error of the EH process by adaptively scheduling the data
sensing and routing in each time slot. The authors of [20]
present two algorithms for balanced energy allocation of
sensors, and optimal data sensing and data transmission.
In [18], [19] and [20], the authors assume a priori perfect
knowledge of the harvesting process statistics. This may not
be practical due to the stochastic nature of EH processes.
Huang et al. design an online scheduling algorithm which
jointly considers the data routing, admission control and
energy management. The algorithm does not require priori
knowledge of the EH process and achieves close-to-optimal
utility for EHWSNs [17]. Based on the algorithm in [17],
Xu et al. investigate the utility-optimal data sensing and
transmission in EHWSNs with heterogeneous energy sources,
i.e., power grids and harvested energy [16]. Xu et al. also
study the trade-off between achieved network utility and cost
on energy from power grid.

Other works exploit the spectrum utilization and
performance improvement that CR technologies bring to
WSNs and focus on channel allocation for CRSNs [21]–[24].
In [22], Ozger et al. propose an event-driven clustering
protocol for event-to-sink communication coordination in
CRSNs. The proposed protocol considers the availability
of licensed spectrum in forming cluster, and minimizes the
energy consumption for event detection. In [23], Li et al.
investigate the cooperative spectrum sensing schedule for a
CRSN, in which sensors decide whether to join spectrum
sensing for energy conservation. An evolutionary game is
formulated to facilitate the decision of sensors according to
their utility history. The authors of [22] and [23], however,
do not account for possible collisions between the PUs
and SUs; they assume perfect knowledge of the spectrum
occupancy. As a result, if spectrum sensing false alarms and
detection errors are considered, these approaches cannot be
adopted. Unlike in [22] and [23], the authors of [21] and [24]
consider the imperfection of channel availability information
and design channel allocation algorithms that guarantee the
protection of PUs’ transmissions against collision. In [21],
Urgaonkar et al. develop an opportunistic channel accessing
policy for cognitive radio networks to maximize the network
throughput by taking the maximum collision constraint in to
account. In [24], Qin et al. optimize the delay and throughput
of multi-hop secondary networks in which the secondary
users are mounted with multiple CR transceivers.

The above-mentioned works either assume availability of
spectrum and neglect the spectrum-scarcity problem [16]–
[20], or do not consider energy management [21]–[24]. Thus,
they cannot fulfill the requirements of EHCRSNs. To fill this
research gap, this paper proposes a framework to capture the
dynamics of EH process and channel condition, and channel
sensing inaccuracy. Based on the framework, a low-complexity
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Figure 1. An illustration of EHCRSN that shows the coexistence of the
primary users and the sensor network.

algorithm is presented to jointly manage sensors’ energy and
allocate the channels for network utility optimization.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a single-hop EHCRSN ofN sensors forming
the setN = {1, 2, · · · , N} and operating over the time
slots t ∈ T = {0, 1, 2, · · · }. As shown in Fig. 1, the
EHCRSN coexists with PUs that have the privilege to access
licensed channels. The sensor collects data from an area of
interest and saves it in its data queue, then transmits it to
the sink over licensed channels. There areL transceivers
mounted on the sink such that the sink can supportL
concurrent data transmission overL different frequency bands
in each time slot. The availability information of the licensed
spectrum is acquired from a third-party system (TPS). The
TPS detects the PU activities by various existing spectrum-
sensing technologies, such as energy detection [25].

Throughout this paper, we use the following notations. For
a random variableX , the expected value is denoted byE[X ],
and its conditional expectation on eventA is denoted by
E[X |A]. The function[x]+ denotes non-negative values, i.e.,
max(x, 0).

A. Sampling Rate and Utility

In time slott, sensorn collects data at a sampling ratern(t),
which falls in the range:

0 ≤ rn(t) ≤ rmax, ∀n ∈ N , (1)

where rmax is the maximum sampling rate. The sampling
rate is associated with a utility functionU(rn(t)), which is
increasing, continuously differentiable and strictly concave in
rn(t) with a bounded first derivativeU ′(rn(t)) andU(0) = 0
[26]. The concavity of the utility function is based on the
observation that the marginal utility of the collected data
decreases as the amount of collected data increases in sensor
networks [19]. The upper bound of the first-order derivative
of U(rn(t)) is denoted byζmax and equalsU ′(0).

B. Channel Detection and Allocation Model

The licensed spectrum is divided intoK orthogonal
channels of equal bandwidth. The set of orthogonal channels

is denoted byK = {1, 2, · · · ,K} with cardinalityK = |K|.
Let S(t) = (S1(t), · · · , SK(t)) denote the channel availability
indicator with the interpretation thatSk(t) = 1 if channelk
is available, andSk(t) = 0 otherwise. We assume that the
PU activity on channelk evolves following an independent
and identical distribution (i.i.d.) across the time slots and
is uncorrelated with sensors’ activities [21]. The channel
unavailability rate which corresponds to the PU activity rate on
channelk is given byβk = limT→∞

1
T

∑T−1
t=0 (1−Sk(t)) ≤ 1.

The EHCRSN acquires the availability of channels
at the beginning of each time slot from the TPS.
Owing to detection errors of spectrum-sensing such
as false-alarms and misdetection [27], the channel
availability information is assumed to be imperfect.
Thus, the TPS provides channel access probability vector
Pr(t) = (Pr1(t), · · · , P rk(t), · · ·PrK(t)), where Prk(t)
denotes the probability that channelk is idle and hence
accessible in time slott [21]. Two factors impact the channel
access probability: the actual PU activity on channelk, i.e.,
Sk(t), and the accuracy of the spectrum-sensing techniques
[25]. The performance of spectrum sensing techniques highly
depends on the receiver signal-to-noise ratio (SNR) and the
detection parameters (e.g., detection threshold) [27]. These
conditions in thetth time slot are collectively denoted by
Θ(t). The channel access probabilityPrk(t) is the conditional
probability of the channel being available in time slott,
i.e., Prk(t) = Pr[Sk(t) = 1|Θ(t)] [21]. BecauseSk(t) = 1
indicates that the availability of channelk, with Sk(t) = 0
otherwise, the closer the value ofPr(t) is to that ofS(t),
the more accurate the channel availability information is. An
EHCRSN with accuratePr(t) is more efficient in utilizing
the licensed channels by avoiding collisions.

At the beginning of each time slot, the sink allocates
licensed channels to sensors based on the channel access
probability. LetJ(t) denote the channel allocation matrix of
elementsJn,k(t), ∀n ∈ N , k ∈ K; Jn,k(t) = 1 if channelk is
allocated to sensorn, and otherwise is 0. To avoid interference
among sensors, each channel can be allocated to one sensor
at most,

∑

n∈N

Jn,k(t) ≤ 1, ∀k ∈ K. (2)

Furthermore, each sensor can use at most one channel in each
time slot, so we have

∑

k∈K

Jn,k(t) ≤ 1, ∀n ∈ N . (3)

Because there areL transceivers mounted on the sink, the
sink can support at mostL concurrent data transmissions over
licensed channels in each time slot. This can be written as,

∑

n∈N

∑

k∈K

Jn,k(t) ≤ L. (4)

C. Collision Control Model

Due to the inaccuracy of channel availability and PU
activities, PUs and sensors may collide over the channels.
The EHCRSN may access the channel that is occupied by
PUs, and thus both data transmissions from PUs and sensors
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fail due to interference. We assume that the PU on channel
k can tolerate a time-average collision rate denoted byρk
[21]. For example,ρk = 1% implies that the PU on channel
k can tolerant at most1% of data loss. Recalling that the
PU on channelk is active with rateβk, the target tolerable
collision rate evaluates toβkρk. Define a collision indicator
Ck(t) ∈ {0, 1}. The collision indicator takes a value of 1 if
collision occurs and is 0 otherwise. A collision occurs when
an unavailable channel is allocated to one of the sensors, such
that Ck(t) = (1 − Sk(t))

∑

n∈N
Jn,k(t). The time-averaged

rate of collision between PUs and sensors on thekth channel
can be defined as

C̄k = lim
T→∞

1

t

T−1
∑

t=0

Ck(t), ∀k ∈ K.

C̄k should be less than the target tolerable collision rateβkρk,
i.e.,

C̄k ≤ βkρk, ∀k ∈ K. (5)

To keep track of collisions between sensors and PUs, we define
the virtual collision queueZk(t) for each channel and a vector
of virtual collision queues for all licensed channels,Z(t) =
(Z1(t), · · ·ZK(t)).

The collision queue occupancy varies following a single-
server system with the collision variableCk(t) as an input
process andρk1k(t) as a service process.1k(t) here is the
complement of the channel availability indicator1k(t) = 1−
Sk(t). The collision queue occupancyZk(t) evolves according
to [21]:

Zk(t+ 1) = [Zk(t)− ρk1k(t), 0]
+ + Ck(t), ∀k ∈ K, (6)

The collision queue is stable only if the time-average input rate
limt→∞

1
t

∑t−1
τ=0 Ck(τ) = ρkβk is less than the time-average

service ratelimt→∞ ρk
1
t

∑t−1
τ=0(1− Sk(τ)) = C̄k, i.e.,

lim
t→∞

1

t

t−1
∑

τ=0

Ck(τ) ≤ lim
t→∞

ρk
1

t

t−1
∑

τ=0

(1− Sk(τ)),

which is equivalent to the constraint (5). Therefore, stabilizing
the collision queue for each channel maintains the required PU
protection.

D. Energy Consumption Model

In each time slot, thenth sensor senses data with sampling
rate rn(t) from the area of interest and saves it in the data
queue. The energy consumption1 of data sensing is assumed
to be a linear function of the sampling ratern(t) [16] and
denoted byPSrn(t). If channelk is allocated to thenth sensor,
it transmits data to the sink with powerPT , ∀n ∈ N . Thus,
the total energy consumptionP total

n of the nth sensor in the
tth time slot is

P total
n (t) = PSrn(t) +

∑

k∈K

Jn,k(t)PT , ∀n ∈ N .

Because the sampling ratern(t) is bounded byrmax and at
most one channel can be allocated to a given sensor, i.e.,

1The time is measured in unit size, thus the implicit multiplication by 1
slot is omitted when converting between power and energy [16] [17].

∑

k∈K
Jn,k(t) ≤ 1, the energy consumption is bounded by

P total
n (t) ≤ PSrmax + PT . We usePmax = PSrmax + PT to

denote the upper bound of any sensor’s energy consumption
in a given time slot.

E. Energy Supply and Energy Queue Dynamics Model

Sensorn is equipped with a battery of limited capacity
Ωn, ∀n ∈ N . Because the battery capacity is the same for
all sensors, we omitted the subscriptn for simplicity. We
use En(t) to denote the energy queue length of sensorn.
In time slot t, sensorn harvests energyen(t) and consumes
energyP total

n (t). Thus, the energy queue of sensorn evolves
according to

En(t+ 1) = En(t)− P total
n (t) + en(t). (7)

In a given time slott, the total energy consumption of sensor
n must satisfy the following energy-availability constraint:

P total
n (t) ≤ En(t), ∀n ∈ N . (8)

The energy harvesting process is characterized by the energy
supply rateηn(t), which determines the amount of harvestable
energy of sensorn in time slott. The upper bound ofηn(t) is
denoted byηn ≤ ηmax, ∀n ∈ N , t ∈ T . Furthermore,ηn(t)
randomly varies in an i.i.d fashion over slots. Notably, the
exact distribution ofηn(t) is not required, which is practically
useful when knowledge of the EH process statistics is difficult
to obtain. The harvested energyen(t) is bounded byηn(t), i.e.,

0 ≤ en(t) ≤ ηn(t), ∀n ∈ N , (9)

The total energy stored in the battery is limited by the battery
capacity; thus, the following inequality must be satisfied in
each time slot,

En(t) + en(t) ≤ Ω, ∀n ∈ N . (10)

F. Data Transmission and Data Queue Dynamics Model

The amount of data that sensorn can transmit over channel
k is determined by two factors: the availability of channel
k, i.e., Sk(t), and the channel capacity denoted byλn,k(t).
Considering the time-varying nature of channel fading, we
assume thatλn,k(t) randomly varies over time slots in an i.i.d
fashion and is bounded byλn,k(t) ≤ λmax, ∀n ∈ N , k ∈ K
as in [17].

The data transmission of the sensor on channelk fails if
it collides with an active PU’s transmission on channelk,
i.e., Sk(t) = 0. Denotexn(t) as the data transmission rate
of sensorn in time slot t. If channelk is allocated to sensor
n, the data transmission ratexn(t) is bounded by

xn(t) ≤
∑

k∈K

Jn,k(t)Sk(t)λn,k(t), ∀n ∈ N . (11)

Let Qn(t) denote the data queue occupancy of sensorn
andQ(t) = (Q1(t), Q2(t), · · · , QN (t)) represent a vector of
length of data queues of all sensors. Note thatrn(t) is the
sampling rate, i.e., sensing rate, of sensorn in time slott, and
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the dynamics of the data queue can be expressed as:

Qn(t+ 1) = Qn(t)−
∑

k∈K

Jn,k(t)Sk(t)xn(t) + rn(t), (12)

where Jn,k(t)xn(t) captures the services process whereas
rn(t) models the input process. This single-server queuing
system is stable if the following network-stability constraint
is satisfied [28]:

lim
T→∞

1

T

T−1
∑

t=0

∑

n∈N

E[Qn(t)] < ∞. (13)

Constraint (13) implies that the data queues of all sensors have
finite time-average occupancy.

In a given time slot, thenth sensor can only transmit
the available data in its queue; hence, the following data
availability constraint must be satisfied in each time slot:

0 ≤ xn(t) ≤ Qn(t) ∀n ∈ N . (14)

G. Optimization Problem Formulation

Based on the aforementioned models, we formulate the
stochastic optimization problem. The objective is to maximize
the time-average aggregate network utility of EHCRSNs
subject to the constraints mentioned above. The time-average
aggregate network utility problem can be written as

Ō = lim
T→∞

1

T

T
∑

t=0

−E[O(t)], (15)

where O(t) =
∑

n∈N
U(rn(t)) denotes the network

utility in a time slot. To simplify the presentation, we
use r(t), x(t) and e(t) to denote the vectors of sampling
rate rn(t), data transmission ratexn(t), and harvested
energy en(t) in time slot t, respectively. Additionaly, let
Γ(t) , (r(t), e(t),x(t),J(t)) represent the set of these
variables in time slott.

The network utility can be maximized by optimizingΓ(t)
under the following utility maximization formulation,

(UMP) max
Γ(t)

Ō

s.t. Eqs.(1) to (14)

In the following section, we decomposeUMP into a series
of deterministic subproblems and relax the collision constraint
(5), network-stability constraint (13), and energy-availability
constraint (8) by employing Lyapunov optimization.

IV. PROPOSEDFRAMEWORK

With the above-described structure ofUMP, it is
challenging to design a low-complexity online algorithm
to optimize the aggregate network utility without a priori
knowledge of the energy harvesting, PU activity and channel
fading statistics. The proposed framework is developed on
the basis of Lyapunov optimization under which theUMP
problem is decomposed into three deterministic subproblems.
This approach facilitates achieving a close-to-optimal
aggregate network utility and stability, and does not require a
priori knowledge of the above-mentioned stochastic processes
statistics [28].

A. Lyapunov optimization

We define the network state in time slott as
H(t) , (Z(t),Q(t),E(t),Θ(t)) which captures the
occupancy of collision queue, data queue, and energy queue
and the conditions that affect the accuracy of channel
availability estimation. Define a Lyapunov function,L(t),
as the sum of squares of backlogs in the collision and data
queues, and the spare capacity in sensors’ batteries as follows:

L(t) =
1

2

∑

k∈K

(Zk(t))
2 +

1

2

∑

n∈N

(Qn(t))
2 +

1

2

∑

n∈N

(

−Ên(t)
)2

,

(16)

whereÊn(t) = Ω−En(t) denotes the spare capacity of thenth

sensor battery. The Lyapunov functionL(t) can be considered
a scalar measure of the congestion inZk(t) andQn(t), and
the capacity availability in sensors’ batteries. A small value
of L(t) indicates a low occupancy in the data and collision
queues, as well as low spare capacity in energy queuesEn(t),
i.e., the batteries; the converse is also true. Additionally, we
define the conditional Lyapunov drift as the one-slot difference
of the Lyapunov function conditional on the network state,
denoted by∆(t) = E[L(t+1)−L(t)|H(t)]. The expectation
is taken over the randomness of energy harvesting, PU activity
and channel fading, as well as the randomness in the energy
management and channel allocation actions.

By minimizing∆(t) in each time slot, the data queueQn(t)
and collision queueZk(t) are pushed towards zero to stabilize
the data queues and collision queues such that the network-
stability constraint (13) and tolerable collision constraint (5)
can be satisfied. Furthermore, the energy queuesEn(t) are
pushed towards their capacityΩ, such that sensors tend to
recharge their batteries through energy harvesting. By carefully
designing the value ofΩ, the energy queues are guaranteed
to have enough energy for data sensing and data transmission
such that the energy-availability constraint (8) can be satisfied.
The value ofΩ is determined in Theorem 2 in Section V. Thus,
constraints (5), (8) and (13) are satisfied.

At this point, the network utility to be maximized has not yet
been incorporated. Therefore, we include a weighted version
of the network utility into the Lyapunov drift, and instead
of minimizing ∆(t), we minimize the following drift-minus-
utility ∆V (t) function:

∆V (t) , E[∆(t) − V O(t)|H(t)], (17)

whereV is a non-negative importance weight that represents
how much we emphasize on utility maximization [28].
In other words, instead of greedily minimizing∆(t), we
minimize ∆V (t) to jointly stabilize the queues and optimize
the weighted network utilityV O(t). With a sufficiently large
value of V , a close-to-optimal aggregate network utility
can be achieved [29]. However, the data queues and energy
queues become longer with a larger value ofV , such that
longer data queue buffers and battery capacities are required
to support the EHCRSN. Thus, adjustingV allows a trade-off
between the reduction of queue length and optimization of
the network utility.

Considering that drift-minus-utility∆V (t) is a quadratic
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function of the queue lengths and variables inΓ(t), Lemma
1 derives the upper bound of∆V (t). The upper bound is a
linear function of the queue length and the variables inΓ(t),
which can be efficiently minimized.

Lemma 1. Given the variables inΓ(t), the value of∆V (t)
is upper-bounded by:

∆V (t) ≤ B + E[DV (t)|H(t)], (18)

where the value of constantB is independent ofV and can
be expressed as

B =
N

2

[

(λmax)
2 + (rmax)

2 + (Pmax)
2 + (ηmax)

2
]

+
1

2
[K +

∑

k∈K

(ρk)
2]

(19)

andDV (t) is given in Eq. (20).

Proof: See Appendix A.
Rather than minimizing the drift-minus-utility∆V (t)

function, we try to minimize its the upper bound, i.e., the
right-hand side (RHS) of Eq. (18). Furthermore, for a given
network condition H(t), only DV (t) is relevant to the
variables inΓ(t). Therefore, we minimizeDV (t) by solving
for the optimal sampling rater(t), harvested energye(t),
data transmission ratex(t), and channel allocationJ(t) in
each time slot.

B. Framework Structure

Exploiting the linear structure of Eq. (20),DV (t) can be
minimized after being decomposed it into three subproblems.
In particular, the three subproblems are: battery management
(BM ), sampling rate control (SRC), and channel and data rate
allocation (CDRA). Fig. 2 shows the three subproblems and
the data flows among them. In the following, we treat each of
the subproblems separately. The subproblemsBM and SRC
optimize the harvested energyen(t) and sampling ratern(t),
respectively. BothBM andSRC require local information only
available at the sensor, and they can be distributively solved at
each sensor. However,CDRA is centrally solved at the sink
because it requires information on the data queue occupancy
Q(t), energy queue occupancyE(t), and channel collision
queue occupancyZ(t) of all sensors. The sink gathers this
information at the beginning of each time slot via the common
control channel, as in [30]. In the following, each of the
subproblems is solved separately.

• Battery Management
Considering the first term on the RHS of (20) and the
relevant constraints (9) and (10), we have the following
optimization problem to solve foren(t)

(BM) min
en(t)

−Ên(t)en(t)

s.t.

{

en(t) ≤ ηn(t),

En(t) + en(t) ≤ Ω.

If the battery is not full, i.e.,En(t) < Ω and
Ên(t) > 0, the sensor should harvest as much
energy as possible. Hence, ifEn(t) < Ω, we have

BM

Distributed

SRC

Distributed

CDRA

Centralized

En(t)

ηn(t)

en(t)

Qn(t)

En(t)
rn(t)

E(t)

Q(t)

Z(t)

Pr(t)

J(t)

x(t)

Update

E(t+ 1)

Q(t+ 1)

Z(t+ 1)

Figure 2. A block diagram of the proposed framework showing the
subproblems and the parameters exchanged among them.

en(t) = min(Ω−En(t), ηn(t)); otherwise, seten(t) = 0.

• Sampling Rate Control
Considering the second term on the RHS of (20) with
constraint (1), we have the following optimization
problem to optimize the sampling ratern(t):

(SRC) min
rn(t)

rn(t)(Qn(t) + PSÊn(t)) − V U(rn(t))

s.t. 0 ≤ rn(t) ≤ rmax.

The utility functionU(rn(t)) is concave; thus, theSRC
problem is convex. Let the sampling rater∗n(t) be the
optimal solution to theSRC problem, based on the
convex optimization theory [31], we have:

r∗n(t) =

[

U ′−1

(

Qn(t) + PSÊn(t)

V

)]rmax

0

(21)

where [z]ba = min(max(z, a), b) and U ′−1(·) is the
inverse of the first derivative ofU(·).

• Channel and Data Rate Allocation
Considering the third term on the RHS of (20) with
constraints (2), (3), (4), (11) and (14), the problem of
interest is determining the channel allocation matrixJ(t)
and data transmission ratex(t), which can be written as
follows:

(CDRA) min
J(t),x(t)

∑

n∈N

∑

k∈K

Jn,k(t) [Zk(t)(1 − Prk(t))−

(Qn(t)xn(t)Prk(t)− PT Ên(t))
]

s.t. (2)(3)(4)(11)(14).

CDRA optimizes the data transmission ratex(t) and
channel allocationJ(t); the former is a continuous
variable and the latter is an integer variable which makes



0733-8716 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2016.2611960, IEEE
Journal on Selected Areas in Communications

7

DV (t) =
∑

n∈N

[

−Ên(t)en(t)
]

+
∑

n∈N

[

Qn(t)rn(t) + PSrn(t)Ên(t)− V U(rn(t))
]

+
∑

n∈N

∑

k∈K

Jn,k(t)
[

Zk(t)(1 − Prk(t))− (Qn(t)xn(t)Prk(t)− PT Ên(t))
] (20)

this subproblem a mixed integer problem. To facilitate
the design of a tractable resource allocation solution, we
transform CDRA into an integer problem by relaxing
the constraints related tox(t), i.e., constraints (11) and
(14). This is achieved over two steps. First, we adjust the
data queue length and modify the objective function of
CDRA; we refer to it hereafter as the modifiedCDRA
(m-CDRA). We show that the objective function ofm-
CDRA is minimized if sensors transmit data at full
capacity on their assigned channels. Second, we replace
the continuous variablexn(t) by the channel capacity
λn,k(t) in the objective function ofm-CDRA. Thus, we
can relax constraints (11) and (14) and transform them-
CDRA problem into a Channel Allocation(CA) problem,
which is a one-to-one matching problem. These steps are
detailed in the following:

1) Define the adjusted length of the data queue as

Q̂n(t) = [Qn(t)− λmax]
+. (22)

After replacing Qn(t) by Q̂n(t) in the objective
function of the CDRA problem, we rewrite the
objective function as

∑

n∈N

∑

k∈K

Jn,k(t)Mn,k(t), (23)

where Mn,k(t) = [Zk(t)(1 − Prk(t)) −
(Q̂n(t)xn(t)Prk(t) − PT Ên(t))]. Instead of solving
the originalCDRA, we solve the modifiedm-CDRA
with Eq. (23) as the objective function to find a
suboptimal solution for the originalCDRA.
Suppose thatJ∗(t) andx∗(t) are the optimal solutions
for the m-CDRA; in the following lemmas, we show
that a channelk is assigned to sensorn if and only
if it has a sufficient amount of data to transmit and it
transmits it at full channel capacity.

Lemma 2. For a channelk to be assigned to sensorn,
i.e.,

∑

k∈K
J∗
n,k(t) = 1, the following must be satisfied

Qn(t) > λmax. (24)

Proof: See Appendix B.

Lemma 3. If any channel is assigned to thenth

sensor in thetth time under the modifiedm-CDRA,
i.e.,

∑

k∈K
J∗
n,k(t) = 1, then we have

x∗
n(t) =

∑

k∈K

J∗
n,k(t)λn,k(t), (25)

otherwise,x∗
n(t) = 0.

Proof: See Appendix C.
2) Lemma 3 shows that the sensor must fully utilize

the assigned channel to optimally solvem-CDRA.
Therefore, we can replace the transmission ratexn(t)
by channel capacityλn,k(t) in Eq. (23) and, thus,
relax the channel capacity constraint (11) and data-
availability constraint (14). The modifiedm-CDRA is
transformed into aCA problem as follows:

(CA) min
J(t)

∑

n,k

Jn,k(t) [Zk(t)(1− Prk(t))−

(

Q̂n(t)λn,k(t)Prk(t)− PT Ên(t))
]

s.t. (2)(3)(4).

CA can be mapped to a one-to-one matching problem.
Furthermore, due to the limited number of transceivers
on the sink, i.e.,L ≤ K, a maximum ofL channels can
be allocated to sensors in a given time slot. Meanwhile,
if L < K, i.e., not all channels can be allocated to the
sensors,CA is an unbalanced matching problem, which
can be solved by the adaptive Hungarian algorithm
proposed in [32]. The complexity of the algorithm
increases linearly with the number of sensors.

C. Utility-optimal Resource Management and Allocation
Algorithm (UoRMA)

In this subsection, we present the UoRMA algorithm in
Algorithm 1. The UoRMA algorithm achieves the optimal
harvested energye∗(t), sampling rater∗(t), data transmission
ratex∗(t), and channel allocationJ∗(t) by solvingBM , SRC
and CDRA, respectively. Moreover, the occupancy of data
queuesQ(t), energy queuesE(t) and collision queuesZ(t)
are updated according to their respective queue dynamics.

Both the BM and SRC problems have closed-form
solutions, and can be distributively solved at each sensor.
Thus, their complexity is negligible. The complexity of
Algorithm 1 is dominated by solving theCA problem in step
8 with time complexity ofO(NKL + L2 log(min(N,K)))
[32]. Therefore, the complexity of UoRAM increases linearly
with the number of sensorsN . Notably, the complexity
of algorithms designed based on Markov Decision Process
(MDP) increases exponentially withN [33]. Comparing to
the MDP-based algorithms, UoRMA is more computationally
efficient in addition to being scalable for densely deployed
sensor networks.

V. PERFORMANCEANALYSIS

In this section, we analyze the stability and performance
of the proposed UoRMA algorithm. Theorem 1 proves the
stability of EHCRSNs operating under the UoRMA algorithm
by deriving upper bounds on the length of the data queues and
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Algorithm 1: Proposed UoRMA algoritm

Data: Z(t),Q(t),E(t),Pr(t), ηn(t), ∀n ∈ N ,
λn,k(t), ∀n ∈ N , ∀k ∈ K.

Result: r∗(t), e∗(t), x∗(t), J∗(t), Z(t+ 1), Q(t+ 1),
E(t+ 1).

/* Battery Management */
1 foreach n ∈ N do
2 if En(t) < Ω then
3 e∗n(t) = min(Ω− En(t), ηn(t));
4 else
5 e∗n(t) = 0;

/* Sampling Rate Control */
6 foreach n ∈ N do
7 Computer∗n(t) based on Eq. (21);

/* Channel and Data Rate Allocation */
8 SolveCA problem and setJ∗(t);
9 foreach n ∈ N do

10 if
∑

k∈K
J∗
n,k(t) == 1 then

11 x∗
n(t) =

∑

k∈K
J∗
n,k(t)λn,k(t);

12 else
13 x∗

n(t) = 0;

/* Update the queue lengths */
14 foreach n ∈ N do
15 ComputeQn(t+ 1) based on Eq. (12);
16 ComputeEn(t+ 1) based on Eq. (7);

17 foreachk ∈ K do
18 ComputeZk(t+ 1) based on Eq. (6);

collision queues. Then, we derive the required battery capacity
to support the operation of the EHCRSN in Theorem 2.
Theorem 3 evaluates the gap between the network’s aggregate
utility obtained by UoRMA and the optimal solution to
demonstrate the optimality of UoRMA.

A. Upper bounds on data queues and collision queues

We derive the upper bounds on the occupancies of queues
and collision queues in Theorem 1. The existence of the
bounds guarantees satisfying the data and collision queue
stability constraints (13) and (5).

Theorem 1. For a non-negative parameterV , Pk(t) ≤ 1 −
ε, ∀k, t, and an initialization of the collision queue and data
queue satisfying0 ≤ Zk(0) ≤ Zmax, ∀k ∈ K and 0 ≤
Qn(0) ≤ Qmax, ∀n ∈ N , where the upper bounds are given
by

Qmax = ζUV + rmax,

Zmax =
Qmaxλmax(1− ε)

ε
+ 1,

we have

0 ≤ Qn(t) ≤ Qmax, ∀n ∈ N , (26)

0 ≤ Zk(t) ≤ Zmax, ∀k ∈ K. (27)

Proof: See Appendix D.

As we can see from Eqs. (26) and (27), both the upper
bounds of data queues and collision queues increase linearly
with the weightV . Since a largerV can bring higher network
utility, the linear increase of upper bound on data queues
indicates that a longer data buffer is required at each sensor to
achieve better network performance. Furthermore, the increase
of upper bound on collision queues also indicates that the PUs
may experience more collisions from the EHCRSN. However,
the collision constraint (5) can still be satisfied due to the
existence of the upper bound on collision queues.

B. Required battery capacityΩ

In Theorem 2, we determine the required battery capacity
Ω in such a way that the sensor does not sense or transmit any
data if the available energy is less than the maximum energy
consumption of each sensor, i.e.,En(t) ≤ Pmax. Therefore,
the energy-availability constraint (8) becomes implicit.

Theorem 2. Under the proposed framework and with a battery
capacityΩ given by

Ω = max

(

V ζU
PS

+ Pmax,
Qmaxλmax

PT

+ Pmax

)

, ∀n ∈ N ,

(28)
sensorn does not sense data or is not allocated a channel,
i.e., rn(t) = 0 and

∑

k∈K
Jn,k(t) = 0, if the energy queue

length in a given time slot is less than the upper bound of the
sensor’s energy consumption, i.e.,En(t) < Pmax.

Proof: See Appendix E.
The required battery capacity in (28) is determined by both

the transmission powerPT and the sensing/processing power
PS because both data arrival and departure consume energy
in EHCRSNs.

C. Optimality of the UoRMA Algorithm

In Theorem 3, the optimality of the UoRMA algorithm is
analyzed.

Theorem 3. Suppose that the optimal network utility that can
be achieved by an exact and optimal algorithm isO∗ and
that the network utilityŌ achieved by the UoRMA algorithm
satisfies:

Ō ≥ O∗ −
B̃

V
(29)

whereB̃ = B +NK(λmax)
2.

Proof: See Appendix F.
If we do not transformCDRA to CA, then the gap between

the solution obtained by the proposed algorithm and the
optimal solution can be determined byB/V [28], whereB is
the constant defined in Lemma 1. Thus, the performance loss
caused by the transformation is shown iñB, which is larger
than B. However, by Theorem 3, we see that the UoRMA
algorithm can achieve an aggregate network utility within
O(1/V ) of the optimal utility without a priori knowledge of
the statistics of the stochastic processes such as channel fading,
PU activities, and energy harvesting.
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Figure 3. Network utility for the range ofV = [5, 20, 40, 60, 80, 100, 300,
500, 700, 1000, 1200].

VI. SIMULATION RESULTS

In this section, we provide simulation results to evaluate
the performance of the UoRMA algorithm in EHCRSNs. The
simulated EHCRSN is randomly deployed in a circular area
with a radius of 30 m and consists ofN = 15 sensors. The
sink hasL = 3 transceivers, and is located at the center of this
circular area. Similar to [17] and [16], we define a concave
utility function U(rn(t)) = log(1 + rn(t)), ∀n ∈ N and,
ζU = 1. The EHCRSN operates onK = 4 licensed channels.
The energy consumption rate of data sensingPS = 0.1, and
the maximum sampling ratermax = 5. The maximum energy
supply rate is set toηmax = 2, while the energy supply rate
ηn(t), ∀n ∈ N is uniformly distributed in[0, ηmax].

The PU on channelk, ∀k ∈ K, is inactive with probability
0.4 in each time slot. Given that PU on channelk is inactive
in time slot t, the channel access probabilityPrk(t) = 0.9;
otherwise,Prk(t) = 0.1, i.e., the misdetection and false alarm
probabilities are 0.1 [14]. The tolerable collision rateρk, ∀k ∈
K is set to 0.05 [21].

The channel capacityλn,k(t) = log(1 +
PThn,k(t)

d4
nN0

) where
dn denotes the distance between sensorn and the sink,
noise powerN0 = 10−5, and the transmission powerPT =
1. Furthermore, the channel fading coefficientshn,k(t) are
uniformly distributed between(0.9, 1.1) and i.i.d across time
slots; i.e., the values 0.9 and 1.1 model stable channel
conditions [16]. The upper bound of the channel capacity is
λmax = 2 [16]. The energy queue is initialized as in Eq. (28)
in time slott = 0, whereas the data queue and collision queue
are empty att = 0. The length of the simulation is set to
|T | = 2× 104.

A. Network Utility and Queue Dynamics

In Fig. 3, we evaluate the network utility versus the value of
V ranging from 5 to 1200. The figure shows that the network
utility increases with increase ofV . However, the rate at which
the network utility increases decreases with largerV . This is

expected because the network utility is a concave function
of V , as shown in Eq. (42). We take a large value ofV to
illustrate the optimal network utility (V = 107 in our setting).
We compare the network utility obtained byV ranging from 5
to 1200 to the network utility obtained byV = 107. As shown
in the figure, the increase of network utility fromV = 1200 to
V = 107 is quite limited in comparison to the increasing from
V = 5 to V = 1200. Therefore, the network utility achieved
whenV = 1200 is close to the value of the optimal network
utility.
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Figure 4. Data queue occupancy for different values ofV .

Fig. 4 shows the data queue occupancy over 20,000 slots
for different values ofV . The time-average lengths of data
queues increase with the value ofV . Furthermore, it can be
seen that the lengths of data queues converge quickly to the
time-average value. This is because the battery is fully charged
at t = 0, such that sensors can sense data att = 1.

Fig. 5 shows the collision queue occupancy for different
values ofV . Similar to the data queue dynamics shown in Fig.
4, the time-average lengths of the collision queues increase
with larger values ofV , and the lengths of the collision queues
fluctuate around a time-average value after the convergence.
When the collision queue is small, the UoRMA algorithm
tends to allocate the channel to sensors for data transmission.
If the allocated channel is actually occupied by PUs, the
collision queue increases back to the time-average value.
Therefore, the collision queue length affects the dynamics
of the queue’s fluctuation. In addition, sensors’ data queues
and energy queues lengths also affect the dynamics of the
fluctuation, because the UoRMA algorithm tends to allocate
channels to the sensors with long data queues and small spare
capacity in the energy queues.
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Figure 5. Collision queue occupancy for different values ofV .

B. Impact of Parameter Variations

In the following, we evaluate the impacts of various system
parameters on the network utility. Assuming all channels have
the same PU inactivity probability ranging from 0.5 to 0.9, we
first verify the network utility in Fig. 6. The figure shows that
the network utility increases with increase in the PU inactivity
probability. At the same time, the rate of increase in the
network utility decays with higher PU inactivity probability
due to the limited energy supply rate.
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Figure 6. Network utility versus PU inactivity probability.

Fig. 7 shows the network utility versus maximum available
energy supplyηmax ranging from 1 to 5. The network
utility monotonically increases with increasingηmax because
more energy can be used to sense and transmit data.
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Figure 7. Network utility versus maximal energy supplyηmax.

V = 100

V = 300

V = 500

Transmission PowerPT

N
et

w
or

k
U

til
ity

1 2 3 4 5 6 7 8 9 10
3.2

3.6

4.0

4.4

4.8

Figure 8. Network utility versus transmission powerPT .

However, similar to Fig. 6, the growth rate of the network
utility decays with higherηmax. This indicates that, given
sufficient energy supply, the network utility is bounded by
the channel availability which also limits the sensors’ chance
of transmitting data.

Fig. 8 shows the network utility versus transmission power
PT . As shown in the figure, there exists an optimal value of
PT that maximizes the network utility. In our simulations, the
optimal value ofPT is 4. If PT is smaller than this optimal
value, the available channels are underutilized which leads
to lower network utility. However, ifPT is larger than this
optimal value, sensors need more time to harvest energy for
data transmission, which also reduces the network utility.

Fig. 9 shows the network utility versus the number of
transceivers that are mounted on the sink,L. Since the sink
can support more concurrent data transmission with more
transceivers, the network utility increases withL whenL ≤ K,
i.e., number of transceivers is not larger than the number of
licensed channels.
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Figure 9. Network utility versus number of transceiversL.

VII. C ONCLUSION

In this paper, we have developed an aggregate network
utility optimization framework to facilitate the design of
an online and low-complexity algorithm for managing
and allocating the resources of EHCRSNs. The proposed
framework captures and optimizes stochastic energy harvesting
and consumption processes, as well as stochastic spectrum
utilization and access processes. We employ Lyapunov
optimization to decompose the problem into three sub-
problems that are easier to solve, battery management,
sampling rate control, and data rate and channel allocation.
The solutions proposed to solve the three problems constitute
the proposed utility-optimal resource management and
allocation (UoRMA) algorithm. The optimality gap and
bounds on data and energy queues are derived. The proposed
algorithm achieves a close-to-optimal aggregate network
utility while ensuring bounded energy and date queues.
Simulations verify the optimality and stability of EHCRSN
when operating under UoRMA algorithm. The outcomes
of this work can be used to guide the design of practical
EHCRSNs by guaranteeing PU protection and sensors
sustainability.

For future work, we plan to investigate stochastic energy
management and channel allocation for EHCRSNs to collect
delay-sensitive data. In addition, the adaptive transmission
power of sensors will be considered.
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APPENDIX A
PROOF OFLEMMA 1

By squaring both sides of Eq. (6), we have Eq. (30).
Similarly, we have Eq. (31) from Eq. (12), and Eq. (32)
from Eq. (7), respectively. SubstitutingE[Ck(t)|Θ(t)] =
∑

k∈K
Jn,k(t)Prk(t) and E[1 − Sk(t)|Θ(t)] = 1 − Prk(t)

into Eq. (31) and rearranging the equation, we have Eq. (20).

1

2

[

(Zk(t+ 1))2 − (Zk(t))
2
]

≤

[

(Ck(t))
2 + (ρk1k)

2 + 2Zk(t)(Ck(t)− ρk1k)
]

2

≤
1 + (ρk)

2

2
+ Zk(t)(Ck(t)− ρk1k).

(30)

1

2

[

(Qn(t+ 1))2 − (Qn(t))
2
]

≤
1

2

[(

∑

k∈K

Jn,k(t)xn(t)Sk(t)

)

2

+ (rn(t))
2 + 2Qn(t)

(

rn(t)−
∑

k∈K

Jn,k(t)xn(t)Sk(t)

)]

≤
(λmax)

2 + (rmax)
2

2
+Qn(t)

(

rn(t)−
∑

k∈K

Jn,k(t)xn(t)Sk(t)

)

(31)

1

2

[

(En(t+ 1)− Ω)2 − (En(t)− Ω)2
]

≤

[

(P total
n (t))2 + (en(t))

2
− 2Ên(t)

(

en(t)− P total
n (t)

)

]

2

≤
(Pmax)

2 + (ηmax)
2

2
− 2Ên(t)

(

en(t)− P
total
n (t)

)

(32)

APPENDIX B
PROOF OFLEMMA 2

First, we prove that if there is any channel assigned to
sensorn, its adjusted queue lengtĥQn(t) > 0. Suppose that
channelk is assigned to sensorn, i.e., J∗

n,k(t) = 1, it is
obvious thatMn,k(t) = Zk(t)(1 − Prk(t)) + PT Ên(t) −
Q̂n(t)xn(t)Prk(t) < 0. Since Zk(t)(1 − Prk(t)) ≥ 0,
PT Ên(t) ≥ 0, andxn(t)Prk(t) ≥ 0, the adjusted data queue
length becomes larger than zero, i.e.,Q̂n(t) > 0.

Then, we prove that ifQ̂n(t) > 0, then the queue length
Qn(t) > λmax. Recalling that Q̂n(t) = max(Qn(t) −
λmax, 0), Q̂n(t) > 0 implies thatQn(t)− λmax > 0, i.e., the
data queue lengthQn(t) is larger than the maximum channel
capacityλmax.

APPENDIX C
PROOF OFLEMMA 3

We first consider the condition that sensorn is not assigned
with any channel, thusJn,k = 0, ∀k ∈ K. According to
constraint (11) andxn(t) ≥ 0, we havex∗

n(t) = 0.
Next, we prove thatx∗

n(t) =
∑

k∈K
J∗
n,k(t)λn,k(t) is the

optimal solution for the condition that
∑

k∈K
J∗
n,k(t) = 1.

We usekn to denote the channel assignment to sensorn, i.e.,
J∗
n,kn

= 1. SinceMn,kn
is inversely correlated with the value

of xn(t), the value ofxn(t) should be as large as possible to
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minimizeMn,kn
. The value ofxn(t) is bounded by constraints

(11) and (14), i.e., the channel capacity and data queue length
Qn(t). According to Lemma 2, we can see that the data queue
length Qn(t) must exceed the maximum channel capacity
(Qn(t) ≥ λmax) if

∑

k∈K
J∗
n,k(t) = 1. Therefore,xn(t) is

only bounded by channel capacity constraint in (11). Then we
have the optimalxn(t) to bex∗

n(t) = λn,kn
(t).

APPENDIX D
PROOF OFTHEOREM 1

At t = 0, Eq. (26) holds. In the following, we prove Eq.
(26) by inductions. We first assume that Eq. (26) holds in time
slot t, and then prove that it holds int+ 1.

1) If sensorn does not sense any data, then we haveQn(t+
1) ≤ Qn(t) ≤ ζUV + rmax;

2) If sensor n collects data with sampling rate
r∗n(t), given in Eq. (21), then we have
V U ′(r∗n(t)) = Qn(t) − PS(En(t) − Ω) and
Qn(t) ≤ V U ′(r∗n(t)). SinceU ′(r∗n(t)) ≤ ζU , ∀rn(t)
where ζU denotes the upper bound of the first-
order derivative of U(rn(t)), ∀rn(t), we have
Qn(t) ≤ V ζU . Furthermore, sincer∗n(t) ≤ rmax,
we haveQn(t+ 1) ≤ Qn(t) + rmax ≤ V ζU + rmax.

Summarily, we haveQn(t+1) ≤ V ζU+rmax. This completes
the proof of Eq. (26).

Then we prove Eq. (27) by inductions. Att = 0, the
collision queue is initialized as an empty queue. We prove
that if Eq. (27) holds in time slott, it will hold in t+ 1.

1) If Pk(t) = 1, then no collision can happen, such that
Zk(t+ 1) ≤ Zk(t) ≤ Zmax.

2) If Pk(t) ≤ 1 − ε, andZk(t) ≤ Zmax − 1, then we have
Zk(t+ 1) ≤ Zk(t) + 1 ≤ Zmax.

3) If Pk(t) ≤ 1 − ε, and Zk(t) > Zmax − 1,
then we have Zk(t)(1 − Prk(t)) − PT (En(t) −
Ω) − Qn(t)xn(t)Prk(t)) ≥ 0, so channelk can
not be allocated to any sensor in problemCA.
This would yield Ck(t) = 0. Therefore, we have
Zk(t+ 1) ≤ Zk(t) ≤ Zmax.

Summarily, we haveZk(t + 1) ≤ Zmax. This completes the
proof of Eq. (27).

APPENDIX E
PROOF OFTHEOREM 2

We first derive an expression forΩ in such a way that sensor
n does not sense data, i.e.,rn(t) = 0 if En(t) < Pmax.
The sampling ratern(t) is determined by Eq. (21). The
utility function U(rn(t)) is concave; therefore,U ′−1(rn(t))
andrn(t) are inversely proportional. Based on Eq. (21), sensor
n does not sense any data, i.e., the sampling rate isrn(t) = 0,
if

Qn(t) + PSÊn(t)

V
≥ ζU ≥ U ′(0). (33)

Recall thatÊn(t) = Ω − En(t) and rearrange Eq. (33) to
Ω ≥ V ζU

PS
+ En(t). To satisfy that the sensor cannot sense

any data whenEn(t) < Pmax, Ω can be set as followsΩ ≥
V ζU
PS

+ Pmax.

Then we derive the value ofΩ in such a way that no
channel can be allocated to sensorn, i.e.,

∑

k∈K
Jn,k(t) = 0,

if En(t) < Pmax. As we can see from the objective function
of CA, no channel can be allocated ton if

Zk(t)(1 − Prk(t)) + PT Ên(t)− Q̂n(t)λn,k(t)Prk(t) ≥ 0.
(34)

Rearrange equation (34) to

Ω ≥
Q̂n(t)λn,k(t)Prk(t)− Zk(t)(1 − Prk(t))

PT

+ En(t).

(35)
SincePrk ≤ 1, Q̂n(t) ≤ Qmax, Zk(t) ≥ 0 andλn,k(t) ≤

λmax, we can change the RHS of Eq. (35) toQmaxλmax/PT+
En(t). To guarantee that no channel can be allocated to sensor
n if En(t) < Pmax, Ω can be set toΩ ≥ Qmaxλmax

PT
+ Pmax.

Theorem 2 is thus proved.

APPENDIX F
PROOF OFTHEOREM 3

We prove the theorem by comparing the Lyapunov drift
with a stationary and randomized algorithm denoted byΠ. We
introduce superscriptΠ to variablesrΠ(t), eΠ(t), JΠ(t), and
P total,Π
n (t) to indicate that these variables are generated under

algorithmΠ. Since all of the PU activities, channel condition,
and EH process change in i.i.d manners across the time slots,
according to Theorem 4.5 in [28], algorithmΠ can yield

E

[

∑

n∈N

U(rΠn (t))

]

≤ O∗ + δ, (36)

∣

∣

∣

∣

∣

E

[

∑

k∈K

(

CΠ
k (t)− ρk(1− Sk(t))

)

]∣

∣

∣

∣

∣

≤ ̺1δ, (37)

∣

∣

∣

∣

∣

E

[

∑

n∈N

(

rn(t)−
∑

k∈K

JΠ
n,k(t)xn(t)Sk(t)

)]
∣

∣

∣

∣

∣

≤ ̺2δ, (38)

∣

∣

∣

∣

∣

E

[

∑

n∈N

(

eΠn (t)− P total,Π
n (t)

)

]
∣

∣

∣

∣

∣

≤ ̺3δ, (39)

whereδ > 0 can be arbitrarily small, and̺1, ̺2 and̺3 are
constant scalars.

In each time slot, the UoRAM algorithm minimizes the right
hand side of the Lyapunov drift in Eq. (40)

The proof of Eq. (40) can be obtained by Theorem 2 in [17].
Note that∆(t)−V E[

∑

n∈N
U(rn(t))] ≤ B̃+E[D̃V (t)|H(t)],

whereB̃ = B+NK(λmax)
2 is a constant w.r.t. the variables,

we can have the following inequality:

∆(t)− V E

[

∑

n∈N

U(rn(t))

]

≤B̃ + E

[

D̃UoRMA
V (t)|H(t)

]

≤B̃ + E[D̃Π
V (t)]

≤B̃ + (̺1 + ̺2 + ̺3)δ +O∗ + δ,

(41)

where D̃UoRMA
V (t) and D̃Π

V (t) denote the value of̃DV (t)
obtained under UoRMA algorithm and algorithmΠ,
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D̃V (t) =
∑

k∈K

Zk(t) (Ck(t)− ρk(1− Sk(t)))−
∑

n∈N

Ên(t)
(

en(t)− P total,Π
n (t)

)

−
∑

n∈N

(V U(rn(t))−Qn(t)rn(t))−
∑

n∈N

∑

k∈K

Jn,k(t)xn(t)Sk(t)Q̂n(t),
(40)

respectively. By settingδ to zero, we can have

∆(t)− V E

[

∑

n∈N

U(rn(t))

]

≤ O∗ + B̃. (42)

Taking the expectation on both sides of (42), summing up the
equations fort ∈ T , dividing by T and lettingT → ∞, we
haveŌ ≥ O∗ − B̃/V . Theorem 2 is thus proved.
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