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Abstract— For industrial wireless sensor networks, it is
essential to reliably sense and deliver the environmental data on
time to avoid system malfunction. While energy harvesting is a
promising technique to extend the lifetime of sensor nodes, it also
brings new challenges for system reliability due to the stochastic
nature of the harvested energy. In this paper, we investigate the
optimal energy management policy to minimize the weighted
packet loss rate under the delay constraint, where the packet
loss rate considers the lost packets, both during the sensing and
delivering processes. We show that the above-mentioned energy
management problem can be modeled as an infinite horizon
average reward constraint Markov decision problem. In order
to address the well-known curse of dimensionality problem and
facilitate distributed implementation, we use the linear value
approximation technique. Moreover, we apply stochastic online
learning with a post-decision state to deal with the lack of the
knowledge of the underlying stochastic processes. A distributed
energy allocation algorithm with a water-filling structure and
a scheduling algorithm by an auction mechanism are obtained.
Experimental results show that the proposed algorithm achieves
nearly the same performance as the optimal offline value iteration
algorithm while requiring much less computation complexity and
signaling overhead, and outperforms various existing baseline
algorithms.

Index Terms— IWSN, energy harvesting, reliability, MDP,
online stochastic learning.

I. INTRODUCTION

INDUSTRIAL wireless sensor networks (IWSNs) are the
integration of wireless sensor networks (WSNs) and

industrial systems, in which wireless sensor nodes are installed
on industrial equipments to monitor their conditions or
efficiency through various parameters, such as vibration,
temperature, pressure, and power quality [1]. These data
are then transmitted over the air to a sink node, which
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is connected to a control system, for further analysis [2].
Based on the analysis result from the sink node, the control
system can control actuators in a machine or alert users.
Due to the collaborative intelligence and low-cost nature of
IWSNs, they are widely adopted in industrial applications
to achieve flexibility, self-configuration, rapid deployment,
intelligent controlling, and an inherent intelligent processing
capability.

Recently, energy harvesting (EH) has emerged as a
promising technique to extend the lifetime of sensor nodes
with rechargeable batteries by harvesting the available ambient
energy (e.g., solar, motion, heat, aeolian etc.), especially
when battery replacement is difficult or cost-prohibitive [3].
In energy harvesting industrial wireless sensor net-
works (EH-IWSNs), energy conservation is no longer the
prime design issue since the sensor nodes can theoretically
operate over an unlimited time horizon with the renewable
energy. However, achieving high reliability in EH-IWSNs is
a challenging technical issue due to the uncontrollable and
unstable nature of the harvested energy arrival. Therefore,
the energy management strategy for an EH-IWSN needs to
take into account the energy replenishment process, so that
the long-term reliability performance of the overall system
in regard to sensing and data communication tasks can be
maximized by taking full advantage of the EH process and
simultaneously avoid premature energy depletion before the
next recharge cycle.

In general, the reliability of EH-IWSN systems is essential
for many industrial applications, which means that data
received at the sink node (the control center) must accurately
reflect what is actually occurring in the industrial environment.
The reliability of EH-IWSN systems depends on both the
sensing process and transmission process, which means that
the environmental data should be reliably captured by the
sensor nodes and the sensed data should be reliably transmitted
to the sink. Energy management is a promising approach to
deal with this technical challenge. Consider an EH-IWSN
with a finite data buffer and a finite battery energy buffer
for each energy harvesting sensor (EHS) node. If the EHS
node reserves an excessive amount of energy for sensing and
leaves an insufficient amount of energy for transmission, the
newly sensed data may be dropped by the data buffer due
to its limited capacity. On the other hand, if an excessive
amount of energy is consumed for transmission, there may
not be enough sensing power left to capture the environmental
data. In addition, if the energy allocation at the current
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decision epoch is overly aggressive, the EHS node may stop
functioning at the next decision epoch because of the energy
outage. Besides, since sensor data is typically time-sensitive,
e.g., alarm notifications for the industrial facilities, it is also
important to receive the data at the sink in a timely manner.
Delayed, incorrectly received or lost data may cause industrial
applications to malfunction, and lead to wrong decisions in the
monitoring system [4].

In this paper, we consider an IWSN where a fusion
center (FC) collects data from multiple EHS nodes with
slot-by-slot transmission. Each sensor node has an energy
buffer and a data buffer with finite size. A random number
of packets from the industrial environment should be sensed
at each EHS node during each time slot. Moreover, the
scheduled sensor node along with the allocated energy for
data transmission need to be determined by taking into
account the battery energy state information (BSI), queue
state information (QSI), and channel state information (CSI)
at the beginning of the time slot. The remaining energy
in the battery can be used to sense the packets throughout
the time slot. Ideally, the EHS nodes should sense all these
packets and transmit them to the FC without any loss or error
within the delay constraint. However, packets may be lost
during data sensing (due to limited sensing power), and data
communication (due to both the effect of queuing overflow
in the Medium Access Control (MAC) layer, and the packet
reception error in the physical layer). Our objective is to
minimize the weighted packet loss rate in the system under
per-node delay constraints, where the weight of the packet loss
rate of every EHS node is used to model the different reliability
requirements of different sensors. In other words, we aim at
maximizing the system reliability while guaranteeing real-time
transmission.

Specifically, we formulate the reliability optimal energy
management problem in EH-IWSNs and solve it by casting
it into an infinite horizon average reward constrained Markov
Decision Process (CMDP). The main contributions of this
paper lie in the following aspects.

1) Reliability modeling: Packet loss rate is widely used
in WSNs to quantify system reliability, where most
previous work focuses on reliable data transmission
under wireless channel errors [5]. Different from these
works, the main contribution of our reliability model
lies in that the reliability of data sensing and data
communication subsystems are jointly considered.

2) Low complexity distributed control with local system
state: Markov Decision Process (MDP) is a systematic
approach in dealing with the dynamic optimization
problem, to which the resource control problem in
EH-WSNs belongs due to the dynamic energy arrival
and time-varying wireless channel. However, although
the MDP method is widely adopted in point-to-point
wireless communication scenario [6], [7], [9]–[12], it
is generally not used in existing literature considering
multiple nodes in EH-WSN due to the curse of
dimensionality that forbids its practical implemen-
tation [13]–[20]. The first contribution related to the
solution of the MDP model lies in that in order to deal

with the curse of dimensionality problem, we derive an
equivalent Bellman’s equation with reduced state space
and approximate the global value functions by a sum
of per-node value functions, which can be distributively
maintained at every EHS node. Therefore, our proposed
energy allocation action can be locally determined by
an EHS node based on its local state observation using
a simple formula with multilevel water-filling structure.
Moreover, the scheduling action is determined by an
auction mechanism, where each EHS node computes
and sends its bid to the FC. In this way, the signaling
overhead is greatly reduced compared to a centralized
solution, where the sensor nodes have to send their QSI
and BSI to the FC.

3) No information requirement about the underlying
stochastic processes: Due to the harsh radio propagation
environment in IWSNs and the unpredictable nature of
the EH and packet arrival rate, an explicit knowledge
of the probability distributions of the underlying
stochastic processes may not be available to the FC
and EHS nodes [19]. Moreover, information about the
packet/energy arrival amounts are only available at the
end of every time slot since they are being generated
throughout the period. The second contribution related
to the solution of the MDP model lies in that
we utilize post-decision state and stochastic online
learning framework so that our proposed algorithm does
not require the above information of the underlying
stochastic processes.

The remainder of the paper is organized as follows. The
related works are reviewed in Section II. In Section III, we
introduce our system model. In Section IV, we elaborate
the MDP problem formulation and derive the low-complexity
near-optimal control policy in Section V. We discuss the
performance simulations in Section VI. Finally, we summarize
the main results and discuss our future work in Section VII.

II. RELATED WORK

In recent years, WSNs with EHS nodes have attracted a lot
of attention. There are intense research efforts in the design
of optimal energy management policies for a single EHS
node, e.g., [6]–[11]. In [6], a joint duty-cycle optimization
and transmission power control approach is proposed to
maximize the number of transmitted packets while respecting
the limited and time-varying amount of available energy.
In [7], the throughput optimal (in the sense of stability)
and delay optimal energy management policies are derived
assuming the data buffer and energy storage buffer are
both infinite. In [8], online transmission policies with the
objective of maximizing the deadline constrained throughput
under channel fluctuations and energy variations are studied
assuming a finite energy queue but an infinite data queue.
In [9], a learning theoretic optimization approach to maximize
the expected total transmitted data during the transmitter’s
activation time is studied, which assumes that the rechargeable
battery has a finite-capacity, and a data packet arrives at the
beginning of a time slot is lost if not transmitted within the
following time slot. Reference [10] addresses the problem
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of energy management for energy-replenishing nodes with
finite battery and finite data buffer capacities, and gives an
energy management scheme that achieves the optimal utility
asymptotically while keeping both the battery discharge and
packet loss probabilities low. [11] studies the energy allocation
problem for sensing and transmission in an energy harvesting
sensor node, which takes into account both the data sensing
energy consumption and the finite capacity of the data buffer.

Compared with the vast literature on single node scenario,
the problem of analyzing and modeling the interaction among
multiple EH nodes at the MAC layer in a network has
received limited attention so far. Reference [13] considers
a single-hop TDMA wireless network where a FC collects
data from multiple EHS nodes with infinite battery size, and
find a low complexity scheduling policy that maximizes the
total throughput of the data backlogged system under the
assumption that unit energy is consumed for the transmission
of one packet. The authors in [14] discuss the extension of their
proposed energy management policies to multiple EHS nodes
scenario. The joint power control, routing and scheduling
protocols are proposed in [15] for multihop sensor networks.
In [16], the problem of optimizing the transmission strategy
of the two nodes over a shared wireless channel by a central
controller is considered, with the goal of maximizing the
long-term average importance of the transmitted data. In [17],
distributed routing, rate control and scheduling algorithm for
energy-harvesting sensor networks is considered using the
dual decomposition and subgradient method. All the above
researches [13], [15]–[17] consider there are infinite backlogs
of packets at the transmitter and do not consider the delay
constraint of the transmitted packet. On the other hand,
references [18] and [19] consider the dynamic data arrival and
use the Lyapunov drift and optimization framework to develop
throughput-optimal (in stability sense) resource allocation
algorithm for wireless networks operating with rechargeable
batteries. However, the data buffer is assumed to be infinite
in [18] and [19], and real-time transmission requirement and
sensing power are not considered. When dealing with the
multiple EHS nodes scenario, MDP is generally not used due
to its curse of dimensionality problem. In [21], a delay-optimal
base station discontinuous transmission (BS-DTX) control
and user scheduling for downlink coordinated multiple-input
and multiple-output (MIMO) systems with energy harvesting
capability is studied using MDP method.

The above approaches cannot be directly applied to the
IWSNs, since they do not consider the reliability and real-time
requirements which are vital for many industrial applications.
In [4], a novel routing protocol for IWSNs which provides
real-time, reliable delivery of a packet, while considering
energy awareness is proposed. In [22], an opportunistic routing
algorithm to minimize energy consumption and maximize
network lifetime of WSN is proposed. However, they only
consider non-rechargeable batteries and without considering
the MAC layer mechanisms.

III. SYSTEM MODEL

We consider a single-hop IWSN where a FC collects data
from N EHS nodes, as illustrated in Fig.1. The EHS nodes

Fig. 1. A single-hop IWSN where a FC collects data from N EHS nodes.

perform sensing tasks and generate packets to be transmitted
to the FC. The IWSN operates in a TDMA fashion over time
slots of equal duration τ . In each time slot, the FC schedules
one EHS node for data transmission. The EHS node has a
rechargeable battery with capacity Bmax energy units and a
data buffer with size Qmax packets, where all packets have
fixed length of K bits. Each EHS node collects energy from
the environment, which is stored in the rechargeable battery
for sensing and data transmission. In addition, each EHS node
performs sensing in the field, stores the sensed data in the data
buffer, and transmits the data to the FC over a wireless channel
when scheduled.

We consider an additive white Gaussian noise (AWGN)
channel with flat fading, which is modeled as a first-order
Finite State Markov Chain (FSMC) [23], [24]. Define the CSI
of EHS node n ∈ {1, . . . , N} to be Hn,t ∈ H, t = 0, 1, 2, . . .,
which takes a value from the discrete state space H and
denotes the channel gain of EHS node n at time slot t . The
CSI remains constant within a time slot and the CSI at time
slot t only depends on the CSI at time slot t − 1. We assume
that the EHS node n knows its local CSI Hn,t at the beginning
of time slot t . Due to its high spectral efficiency, we consider
the multi-level quadrature amplitude modulation (M-QAM)
is used for adaptive modulation. Consider the scheduled EHS
node at time slot t , if the allocated transmission energy is pT

n,t ,
then the average instantaneous transmission power is pT

n,t/τ .
Given a target bit error rate (BER) εn , the EHS node is
able to transmit r(Hn,t , pT

n,t ) packets during time slot t as
approximated by

r(Hn,t , pT
n,t ) = τW

K
log2(1 + ξn

Hn,t pT
n,t

N0Wτ
), (1)

where N0 is the power spectral density of the Gaussian noise
and W is the bandwidth of the channel. ξn = − c2

ln(εn/c1)
with

c1 ≈ 0.2 and c2 ≈ 1.5 for small BER [25].
Define the QSI of EHS node n ∈ {1, . . . , N} to be Qn,t ,

which denotes the number of packets stored at the data buffer
of EHS node n at the beginning of the time slot t . Define
the BSI of EHS node n ∈ {1, . . . , N} to be Bn,t , where Bn,t

denotes the number of harvested energy units of EHS node n
at the beginning of time slot t . Denote the number of packets
that arrive at EHS node n (a packet “arrives at EHS node n”
means that the packet needs to be sensed by EHS node n,
but have not been sensed yet) during time slot t as An,t .
We consider An,t is i.i.d. over time slots and independent w.r.t.
n according to a general distribution fA with average arrival
rate E[An] = λA

n , and the statistical characteristics of An,t is
unknown to the EHS node n. Moreover, we consider the units
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of energy needed to sense An packets is An/γ ,1 where γ is the
data sensing efficiency parameter (i.e., the number of packets
that the sensor can sense per unit energy) [26]. Since at the
beginning of time slot t , pT

n,t units of energy is allocated
for data transmission, the available units of energy left for
sensing during the whole time slot t is Bn − pT

n,t , and the
actual number of packets that are sensed during time slot t is
min[An,t , γ (Bn − pT

n,t )], which can only be observed by the
EHS node n at the end of time slot t . The packets obtained by
sensing at time slot t will be queued up in the data buffer until
they are transmitted in the subsequent time slots. If the queue
length reached the buffer size Qmax, the subsequent sensed
packets will be dropped. According to the above assumption,
the queuing process evolves as follows:

Qn,t+1 = min[Qmax, max[0, Qn,t − r(Hn,t , pT
n,t )]

+ min[An,t , γ (Bn − pT
n,t)]]. (2)

Define the harvested energy arrival of EHS node
n ∈ {1, . . . , N} to be {En,t }t=0,1,..., which is considered to
be i.i.d over scheduling slots and independent w.r.t. EHS node
n according to a general distribution fE with average arrival
rate E[En] = λE

n , and the statistical characteristics of En,t is
unknown to the EHS node n. During the whole time slot t ,
the EHS node n is able to recharge energy by En,t , which can
be used for sensing or transmission in time slot t + 1 onward.
As a result, the EHS node does not know the value of En,t until
the end of time slot t . During time slot t , on the one hand, the
EHS node harvests En,t units of energy from the environment.
On the other hand, it consumes pT

n,t units of energy for data
transmission and min[An,t/γ, Bn,t − pT

n,t ] units of energy for
sensing. Since the rechargeable battery has a finite capacity
Bmax, the energy stored in the battery is updated as follows:

Bn,t+1 = min
[

Bmax, max[0, Bn,t − pT
n,t − An,t/γ ] + En,t

]
.

(3)

IV. PROBLEM FORMULATION

In this section, we shall formulate the problem of
minimizing the weighted packet loss rate under the delay
constraint using infinite-horizon average reward CMDP model,
which consists of four elements: states, actions, state transition
probabilities, and rewards.

The global system state at time slot t can be characterized
by the aggregation of the system CSI, QSI and BSI, which
are denoted as St = (Ht , Qt , Bt ), where Ht = {Hn,t}N

n=1,
Qt = {Qn,t }N

n=1, and Bt = {Bn,t }N
n=1. Ht , Qt and Bt take

discrete values and are all bounded. Let S = H × Q × B be
the full system state space, which is discrete and countable.

At each time slot t , based on the current state St , an
action at = {xt , pT

t } is taken from the set of allowable
actions in the action space A, which is discrete and finite.
The action is composed of scheduling action xt := {xn,t ∈
{0, 1}|∑N

n=1 xn,t ≤ 1}N
n=1, as well as transmission energy

1In general, the amount of data generated ν(p) is a monotonically
non-decreasing and concave function in the units of energy p used for sensing.
In this paper, we consider that ν(p) is a linear function of p, although our
method is applicable to other forms of ν(p) as well.

allocation action pT
t := {pT

n,t |0 ≤ pT
n,t ≤ Bn,t }N

n=1. Note
that the transmission energy allocation and scheduling action
are correlated, since pT

n,t = 0 if xn,t = 0 and pT
n,t > 0 if

xn,t = 1, i.e., xn,t = I{pT
n,t > 0}, ∀n = 1, . . . , N . A control

policy prescribes a procedure for action selection in each state
at all decision epoches t . To facilitate implementation, we
consider stationary Markovian deterministic control policies.
A deterministic Markovian control policy given by � is a
mapping S → A from the state space to the action space,
which is given by �(S) = a ∈ A, ∀S ∈ S. Such a policy is
said to be Markovian because it depends on previous systems
and actions only through the current state of the system.
Stationary policies are fundamental to the theory of infinite
horizon Markov decision processes, in which the mapping
function � does not change with time.

The induced random process can be represented by the
discrete-time Markov chain (DTMC) {St }t=0,1,.... Given a
system state St and an action at at time slot t , the state
transition probability of the DTMC is given by

Pr.{St+1|St , at } = Pr.{Ht+1|Ht}Pr.{Qt+1|Ht , Qt , Bt , at }
Pr.{Bt+1|Bt , at }, (4)

where Pr.{Qt+1|Ht , Qt , Bt , at } and Pr.{Bt+1|Bt , at } can be
derived from (2) and (3), respectively.

Given a deterministic control policy �, since the action at

under every system state St is determined, we can directly
derive Pr.{St+1|St ,�(St )}. Define the transition probability
matrix P� = [Pr.{St+1 = S′|St = S,�(S)}], S, S′ ∈ S and
the steady-state probability matrix π� = [π�

S ], S ∈ S, where
π�

S = limt→∞ Pr.{St = S}. Each element of the transition
probability matrix P� can be derived. Then, the stationary
distribution of the ergodic process {St }t=0,1,... can be uniquely
determined from the balance equations when the Markov chain
is irreducible. The Markov chains formed in this paper are
irreducible. We omit the proof due to space limitation. Denote
the global CSI, QSI and BSI under system state S (resp. S′)
by H (resp. H′), Q (resp. Q′) and B (resp. B′), respectively.
Moreover, denote the local CSI, QSI and BSI of EHS node n
under system state S (resp. S′) by Hn (resp. H ′

n), Qn (resp. Q′
n)

and Bn (resp. B ′
n), respectively.

Given π(�), the performance measures such as the packet
loss rate and average delay for all the EHS nodes can be
derived, where Eπ(�)[·] denotes the expectation operation
taken w.r.t. the unique steady-state distribution induced by the
given policy �.

1) Packet Loss Rate: Packet loss rate is used to quantify
the system reliability. The lost packets include (1) erroneously
received packets due to deep fading of wireless channel;
(2) dropped packets due to data buffer overflow; (3) dropped
packets “dropped” here means failed to be sensed by the
sensor) due to lack of sensing energy. The first and second
types of lost packets are related to the data communications
subsystem, while the third type related to the data sensing
subsystem. The first type of lost packets can be measured by
BER and guaranteed to be smaller than εn by the physical
layer with an achievable data rate r(Hn, pT

n ) given by (1).
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In order to measure the second and third types of lost
packets, define the packet drop rate dn of EHS node n, which
can be estimated as

dn = Average # of data units dropped in a time slot

Average # of data units arrived in a time slot

= 1 − Rn

λA
n

, (5)

where

Rn = Eπ(�)
[
min

[
Qn, r

(
Hn, pT

n

)]]
. (6)

is the average throughput for any EHS node n ∈ {1, . . . , N}.
Note that packets that arrive but not transmitted by a EHS
node are either not sensed due to lack of sensing power or
dropped due to data buffer overflow.

Given a specific BER εn that can be achieved by EHS
node n, its packet loss rate can be derived as

ln = 1 − (1 − εn)K (1 − dn), (7)

which quantifies the reliability of both the data sensing
subsystem and data communications subsystem.

2) Average Delay: The average delay for any EHS node
n ∈ {1, . . . , N} can be calculated according to Little’s Law as

Dn = Qn

Rn
, (8)

where

Qn = Eπ(�)[Qn] (9)

is the average queue length of the data buffer of EHS node
n, and Rn can be derived from (6), which equals the effective
average arrival rate of packets to EHS node n, i.e., the average
rate at which the packets successfully enter the data buffer of
EHS node n.

Our objective is to minimize the weighted packet loss rate
under the constraint of average delay. Given a BER εmax that
can be achieved by the physical layer, the problem turns into
minimizing the weighted packet drop rate according to (7).
Let Dmax denote the maximum tolerable average delay for
every EHS node, and ωn (n = 1, . . . , N) denote the weight of
the packet loss rate of EHS node n. Using MDP formalism,
the design of optimal scheduling and energy allocation can be
formulated as the CMDP problem given in Problem 1.

Problem 1:

min
�

lim
T →∞

1

T

T∑
t=1

E�[g0(St ,�(St ))]

s.t. lim
T →∞

1

T

T∑
t=1

E�[gn(St ,�(St ))] ≤ 0, n = 1, . . . , N,

(10)

where E�[·] is taken w.r.t the probability measure induced
by the policy �, and g0(St ,�(St )) is the reward function
related to the optimization objective, {gn(St ,�(St ))}N

n=1 is a

set of reward functions related to the N constraints for average
delay. Under any unichain policy2 we have ∀ n = 0, 1, . . . , N

lim
T →∞

1

T

T∑
t=1

E�[gn(St ,�(St ))] = Eπ(�)[gn(S,�(S))].

Therefore, the reward functions can be derived according
to (6), (8) and (9) as

g0(S, x) =
N∑

n=1

ωn

λn

[
λn − min

[
Qn, r

(
Hn, pT

n

)]]
, (11)

gn(S, x) = Qn − Dmax

[
min

[
Qn, r

(
Hn, pT

n

)]]
,

n = 1, . . . , N. (12)
For any given nonnegative Lagrangian Multipliers (LMs) η,

where η = {ηn}N
n=1, we define the Lagrangian function of

Problem 1 as

L(�, η) = Eπ(�)[g(S,�(S))] (13)

where

g(S,�(S)) =
N∑

n=1

ωn +
N∑

n=1

ηn Qn −
N∑

n=1

[ωn

λn
+ ηn Dmax]

×
[
min

[
Qn, r

(
Hn, pT

n

)]]
(14)

Therefore, Problem 1 can be decomposed into the following
two subproblems:

Subproblem 1-1: G(η) = min
�

L(�, η),

Subproblem 1-2: G(η∗) = max
η

G(η).

V. ENERGY ALLOCATION AND SCHEDULING ALGORITHM

Given the LMs η∗, Subproblem 1-1 is a classical infinite
horizon average reward MDP problem, which can be solved
by the Bellman’s equation with offline value iteration (OVI)
algorithm. However, the optimal LMs η∗ in Subproblem 1-2
need to be determined to solve Problem 1. Moreover, the curse
of dimensionality problem forbids practical implementation of
the brute-force OVI algorithm. In this section, we will first
assume that the optimal LMs are given and focus on the
solution of Subproblem 1-1 in Section V.A-V.B. Specifically,
an equivalent Bellman’s equation is constructed in Section V.A
as a first step to reduce the state space of the MDP model.
Moreover, since the values of An,t and En,t are only available
at the end of every time slot, while an optimal action
has to be determined at the beginning of the time slot,
a post-decision state framework is defined in Section V.A to
solve this problem. Next, we will use linear value function
approximation method to further reduce the state space, and
enable the EHS nodes to distributively determine the optimal
actions with minimal help from the FC in Section V.B. As a
result, Algorithm 1 is proposed at the end of Section V.B
which can determine the optimal action assuming that the

2Since we deal with finite- and countable-state model in this paper, any
stationary deterministic policy leads to unichain DTMCs where the transition
matrix consists of a single recurrent class [27].
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value functions are given. Then, in Section V.C, we will
use an online stochastic learning (OSL) algorithm with two
time scales instead of the OVI algorithm to determine the
optimal LMs and value functions, so that there is no need to
explicitly derive the CSI, packets and EH arrival probability
distributions. Finally, Algorithm 2 is proposed at the end of
Section V.C as the complete solution to Problem 1.

A. Reduced-State Post-Decision Bellman’s Equation

Subproblem 1-1 with given LMs η∗ can be solved by the
Bellman’s equation, we have ∀S ∈ S

θ + V (S) = min
�(S)

{
g(S,�(S)) +

∑
S′∈S

Pr.[S′|S,�(S)]V (S′)
}

,

(15)

where V (S) is the value function representing the average
reward obtained following policy � from each state S, while
θ represents the optimal average reward per period for a
system in steady-state.

As a remark, note that the Bellman’s equation (15)
represents a series of fixed-point equations, where the
number of equations are determined by the number of value
functions V (S), which is |S|. Theoretically, the BS can use
the brute force value iteration method to offline solve (15)
and derive the optimal control policy, in which |S| value
functions need to be stored and the computation complexity
is O(|S|2|A|) in one iteration, where the number of iterations
depends on the convergence speed of the offline value iteration
algorithm. Therefore, the offline value iteration algorithm is
too complicated to compute due to curse of dimensionality,
i.e., the exponential growth of the cardinality of the system
state space and the large dimension of the control action
space involved. In the rest of this section, we will develop an
algorithm with reduced complexity using a series of techniques
including equivalent Bellman’s equation, post-decision state,
linear value approximation, and online stochastic learning.

As a first step to reduce the state space of the above MDP, an
equivalent Bellman’s equation is constructed. We first define
the partitioned actions of a policy � as follows.

Definition 1: Given a control policy �, we define

�(Q, B) = {�(H, Q, B)|∀H} ⊆ A
as the collection of |H| actions, where every action is mapped
by policy � from a system state with given QSI Q and BSI B,
and a different realization of CSI H ∈ H.

Lemma 1: The control policy obtained by solving the
original Bellman’s equation (15) is equivalent to the control
policy obtained by solving the reduced-state Bellman’s
equation (16)

θ + V (Q, B)

= min
�(Q,B)

{
g(Q, B,�(Q, B)) +

∑
Q′,B′

Pr.[Q′|Q, B,�(Q, B)]

× Pr.[B′|B,�(Q, B)]V (Q′, B′)
}
,

∀Q ∈ Q, B ∈ B, (16)

where

V (Q, B) = EH[V (S)|(Q, B)] =
∑

H∈H
Pr.[H]V (H, Q, B)

is the conditional expectation of value function V (S) taken
over the CSI space H given the QSI Q and BSI B, while

g(Q, B,�(Q, B)) = EH[g(S,�(S))|Q, B],
Pr.
[
Q′|Q, B,�(Q, B)

] = EH
[
Pr.[Q′|H, Q, B,�(S)]|Q, B

]
,

Pr.
[
B′|B,�(Q, B)

] = EH
[
Pr.[B′|B,�(S)]|Q, B

]
,

are conditional expectations of reward function g(S,�(S))
and transition probabilities Pr.[Q′|H, Q, B,�(S)],
Pr.[B′|B,�(S)] taken over the CSI space H given the
QSI Q and BSI B, respectively.

The proof of Lemma 1 is given in Appendix A. As a
remark, note that equivalent Bellman’s equation (16) also
represents a series of fixed-point equations, where the number
of equations is determined by the number of value functions
V (Q, B), which is |Q|×|B|. Therefore, we only need to solve
|Q| × |B| instead of |H| × |Q| × |B| fixed-point equations
with the reduced-state Bellman’s equation (16). In order to
solve one such fixed-point equation using value iteration,
the R.H.S. of (16) has to be minimized with given value
functions V (Q′, B′). For this purpose, the R.H.S. of (16) can
be written as

min
�

∑
H∈H

Pr.[H] f (S,�(S)), (17)

where

f (S,�(S)) = g(S,�(S)) +
∑
Q′,B′

Pr.[Q′|H, Q, B,�(S)]

×Pr.[B′|B,�(S)]V (Q′, B′). (18)

Since (17) is a decoupled objective function w.r.t. different CSI
realizations H with a given QSI Q and a BSI B, we need to
obtain |H| optimal actions in order to achieve the minimization
objective in the R.H.S. of equivalent Bellman equation (16),
where every optimal action is w.r.t. a system state (H, Q, B)
with given Q and B, as well as a different CSI realization
H ∈ H that minimizes the value of f ((H, Q, B),�(H, Q, B)).
This means that the control policy obtained by solving (16) is
based on the system state S in addition to the queue state Q and
battery energy state B, although the value function V (Q, B)
does not depend on the CSI H. Also note that V (Q, B) is
affected by the CSI distribution.

In order to derive an optimal action under every system
state to minimize (18), the knowledge of the transition
probabilities Pr.[Q′|H, Q, B,�(S)] and Pr.[B′|B,�(S)] are
required, which in turn require the distributions of the EH
arrival process Pr.(E) = ∏N

n=1 fE (En) and packets arrival
process Pr.(A) = ∏N

n=1 fA(An) that are unknown to EHS
nodes. Moreover, the values of An,t and En,t are only available
at the end of time slot t , while an optimal action has to be
determined at the beginning of time slot t . In order to address
this limitation, we define the post-decision reduced state [28]
to be the virtual QSI and BSI immediately after making an
action but before the new harvested energy and new sensed
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data arrive. Let (Q, B) be the reduced state at the beginning
of time slot t (also called the pre-decision reduced state),
and the EHS nodes make an action that consumes energy
pT during time slot t , then the post-decision reduced state is
denoted by (Q̃′, B̃′) = (

max[0, Q − r(H, pT)], B − pT
)
. Let

A′ = {A′
n|n = 1, . . . , N} and E′ = {E ′

n|n = 1, . . . , N}
be two vectors representing the packets and EH arrivals for
all the EHS nodes during time slot t , respectively. Then
the system reaches the next actual reduced state, i.e., the
pre-decision reduced state at time slot t + 1 (Q′, B′) =
(min[Qmaxe, max[0, Q − r(H, pT)] + min[A′, γ (B − pT)],
min[Bmaxe, max[0, B− pT − A′/γ ]+ E′]). On the other hand,
it can be deduced that the pre-decision reduced state (Q, B)
at time slot t is reached from the post-decision reduced state
(Q̃, B̃) at time slot t −1 as (Q, B) = (min[Qmaxe, Q̃+min[A,

γ B̃]], min[Bmaxe, max[0, B̃−A/γ ]+E]), where A = {An|n =
1, . . . , N} and E = {En|n = 1, . . . , N} are the vectors
representing the packets and EH arrivals for all the EHS nodes
during time slot t − 1, respectively.

Lemma 2: The control policy obtained by solving the
reduced-state Bellman’s equation (16) is equivalent to the
post-decision Bellman’s equation (19):

θ + V (Q̃, B̃)

=
∑
Q,B

Pr.[Q|Q̃, B̃]Pr.[B|B̃]

min
�(Q,B)

{
g(Q, B,�(Q, B)) +

∑

Q̃′,B̃′
Pr.[Q̃′|Q,�(Q, B)]

Pr.[B̃′|B,�(Q, B)]V (Q̃′, B̃′)
}
, ∀Q̃ ∈ Q, B̃ ∈ B, (19)

where

V (Q̃, B̃) = EQ|Q̃,B|B̃[V (Q, B)]
is the expectation taken over all the pre-decision reduced
states that can be reached from the post-decision reduced
state (Q̃, B̃).

The proof of Lemma 2 is given in Appendix B. As a
remark, note that post-decision Bellman’s equation (19)
also represents |Q| × |B| fixed-point equations. Since the
transition probabilities Pr.[Q|Q̃, B̃] and Pr.[B|B̃] from given
post-decision reduced state (Q̃, B̃) to different pre-decision
reduced state (Q, B) only depend on A and E as discussed
above, the R.H.S. of (19) is a decoupled objective function
w.r.t. different packets and EH arrivals with a given
post-decision reduced state (Q̃, B̃). Since the optimal action
is determined at the beginning of time slot t , when the values
of A and E (the number of arrived packets and harvest energy
units during time slot t − 1) are already known, we only need
to minimize the following function f̃ (S) in order to minimize
f (S) as defined in (18) to derive the optimal action under
system state S, where

f̃ (S) = g(S,�(S)) +
∑

Q̃′,B̃′
Pr.[Q̃′|H, Q,�(S)]

×Pr.[B̃′|B,�(S)]V (Q̃′, B̃′). (20)

Note that the distributions Pr.(A) and Pr.(E) are no longer
needed in order to minimize f̃ (S). When obtaining the

optimal action using (20), we assume that the value functions
V (Q̃, B̃), Q̃ ∈ Q, B̃ ∈ B are given. Although V (Q̃, B̃) depends
on Pr.(A) and Pr.(E), we will show in Section V.C that
its value can be obtained using online stochastic learning
algorithm without explicitly deriving the arrival probability
distributions. Therefore, Pr.(A) and Pr.(E) are not needed for
solving the MDP problem.

B. Linear Value Function Approximation

First, we define the per-node reward function as

gn(Sn,�(S))

= ωn + ηn Qn − [ωn

λn
+ ηn Dmax]

[
min

[
Qn, r

(
Hn, pT

n

)]]
.

(21)

Thus, the overall reward function is given by g(S,�(S)) =∑N
n=1 gn(Sn,�(S)) according to (14).
Next, the linear approximation architecture for the value

function V (Q̃, B̃) is given by

V (Q̃, B̃) = V ({Q̃n, B̃n}N
n=1) ≈

N∑
n=1

Ṽn(Q̃n, B̃n)

=
N∑

n=1

Qmax∑
q=0

Bmax∑
b=0

I[Q̃n = q, B̃n = b]Ṽn(q, b). (22)

We refer to Ṽn(Q̃n, B̃n) or Ṽn(q, b) as per-node value

function and V (Q̃, B̃) as global value function in the rest of
the paper. Therefore, Ṽn = [

Ṽn(0, 0), . . . , Ṽn(Qmax, Bmax)
]

is the per-node value function vector for EHS node n,
Ṽ = [

Ṽn |n = 1, . . . , N
]T

is the per-node value function
vector for all the EHS nodes in the network. Similarly,
define the global value function vector as V =[
V (Q̃, B̃)|Q̃ ∈ Q, B̃ ∈ B]T .

As a remark, note that the number of global
value functions is |Q| × |B| = [(Qmax + 1)
(Bmax + 1)]N in total, which grows exponentially with
the number of nodes. On the other hand, the number of
per-node value functions is (Qmax +1)(Bmax +1)× N in total,
which grows linearly with the number of nodes. Therefore,
we can represent the [(Qmax + 1)(Bmax + 1)]N global value
functions with (Qmax + 1)(Bmax + 1) × N per-node value
functions by the linear approximation architecture.

We assume that every EHS node n maintains its local per
node value function Ṽn and LM ηn . From (20), the key
step in deriving the optimal control actions is to obtain the
global value function vector V. With linear value function
approximation, we only need to obtain the per-node value
function vector Ṽ. To illustrate the structure of our algorithm,
we first assume we could obtain the per-node value functions
via some means (e.g., via offline value iteration) and focus
on deriving the optimal action under every system state to
minimize the value of f̃ (S). The optimal control action is
given by the following Subproblem 1-1(a).

Subproblem 1-1(a): For given per-node value functions Ṽ
and LMs η, find the optimal action �∗(H, Q, B) for system
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state (H, Q, B) that minimizes the value of f̃ (H, Q, B), which
can be written as follows

�∗(S)

= arg min
�

N∑
n=1

gn (Sn,�(S))

+
∑

Q̃′,B̃′

{
N∏

n=1

Pr.
[
(Q̃′

n, B̃ ′
n)|Sn,�(S)

] N∑
n=1

Ṽn(Q̃′
n, B̃ ′

n)

}

(23)

= arg min
�

N∑
n=1

{
gn

(
Sn, pT

n

)
+ Ṽn

(
Qn

(
r(Hn, pT

n )
)

,

Bn

(
pT

n

))}
, (24)

where the QSI Qn
(
r(Hn, pT

n )
)

is defined by the following
equation

Qn

(
r(Hn, pT

n )
)

= max[0, Qn − r(Hn, pT
n )], (25)

and the BSI Bn(pT
n ) is defined by the following equation

Bn(pT
n ) = Bn − pT

n . (26)

Step (23) follows from the linear value approximation structure
in (22). Step (24) holds because of the queues dynamics and
battery energy dynamics from pre-decision reduced state to
post-decision reduced state.

Algorithm 1 (Solution to Subproblem 1-1(a)): Given
per-node value functions Ṽ and LMs η, the optimal action in
subproblem 1-1(a) for every system state S is determined as

x∗
n =

{
1, if n = arg maxN

n′=1 bidn′,

0, otherwise.
(27)

where

bidn =
{
[ωn

λn
+ ηn Dmax + (

Ṽ (Q)
n (Qn, Bn)

)′]r(Hn, pT
n )

+pT
n

(
Ṽ (B)

n (Qn, Bn)
)′}

. (28)

pT∗
n = xn min[Bn,

N0τW (2
Qn K
τ W − 1)

ξn Hn
, max[0,

(ωn
λn

+ ηn Dmax + (
Ṽ (Q)

n (Qn, Bn)
)′
)τW

−K
(
Ṽ (B)

n (Qn, Bn)
)′ ln 2

− N0Wτ

ξn Hn
]].

(29)
Remark 1 (Implementation and Complexity of

Algorithm 1): Due to linear value function approximation,
only (Qmax +1)(Bmax +1)× N per-node value functions need
to be stored instead of [(Qmax + 1)(Bmax + 1)]N global value
functions. Specifically, each EHS node only need to store
(Qmax + 1)(Bmax + 1) local per node value functions. At the
beginning of every time slot t, each EHS node n observes its
local system state and determines its optimal transmission
power pT∗

n,t if scheduled according to (29). Then, it submits its
bid, bidn, to FC, which is calculated by taking pT∗

n,t into (28).
The FC makes a decision about scheduling the EHS node
with the largest bidn according to (27), and broadcasts the
scheduling action xn,t to all EHS nodes. Then the scheduled

EHS node n transmits with power pT∗
n,t . Therefore, the overall

computational complexity of Algorithm 1 is O(2N).
The proof of Algorithm 1 is given in Appendix C. In the

above discussion, we assume that the per-node value function
vector Ṽ is already known in Subproblem 1-1(a) and propose
Algorithm 1 in order to derive the optimal control action under
every system state. However, we still need to determine Ṽ
in order to solve Subproblem 1-1. Let Ṽn(0, 0) = 0,
∀n = 1, . . . , N . According to the linear approximation
architecture, among the [(Qmax +1)(Bmax +1)]N global value
functions, there are [(Qmax + 1)(Bmax + 1) − 1] × N global
value functions that equal to the [(Qmax+1)(Bmax+1)−1]×N
per-node value functions {Ṽn(q, b)|∀q ∈ {0, . . . , Qmax},
b ∈ {0, . . . , Bmax}, q × b �= 0}N

n=1. We refer the system
states of these global value functions as representative states,
and they share the same characteristics that only one node
has non-empty data buffer and/or battery energy buffer while
both buffers of all the other nodes are empty. The set of
representative states (Q̃, B̃)R is defined as

(Q̃, B̃)R =
{ (

Q̃(q)
n , B̃(b)

n

)
| ∀q ∈ {0, . . . , Qmax},

b ∈ {0, . . . , Bmax}, q × b �= 0}
}N

n=1
,

where Q̃(q)
n = {Q̃n = q, Q̃n′ = 0|n′ = 1, . . . , N, n′ �= n}

denotes the global QSI with Q̃n = q ∈ {1, . . . , Qmax} for
EHS node n and Q̃n′ = 0 for all the other EHS nodes n′ �= n,
and B̃(b)

n = {B̃n = b, B̃n′ = 0|n′ = 1, . . . , N, n′ �= n} denotes
the global post-decision BSI with B̃n = b ∈ {1, . . . , Bmax}
for EHS node n and B̃n′ = 0 for all the other EHS nodes
n′ �= n. It is worth noting that the state (Q̃ = 0, B̃ = 0)
is not a representative state. We refer to it as the reference
state. Therefore, given the solution of Subproblem 1-1(a), we
still need to solve the following Subproblem 1-1(b) in order
to solve Subproblem 1-1.

Subproblem 1-1(b): Derive the per-node value functions Ṽ
that satisfy the following equivalent post-decision Bellman’s
equation under every representative state (Q̃(q)

n , B̃(b)
n ) =

(Q̃, B̃),∀
(

Q̃(q)
n , B̃(b)

n

)
∈ (Q̃, B̃)R

θ + Ṽn(q, b) =
∑
Q,B

Pr.[Q|Q̃, B̃]Pr.[B|B̃]

× min
�

{
gn(Qn, Bn,�(Q, B))

+
N∑

n=1

∑

Q̃ ′
n

Pr.[Q̃′
n |Qn, Bn,�(Q, B)]

×
∑

B̃ ′
n

Pr.[B̃ ′
n|Bn,�(Q, B)]V (Q̃′

n, B̃ ′
n)
}
. (30)

C. Online Stochastic Learning

Instead of solving the reduced-state post-decision Bellman’s
equation on the representative states (30) using offline value
iteration, we will estimate Ṽ using online stochastic
learning algorithm. In this way, we can solve the Bellman’s
equation without the need of explicitly deriving the CSI,
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packets and EH arrival probability distributions Pr.[H], Pr.[A]
and Pr.[E] in order to calculate the “conditional reward”
gn(Qn, Bn,�(Q, B)) and “conditional transition probability”
Pr.[Q̃′

n |Qn, Bn,�(Q, B)] and Pr.[B̃ ′
n|Bn,�(Q, B)] and

transition probabilities Pr.[Q|Q̃, B̃] and Pr.[B|B̃] in (30).
The distributed online iterative algorithm (Algorithm 2)

is given as follows, which simultaneously solves
Subproblem 1-1(b) in deriving per-node value functions
and Subproblem 1-2 in deriving LMs η.

Algorithm 2 (Solution to Subproblem 1-1(b) and
Subproblem 1-2): At the end of time slot t, based on
the observed system state St , the post-decision reduced state
(Q̃t , B̃t ) at time slot t − 1 and the optimal action (xt , pT

t ),
the per-node value functions Ṽt and LMs ηt can be updated
to Ṽt+1 and ηt+1 using the update function

Ṽn,t+1(q, b)

=

⎧
⎪⎪⎨
⎪⎪⎩

(
1 − εv

τn(q,b,t)

)
Ṽn,t (q, b) + εv

τn (q,b,t)Ṽn,t (q, b),

if (Q̃t , B̃t ) = (Q̃(q)
n , B̃(b)

n ),

Ṽn,t (q, b), if (Q̃t , B̃t ) �= (Q̃(q)
n , B̃(b)

n ),

(31)

where εv
τn(q,b,t) = ∑t

t ′=0 I
[
(Q̃t ′, B̃t ′) = (Q̃(q)

n , B̃(b)
n )
]

and

Ṽn,t (q, b)

= ηn,t (q + min[An,t−1, γ b]) − [ωn

λn
+ ηn Dmax]r

(
Hn,t , pT

n,t

)

+ Ṽn

(
min[Qmax, q + min[An,t−1, γ b]] − r(Hn,t , pT

n,t ),

min[Bmax, max[0, b − An,t−1/γ ] + En,t−1] − pT
n,t

)

− Ṽn
(
0, En,t̄−1

)
,

where t̄ = sup{t|(Q̃t , B̃t ) = (0, 0)}.
Moreover, the LMs ηn,t of every node n can be updated at

the end of time slot t to ηn,t+1 using the following function

ηn,t+1 = ηn,t + ε
η
t Qn − Dmaxr

(
Hn,t , pT

n,t

)
. (32)

In the above equations,
({εv

t }, {εη
t }) are the sequences of

step sizes, which satisfy

∞∑
t=0

εv
t =

∞∑
t=0

ε
η
t = ∞, εv

t , ε
η
t > 0, lim

t→∞ εv
t = lim

t→∞ ε
η
t = 0,

∞∑
t=0

[(
εv

t

)2 + (
ε
η
t
)2]

< ∞, and lim
t→∞

ε
η
t

εv
t

= 0.

Remark 2 (Implementation and Complexity of
Algorithm 2): In Algorithm 2, every EHS node can locally
update its own per-node value function and LM. Note that
Ṽn,t (q, b) is only updated to a different value at any time

slot t when the global post-decision reduced state (Q̃t , B̃t )

is the representative state (Q̃(q)
n , B̃(b)

n ) according to (31).
This implies that at most one per-node value function
shall be updated to a different value at any time slot
with computational complexity O(N), while all the other
per-node value functions remain the same. In order to
determine whether the current global state is one of the

Fig. 2. The implementation flow of the proposed AMDP+OSL algorithm.

representative states, the FC maintains a bit map with each
bit indicating whether both the data buffer and battery
energy buffer of an EHS node are empty or not. Every EHS
node needs to send an empty flag whenever its buffer status
changes from empty to non-empty or vice versa. This is
event-triggered and does not need to happen every time slot.
If the global state at time slot t (Q̃t , B̃t ) is in representative
state (Q̃(q)

n , B̃(b)
n ), the FC notifies EHS node n using a RS flag.

Although we can prove that for any given LMs η, the
iteration on per-node value function will converge, there is still
approximation error between the converged parameter vector

Ṽ∞(η) and original system value function V∞(η). In the
following theorem, we provide a bound on the approximation
error.3

Theorem 1 (Bound on Approximation Error): Let Ṽ∞ and
V∞ be the converged parameter vector and system value
function vector, respectively, for any given LM η, X∗ =
arg min ‖ MX − V∞ ‖= (M′M)−1M′V∞, T†(V) = T(V) −
T0(V)e, T̃(X) = M†T†(MX), and T̃(n)(X) = T̃ ◦ T̃ ◦ · · · ◦ T̃︸ ︷︷ ︸

n

,

where T0(V) denotes the element in the vector T(V) which
corresponds to the reference system state that all queues
are empty, the approximation error ‖ MṼ∞ − V∞ ‖ is
lower-bounded by ‖ MṼ∞ − V∞ ‖≥‖ MX∗ − V∞ ‖, and
upper-bounded by

‖ MṼ∞ − V∞ ‖
≤ a(cn + 1)

1 − β
‖ X∗ − M†V∞ ‖ + ‖ MX∗ − V∞ ‖

= (
MX∗ − V∞)T

(
a(cn + 1)

1 − β
M†′

M† + I
) (

MX∗ − V∞),

where a =‖ M ‖ denotes the 2-norm of the matrix M, which
satisfies 0 ≤ a < ∞ due to the mathematical property
of 2-norm, integer n and 0 < β < 1 should satisfy ‖
T̃(n)(Ṽ∞) − T̃(n)(X∗) ‖≤ β ‖ Ṽ∞ − X∗ ‖, and c should
satisfy ‖ T̃(m)(X∗) − M†V∞ ‖≤ c ‖ T̃(m−1)(X∗) − M†V∞ ‖,
m = 1, 2, . . . , n.

Algorithm 1 and Algorithm 2 together form the complete
solution to Problem 1. We refer to the overall algorithm
with approximate MDP and online stochastic learning as
AMDP+OSL algorithm. Fig.2 shows the implementation flow

3The convergence analysis of Algorithm 2 and the proof of bound on the
approximation error are omitted due to page limitation. Interested readers can
refer to our full version in [29] for details.
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of the proposed AMDP+OSL algorithm with detail steps
illustrated as follows:

• Step 1 (Initialization): Every EHS node initiates the
per-node value function vector Ṽ0

n and LM η0
n that it

maintains. The superscript denotes the index of time slot.
• Step 2 (Calculate Control Action): At the beginning of

the t th time slot (t = 1, 2, . . .), every EHS node observes
its local system state Sn,t , calculates bidn according
to (28) and submits its bid and potentially one bit empty
flag to the FC. The FC determines the optimal scheduling
action according to (27). Then the FC sends a scheduling
notification to the scheduled EHS node and also an RS
flag if the current global state is in the corresponding
representative state. The scheduled EHS node transmits
with energy as determined by (29).

• Step 3 (Update of Per-Node Value Function): At the end
of the t th time slot (t = 1, 2, . . .), with the observed local
system state and the RS flag, every EHS node updates
the per-node value function vector Ṽn,t and LM ηn,t it
maintains according to (31) and (32). Set t := t + 1 and
go to Step 2.

Note that the computational complexity of AMDP+OSL
algorithm at each time slot is the sum of those of Algorithm 1
and Algorithm 2, which is at most O(3N) and grows linearly
with the number of nodes, instead of [(Qmax + 1)(Bmax +
1)]2N |H|2|A| with offline value iteration method.

VI. EXPERIMENTAL RESULTS

In this section, we conduct experiments to evaluate the
performance of our proposed AMDP+OSL algorithm, and
compare it with the offline value iteration (OVI) algorithm
and other proposed algorithms in literature. In the simulations,
we consider Poisson packet arrival with mean arrival rate λA

at every EHS node with fixed packet size of 300 bits [9].
Moreover, we consider that the fundamental energy unit is 1J
and the EHS node either harvests 2λE units of energy or does
not harvest any at each time slot with equal probability [3], i.e.,
En,t ∈ {0, 2λE} and E[En] = λE for all n ∈ {1, . . . , N}. This
process imitates the solar cycles for a solar battery during the
day and night. (We have also performed simulations when the
amount of energy arrived per time slot has truncated Poisson,
Exponential, Erlang or Hyperexponential distributions and
found that conclusions drawn in this section continue to
hold.) The wireless channel bandwidth is W = 0.3MHz, and
the noise power spectral density is N0 = 10−16W/Hz. The
channel state can be “G=Good”, “N=Normal”, or “B=Bad”,
corresponding to the channel gain “6 × 10−13”, “4 × 10−13”,
or “2 × 10−13”, respectively. The fast fading of the wireless
channel is captured by the three-state Markov chain with the
transition matrix given by [11]

PH =
⎡
⎣

PB B PB N PBG

PN B PN N PNG

PG B PG N PGG

⎤
⎦ =

⎡
⎣

0.3 0.7 0
0.25 0.5 0.25

0 0.7 0.3

⎤
⎦,

where PX Z represents the probability of the channel state
evolving from state X to state Z , with X, Z ∈ {B, N, G}.
We choose target BER εn = 10−3 and ξn ≈ 0.283 [11]. The
data buffer and the rechargeable battery capacity are Qmax = 5

Fig. 3. The weighted packet loss rate and percentage of energy allocated
for sensing versus sensing efficiency γ for single node network (λE = 1.2
and λA = 1).

and Bmax = 10, respectively. The data sensing efficiency
parameter γ varies from 0.6 to 1.4 [11]. We assign equal
weight of packet loss rate on each EHS node.

In order to analyze performance in different aspects and
evaluate different algorithms, we divide this section into
two parts. Firstly, we consider the single node scenario, and
concentrate on the comparison of different energy allocation
algorithms. Then, we consider the multiple node scenario
and analyze the scheduling and energy allocation algorithms
jointly.

A. Single Node Network

We compare our proposed AMDP+OSL algorithm with
the OVI algorithm based on the post-decision equivalent
Bellman’s equation (19), the OEA algorithm [11], the MWF
algorithm [7] and Energy Adaptive Water-Filling (EAWF)
algorithm [8]. The OEA algorithm finds an optimal sensing
and transmit energy allocation policy which maximizes the
expected amount of transmitted data under the assumption
that there is always data to sense. The MWF algorithm is a
modified water-filling policy which minimizes the mean delay,
where the sensing energy is considered as a stationary, ergodic
sequence. The EAWF algorithm maximizes the number of bits
transmitted by the deadline without considering the sensing
energy, which is an event-based online policy reacting to a
change in fading level or an energy arrival. Since (19) is
equivalent to the original Bellman’s equation (15) for the
optimal MDP problem, we will refer to it as OMDP+OVI
algorithm in the following discussion. The performance
of the OMDP+OVI algorithm is the optimal value and
provides an upper bound for all the algorithms. The OEA
algorithm also uses offline value iteration to derive the control
policy, so its computation complexity is the same with that
of the OMDP+OVI algorithm and both algorithms cannot
be extended to the multi-node scenario due to curse of
dimensionality. The average delay constraint is Dmax = 3 time
slots.

Fig.3 shows the weighted packet loss rate and percentage
of energy allocated for sensing versus sensing efficiency γ .
It can be observed that as the sensing efficiency γ increases,
the percentages of allocated energy for sensing decrease,
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Fig. 4. The weighted packet loss rate and average delay versus the
average arrival rate of harvested energy λE for single node network (γ = 1
and λA = 1).

Fig. 5. The weighted packet loss rate and and average delay versus
the average arrival rate of packets λA for single node network (γ = 1
and λE = 1.2).

and lower weighted packet loss rates are achieved for all four
algorithms. The allocated sensing energy and the performance
of our proposed AMDP+OSL algorithm are quite close to
the optimal values achieved by the OMDP+OVI algorithm.
On the other hand, both the OEA algorithm and MWF
algorithm do not respond to the varying sensing efficiency γ as
accurately as the AMDP+OSL and OMDP+OVI algorithms
in energy allocation. The sensing energy allocation of the
MWF algorithm remains approximately the same irrespective
of the varying sensing efficiency, because the sensing energy
is considered as a stationary, ergodic sequence. On the other
hand, the sensing energy allocation of the OEA algorithm is
smaller than the optimal value when the sensing efficiency γ
is small, while larger than the optimal value when the
sensing efficiency γ is large, so its performance is worse
than our proposed AMDP+OSL algorithm. The percentage
of energy allocated for sensing by the EAWF algorithm stays
extremely low, which leads to the highest packet loss rate,
since the energy allocation of EAWF algorithm just optimizes
the transmission energy for maximum throughput without
considering the energy for sensing.

Fig.4 and Fig.5 show the weighted packet loss rate and the
average delay versus the average arrival rates of harvested
energy and packets, respectively. The packet loss rate and

average delay of all the simulated algorithms decrease with
increasing harvested energy arrival rate and decreasing packet
arrival rate as expected. It can be observed that our proposed
AMDP+OSL algorithm achieves smaller packet loss rate than
the OEA and MWF algorithms while satisfying the delay
constraint. The OEA algorithm results in much larger average
delay than the other algorithms, since it does not take the
packet arrival rate into consideration, and may waste energy
for sensing and result in less energy for data transmission.
Moreover, the complexity and signaling overhead of the OEA
algorithm is the same with that of the OMDP+OVI algorithm,
and is much larger than our proposed algorithm. The MWF
algorithm has the second highest packet loss rate, because the
sensing energy is set to be a stationary, ergodic sequence,
which does not change with the varying packet and energy
arrival rates. The EAWF algorithm achieves lower average
delay than OEA and MWF algorithms, since the packets
sensed successfully are limited and the energy for transmission
is abundant. However, the EAWF algorithm gets higher aver-
age delay than our proposed algorithm, since it assumes the
infinite backlog traffic model and doesn’t consider the packet
arrival rate. Compared with the OMDP+OVI algorithm, our
proposed algorithm results in a little performance loss due to
the linear value function approximation and Taylor’s expansion
in obtaining the optimal action. According to the statistics,
the packet loss rate of AMDP+OSL algorithm is just 3%
higher than that of OMDP+OVI algorithm. Therefore, the
AMDP+OSL algorithm is an effective method to reduce the
complexity and signaling overhead, while achieving a near
optimal performance.

B. Multiple Node Network

We compare our proposed algorithm with the OVI
algorithm, the UROP scheduling algorithm [13] and Greedy
scheduling algorithm [14]. The UROP algorithm schedules the
nodes according to their energy under the assumption that
each node always has data to transmit and the energy storage
buffer is infinite. The Greedy algorithm is an opportunistic
scheduler that minimizes the weighted sum of mean delays
where the energy storage buffer is assumed to be infinite.
We consider that MWF energy allocation algorithm [7] is
used with the latter two scheduling algorithms. Since the
curse of dimensionality problem forbids the implementation
of OVI algorithm based on (19), we apply the OVI algorithm
to the Bellman’s equation (30) for representative states after
applying the approximate MDP algorithm and refer to it as
AMDP+OVI algorithm. The average delay constraint is set to
Dmax = 8 time slots.

Fig.6 shows the weighted packet loss rate and the average
delay versus the number of EHS nodes. It is obvious that
our proposed AMDP+OSL algorithm has a significant gain in
packet loss rate over the two other reference algorithms while
satisfying the delay constraint. This is in part due to the near
optimal energy allocation achieved by AMDP+OSL algorithm
as discussed in the single node scenario, and also due to
its near optimal scheduling policy. The Greedy algorithm
considers the CSI and QSI but not the BSI, which leads
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Fig. 6. The weighted packet loss rate and the average delay versus the number
of EHS nodes N for multiple node network (λE = 1.2 and λA = 0.8).

Fig. 7. The weighted packet loss rate and average delay versus the average
arrival rate of harvested energy λE for multiple node network (N = 5
and λA = 0.5).

Fig. 8. The weighted packet loss rate and and average delay versus the
average arrival rate of packets λA (N = 5 and λE = 1.2).

to higher packet loss rate and average delay compared to
AMDP+OSL algorithm. The scheduling process of UROP
algorithm is random without considering the system state,
which leads to the highest packet loss rate and average delay.
The performance of AMDP+OVI algorithm and AMDP+OSL
algorithm are nearly the same, which shows that the OSL
algorithm can converge to the optimal value of OVI algorithm
without demanding the probability distributions of the arrival
processes and channel characteristics.

Fig.7 and Fig.8 show the weighted packet loss rate and the
average delay versus the average arrival rates of harvested
energy and packets, respectively. It can be observed that
our proposed AMDP+OSL algorithm can always achieve the
lowest packet loss rate while satisfying the delay constraint.
In addition, when the average arrival rate of harvested
energy or packets is low, the packet loss rate of Greedy
algorithm and UROP algorithm are nearly the same. This is
because the packets sensed successfully are limited, and the
packet loss rate mainly comes from the packet drop during
the sensing process. On the other hand, when the average
arrival rate of harvested energy or packets increases, the
successfully sensed packets increase and are backlogged in
the buffer. In this case, the gap of packet loss rate between
the Greedy algorithm and UROP algorithm becomes large due
to the larger data buffer overflow of the UROP scheduling
algorithm.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed an energy allocation and
scheduling algorithm to minimize the weighted packet loss
rate with delay constraint for IWSN. We have shown that
the reliability optimal control problem can be formulated as a
CMDP. To reduce the complexity and facilitate the distributed
implementation, we have utilized approximate MDP and
online stochastic learning to obtain a distributed energy
allocation algorithm with multi-level water-filling structure
based on local system state and an auction mechanism
to determine the scheduled EHS node per time slot. The
simulation results have shown that the reliability performance
of our proposed algorithm under delay constraint is very close
to that achieved by the offline value iteration algorithm, and
is significantly better than various baselines. The comparison
results indicate that in order to achieve optimal reliability in
EH-IWSN, the energy allocation for both the sensing and
transmission processes need to be considered. The percentage
of energy allocated for sensing should decrease with increasing
energy efficiency. Moreover, the energy allocation and
scheduling algorithms should be jointly optimized based on
the CSI, QSI, and BSI. The proposed algorithm can be used
in many applications of the EH-IWSN, where the monitoring
system has to provide accurate and real-time information
regarding the monitored process, such as river flood detection,
fence surveillance, and equipment condition monitoring of
pipelines and machinery, etc.

Although our focus is on single-hop IWSN with a star
topology in this paper, where the FC is the sink node, the
proposed algorithm can be applied to multi-hop IWSN with a
cluster-tree topology, where a cluster head is responsible for
gathering data from the cluster’s EHS nodes and forwarding
it to the sink. On the other hand, it is a non-trivial problem
to extend the proposed algorithm to multi-hop networks with
mesh topology due to the complex coupled queue dynamics.
Moreover, it is of interest to study the impact of imperfect
or delayed CSI at the FC. Our proposed algorithm can
be extended to include leakage during storage process as
in [7] if the amount of leakage is assumed to be a fixed
value.
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APPENDIX

A. Proof of Lemma 1

θ + V (H, Q, B) ∀H ∈ H, Q ∈ Q, B ∈ B
= min

�(S)

{
g(H, Q, B,�(H, Q, B)) +

∑
H′,Q′,B′

Pr.[H′, Q′, B′|

H, Q, B,�(H, Q, B)]V (H′, Q′, B′)
}

(a)= min
�(S)

{
g(H, Q, B,�(H, Q, B)) +

∑
Q′,B′

Pr.[Q′|H, Q,�(H,

Q, B)]Pr.[B′|B,�(H, Q, B)]
∑
H′

Pr.(H′|H)V (H′, Q′, B′)
}

(b)= min
�(S)

{
g(H, Q, B,�(H, Q, B)) +

∑
Q′,B′

Pr.[Q′|H, Q,�(H,

Q, B)]Pr.[B′|B,�(B)]EH′|H[V (H′, Q′, B′)|Q′, B′]
}

where (a) is due to (4) by the independence between (H, Q)
and B over time slots.

Taking the conditional expectation (conditioned on (Q, B))
on both sides of the equation above, we have

θ + V (Q, B) ∀Q ∈ Q, B ∈ B,

= EH

[
min
�(S)

{
g(H, Q, B,�(H, Q, B))

+
∑
Q′,B′

Pr.[Q′|H, Q,�(H, Q, B)]Pr.[B′|B,�(H, Q, B)]

EH′|H[V (H′, Q′, B′)|Q′, B′])
}]

(c)= min
�(Q,B)

{
g(Q, B,�(Q, B))

+
∑
Q′,B′

Pr.[Q′|Q,�(Q, B)]Pr.[B′|B,�(Q, B)]V (Q′, B′)
}

where (c) is due to the definition of g(Q, B,�(Q, B)),
Pr.[Q′|Q, B,�(Q, B)], Pr.[B′|B,�(Q, B)] and V (Q′, B′)
in Section V.B.

B. Proof of Lemma 2

θ + V (Q, B) ∀Q ∈ Q, B ∈ B,

= min
�(Q,B)

{
g(Q, B,�(Q, B)) +

∑
Q′,B′

Pr.[Q′|Q, B,�(Q, B)]

×Pr.[B′|B,�(Q, B)]V (Q′, B′)
}

= min
�(Q,B)

{
g(Q, B,�(Q, B)) +

∑

Q′,Q̃′
Pr.[Q′|Q̃′, B̃′]Pr.[Q̃′|

Q,�(Q, B)]
∑

B′,B̃′
Pr.[B′|B̃′]Pr.[B̃′|B,�(Q, B)]V (Q′, B′)

}

= min
�(Q,B)

{
g(Q, B,�(Q, B)) +

∑

Q̃′,B̃′
Pr.[Q̃′|Q,�(Q, B)]Pr

·[B̃′|B,�(Q, B)]
∑
Q′,B′

Pr.[Q′|Q̃′, B̃′]Pr.[B′|B̃′]V (Q′, B′)
}

(a)= min
�(Q,B)

{
g(Q, B,�(Q, B)) +

∑

Q̃′,B̃′
Pr.[Q̃′|Q,�(Q, B)]

×Pr.[B̃′|B,�(Q, B)]V (Q̃′, B̃′)
}

where (a) is due to the definition V (Q̃′, B̃′) given
in Section V.C.

Taking the conditional expectation (conditioned on (Q̃, B̃))
on both sides of the equation above, we have

θ + V (Q̃, B̃) ∀Q̃ ∈ Q, B̃ ∈ B,

=
∑
Q,B

Pr.[Q|Q̃, B̃]Pr.[B|B̃] min
�(Q,B)

{
g(Q, B,�(Q, B))

+
∑

Q̃′,B̃′
Pr.[Q̃′|Q,�(Q, B)]Pr.[B̃′|B,�(Q, B)]V (Q̃′, B̃′)

}
.

C. Proof of Algorithm 1

In order to reduce the complexity of solving (24), we first
introduce the following lemma on the property of the optimal
power allocation action under every system state.

Lemma 3 (Property of Optimal Policy): The optimal policy
�∗(S) = (x∗, pT∗) satisfy r

(
Hn, pT∗

n

) ≤ Qn for any
n = 1, . . . , N.

With the constraint defined by Lemma 3, (25) becomes
Qn(r(Hn, pT

n )) = Qn − r(Hn, pT
n ). Next, we expand

Ṽn
(
Qn
(
r(Hn, pT

n )
)
, Bn

(
pT

n

))
in (24) using Taylor expansion

Ṽn

(
Qn

(
r(Hn, pT

n )
)

, Bn

(
pT

n

))
= Ṽn(Qn, Bn)

− r(Hn, pT
n )
(
Ṽ (Q)

n (Qn, Bn)
)′ − pT

n

(
Ṽ (B)

n (Qn, Bn)
)′
,

(33)

where
(
Ṽ (Q)

n (Qn, Bn)
)′ ≈ Ṽn(Qn + 1, Bn)/2 − Ṽn(Qn − 1, Bn)/2.(

Ṽ (B)
n (Qn, Bn)

)′ ≈ Ṽn(Qn, Bn + 1)/2 − Ṽn(Qn, Bn − 1)/2.

Therefore, (24) is equivalent to

�∗(S) = arg max
�(S)

N∑
n=1

bidn

s.t. 0 ≤ pT
n ≤ min[Bn,

N0τW (2
Qn K
τ W − 1)

ξn Hn
],

∀n = 1, . . . , N,

N∑
n=1

I(pT
n > 0) ≤ 1, (34)

where bidn is given in (28). The constraints are due to the
definition of action space in Section IV and the property of
optimal policy in Lemma 3.
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