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Abstract—This paper studies the network utility maximization
(NUM) problem in static-routing rechargeable sensor networks
(RSNs) with the link and battery capacity constraints. The NUM
problem is very challenging as these two constraints are typi-
cally coupling in RSNs, which cannot be directly tackled. Existing
works either do not fully consider the two coupled constraints
together, or heuristically remove the temporally coupled part, both
of which are not practical, and will also degrade the network
performance. In this paper, we attempt to jointly optimize the sam-
pling rate and battery level by carefully tackling the spatiotempo-
rally coupled link and battery capacity constraints. To this end,
we first decouple the original problem equivalently into separable
subproblems by means of dual decomposition. Then, we propose
a distributed algorithm in the context of joint rate and bat-
tery control, called decouple spatiotemporally-coupled constraint
(DSCC), which can converge to the globally optimal solution.
Numerical results, based on the real solar data, demonstrate that
the proposed algorithm always achieves higher network utility
than existing approaches. In addition, the impact of link/battery
capacity and initial battery level on the network utility is further
investigated.

Index Terms—Dual decomposition, joint rate/battery control,
link/battery capacity constraint, network utility maximization,
rechargeable sensor network.

I. INTRODUCTION

W ITH the explosive development of microelectronics
and wireless communications in recent years, wireless

sensor networks (WSNs) have been widely used in a broad
range of applications [2]–[7]. Although sensor nodes are low-
cost, small-sized and easily-deployed, they are powered by
energy-restricted batteries and replacing batteries is infeasible
due to the large quantity of nodes. Hence, one critical chal-
lenge in WSNs is how to prolong the network lifetime. Recent
years have witnessed the emergence of energy harvesting
technology to address such an issue — the network lifetime
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can be potentially extended by harvesting energy from the envi-
ronment. Known examples of harvestable energy sources for
WSNs include solar power [8], electromagnetic waves [9], ther-
mal energy [10], wind [11], vibration [12], etc. The energy
harvesting technology opens up a new research area referred
to as rechargeable sensor networks (RSNs) [13]–[19].

In general, an RSN is comprised of a number of source nodes
that can harvest energy from the environment. Each source sam-
ples data and reports them, through some nodes (relays) to the
sink. If each source transmits data through fixed relays to the
sink, the RSN is referred to as a static-routing RSN. This paper
is concerned with the network utility maximization (NUM)
problem in static-routing RSNs. There exist two folds of con-
straints on each source. One is the link capacity constraint [20],
i.e., the flow over one link should not exceed the link capac-
ity to avoid link congestion. The other is the battery capacity
constraint [21], i.e., the energy consumption rate should be nei-
ther too large nor too small to avoid depletion or overcharge
of the rechargeable battery1. Taking limited battery capacity
into account, two problems emerge: 1) the source depletes the
battery and stops working (aggressive case); 2) it does not use
much energy such that the battery level reaches maximum and
misses recharging opportunities (conservative case). Obviously,
both cases will limit the potential to improve the network utility.

The NUM problem is challenging as the link and battery
capacity constraints are typically coupling in RSNs, which
cannot be directly tackled. Specifically, in the link capacity con-
straint, one source’s sampling rate is coupled with that of its
ancestors (see Eq. (1)). In the battery capacity constraint, to
calculate the energy consumption rate, one source’s sampling
rate is also coupled with that of its ancestors (see Eq. (2)). The
reason is that one source needs to relay the sampling rates of
its ancestors. Moreover, because the energy consumption rate
is constrained by the energy harvesting rate and current battery
level to avoid depletion or overcharge of battery, one source’s
sampling rate is also coupled across the time horizon (see
Eq. (7)). Therefore, the NUM problem in static-routing RSNs
has the spatiotemporally-coupled constraints [1], which, to the
best of our knowledge, have not been thoroughly investigated.

Existing works either do not fully consider the coupled
link and battery capacity constraints together, or heuristically
remove the temporally-coupled part, both of which are not
practical in real scenarios, and will also degrade the network

1The word “battery” in the following text specifically denotes the recharge-
able battery.
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performance. For example, the energy constraint considered in
QuickFix [20] is that the energy consumption rate does not
exceed the energy harvesting rate. Without considering the cur-
rent battery level, such constraints are not coupling across the
time horizon, making the problem easier to solve. However,
since the excessive harvested energy is not considered to be
stored in the battery for later usage, there is no flexibility to allo-
cate the sampling rate evenly among sources and time horizon,
and hence the network utility will not be the best. Zhang et al.
[21] propose an adaptive Energy Allocation sCHeme (EACH),
with the energy constraint such that the energy consumption
rate does not exceed the energy allocation. Although the energy
allocation is based on the energy harvesting rate and current
battery level, it is heuristically solved without considering the
global optimality. And the remaining problem, without the
temporally-coupled part, is then similar to QuickFix. Although
EACH improves the network utility a little bit, it still cannot
obtain the globally optimal solution. The former work in [1]
does not consider the link capacity constraint for congestion
control, which is not practical in real scenarios. However, since
the link capacity constraint is spatially coupled, incorporating it
will add more challenge to the originally complicated problem.

In this paper, we take the attempt to jointly optimize the
sampling rate and battery level by carefully tackling the
spatiotemporally-coupled link and battery capacity constraints.
To this end, we first decouple the original problem equivalently
into separable subproblems by means of dual decomposition.
Then we propose a distributed algorithm in the context of joint
rate and battery control, which can converge to the globally
optimal solution. The main contributions are summarized as
follows:
1) Both the link and battery capacity constraints are considered

to formulate the NUM problem in static-routing RSNs as a
spatiotemporally-coupled optimization problem.

2) By carefully tackling the spatiotemporally-coupled con-
straints through primal-dual approach with strong duality
and convergence guarantee, we jointly optimize the sam-
pling rate and battery level, and then propose a distributed
algorithm to obtain the globally optimal solution.

3) Numerical results, based on the real solar data, demonstrate
that the proposed algorithm always achieves higher network
utility than existing approaches. In addition, the impact of
link/battery capacity and initial battery level on the network
utility is further investigated.

The remainder of this paper is organized as follows. The
related works are introduced in Section II. In Section III, we
describe the network model and formulate the NUM prob-
lem in static-routing RSNs with the link and battery capacity
constraints. The problem is dually decomposed into separable
subproblems in Section IV. Then in Section V, we propose a
distributed algorithm in the context of joint rate and battery con-
trol to obtain the globally optimal solution. Numerical results
are provided in Section VI, and concluding remarks are drawn
in Section VII with future work.

II. RELATED WORKS

The problem of optimal energy management, rate alloca-
tion and routing in RSNs has drawn considerable attention

in recent literatures. For example, Wang et al. [22] propose
an adaptive data collection and storage system to minimize
the sum of all data losses. They also assume that the solar-
powered system has the less predicable energy supply and thus
needs to adaptively match energy supply and demand. Liu et
al. [23] study the problem of computing the lexicographically
maximum data collection rate and routing paths for perpetual
and fair data sensing. They compute the optimal rate when
the routing structure is a given tree, and further jointly com-
pute a routing structure and the near-optimal rate. Mao et al.
[24] study the problem of joint rate control and power allo-
cation to maximize the long-term average sensing rate. They
extend from a single communication link to the multi-hop sce-
nario with the near-optimal performance. Gu et al. [25] design
energy-synchronized communication (ESC) schemes in RSNs
to balance energy demand with supply. The ESC scheme acts as
a transparent middleware between the network and MAC layers
that controls the amount and timing of RF activity at receivers.
Different from the above works, this paper is concerned with
the NUM problem in RSNs.

There are several works that aim to maximize the network
utility in RSNs. For example, Liu et al. [20] propose the
QuickFix algorithm for computing the data sampling rate and
routes, and the SnapIt algorithm to adapt the sampling rate
to the battery level. They show that these two algorithms can
track the instantaneous optimum network utility while main-
taining the battery level at a target value. However, they only
consider the energy consumption rate less than the energy har-
vesting rate instead of the current battery level, let alone the
battery capacity constraint. Zhang et al. [21] are concerned
with how to maximize the overall network performance with
limited battery capacity. They develop the EACH algorithm to
efficiently manage the battery energy usage, and the DSRC
algorithm for obtaining the optimal sampling rate. They fur-
ther propose the IEACH algorithm to alleviate the impact
due to imprecise estimation of energy harvesting. However,
they do not consider the link capacity constraint, and the
battery capacity constraint is heuristically solved without con-
sidering the global optimality. Li et al. [26] consider a RSN
with a mobile charger and propose to optimize the network
utility while guaranteeing sustainability. They include three
factors together: uncontrollable ambient energy harvesting,
controllable wireless charging, and controllable sensory data
generation. However, they do not consider the link capacity
constraint, and the proposed distributed scheme is approximate
not optimal.

Different from aforementioned works, this paper is con-
cerned with the NUM problem in static-routing RSNs with the
link and battery capacity constraints. By carefully tackling the
spatiotemporally-coupled link and battery capacity constraints,
our goal is to jointly optimize the sampling rate and battery
level to further improve the network performance. Besides, the
proposed distributed algorithm can converge to the globally
optimal solution.

III. NETWORK MODEL AND PROBLEM FORMULATION

Consider a static-routing RSN with a set N � {1, · · · , N }
of source nodes. We assume that all nodes are sources except
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Fig. 1. Network model.

TABLE I
SUMMARY OF NOTATIONS

aThe unit of a quantity may be omitted in the rest of the paper if it is specified here.

the sink. Each source has a solar photovoltaic panel and a
rechargeable battery, so that the excessive harvested energy
can be stored in the battery for future usage. The time cycle
of energy harvesting is divided into a set H � {1, · · · , H} of
time slots. In this paper, we consider one day (daytime) as a
time cycle, e.g., from 8:00 to 16:00 as shown in Fig. 1(b).
If we assume that the duration (granularity) of the time slot
is �h = 10 min, then the total number of the time slots is
H = 48. The other days could repeat the same way. Since this
work mainly focuses on joint rate and battery control to max-
imize network utility of RSNs, the channel model and link
scheduling can be referred to the existing literatures [20]–[26].
Some important notations used in this paper are summarized
in TABLE I. In the rest of this work, we also use the fol-
lowing mathematical notations: xT denotes the transpose of
x; ‖x‖2 denotes the L2 (Euclidean) norm of x; [·]+ denotes
max {·, 0}; [·]b

a denotes min {max {·, a} , b}; f ′ (·) denotes the
first derivative of function f (·); and f −1 (·) denotes the inverse
of function f (·).

A. Link Capacity Constraint

In the static-routing RSN, we assume a tree topology with
single-path routing. At each time slot h ∈ H, each source i ∈ N

samples data at rate rh
i , and emits one flow, through a fixed

set R (i) of relays to the sink. Each source i ∈ N has only
one link to its next hop, with limited link capacity ch

i , which
is variant at each time slot h ∈ H. Taking the tree-topology
RSN in Fig. 1(a) for example, R (1) = {2, 4}, i.e., one source’s
relays are the downstream nodes of that source. Let A (i) �
{ j |i ∈ R ( j)} denote the set of ancestors who use the source i as
a relay. Taking the tree-topology RSN in Fig. 1(a) for example,
A (4) = {1, 2, 3}, i.e., one source’s ancestors are the upstream
nodes of that source. Thus the link capacity constraint of each
source is

rh
i +

∑
j∈A(i)

rh
j ≤ ch

i , (1)

which indicates that the flow over one link should not exceed
the link capacity to avoid link congestion. In the link capacity
constraint, one source’s sampling rate is coupled with that of its
ancestors.

B. Battery Capacity Constraint

At each time slot h ∈ H, let πh
i denote the source i’s energy

harvesting rate, which is assumed to be predicted and esti-
mated with high accuracy [27], taking the energy harvesting
profile in Fig. 1(b) for example. Each source consumes energy
for sensing and communication (including data reception and
transmission). Let er

i , es
i , and et

i denote the source i’s energy
consumption rates for receiving, sampling, and transmitting,

respectively. rh �
[
rh

1 , · · · , rh
N

]T
is the sampling rate vector.

The (comprehensive) energy consumption rate of each source
is defined by

ψi

(
rh
)
�
(
es

i + et
i

)
rh

i +
(
er

i + et
i

) ∑
j∈A(i)

rh
j , (2)

where one source’s sampling rate is coupled with that of its
ancestors.

Let Bh
i denote the source i’s battery level at the end of the

time slot h, which is calculated by

Bh
i =

[
Bh−1

i + πh
i �h − ψi

(
rh
)
�h

]Bmax
i

0
, (3)

where�h indicates the duration (granularity) of the time slot h,
and Bmax

i denotes the source i’s battery capacity. For the ease
of presentation, define a surplus variable [21], [23]

δh
i �

[
Bh−1

i + πh
i �h − ψi

(
rh
)
�h − Bmax

i

]+
as “missed energy”, whose physical meaning is the amount of
the harvested energy that cannot be stored in the source i’s bat-
tery at the time slot h if the battery is full. If the source i’s
battery at the time slot h is not full, then δh

i = 0. Thus the actual
amount of the harvested energy that can be stored in the source
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i’s battery at the time slot h is πh
i �h − δh

i . By use of δh
i , Eq. (3)

can be recursively calculated by

Bh
i = Bh−1

i + πh
i �h − ψi

(
rh
)
�h − δh

i

= B0
i +

h∑
t=1

π t
i�t −

h∑
t=1

ψi
(
r t)�t −

h∑
t=1

δt
i , (4)

where the source i’s initial battery level B0
i is assumed to be

known.
With limited battery capacity, the energy consumption rate of

each source2 is constrained by

0 ≤ Bh
i = Bh−1

i + πh
i �h − ψi

(
rh
)
�h − δh

i ≤ Bmax
i , (5)

which indicates that the energy consumption rate should be
neither too large such that the source depletes the battery and
stops working (aggressive case), nor too small such that the
battery level reaches maximum and misses recharging oppor-
tunities (conservative case). Note that since δh

i ≥ 0, we have
Bh−1

i + πh
i �h − ψi

(
rh
)
�h ≥ δh

i ≥ 0, i.e., each source must
have enough energy to support the sampling rate at each time
slot.

By substituting Eq. (4) for Bh
i , Eq. (5) is rewritten as

0 ≤ Bh
i = B0

i +
h∑

t=1

π t
i�t −

h∑
t=1

[
ψi

(
r t)�t + δt

i

] ≤ Bmax
i .

For simplicity, we define a variable

Dt
i

(
r t , δt

i

)
� ψi

(
r t)�t + δt

i (6)

as the source i’s energy demand at the time slot t , and two
constants ⎧⎨

⎩
Lh

i � U h
i − Bmax

i

U h
i � B0

i +
h∑

t=1
π t

i �t

to be the lower and upper bounds of the energy constraint,
respectively. Thus the battery capacity constraint of each
source is

Lh
i ≤

h∑
t=1

Dt
i

(
r t , δt

i

) ≤ U h
i , (7)

where one source’s sampling rate is also coupled across the time
horizon.

C. Problem Formulation

The source i attains utility W
(
rh

i

)
when it samples data

at rate rh
i at the time slot h, where the utility can be a

specific performance (e.g., data gathering) required by appli-
cations. The utility function W (·) is assumed to be increasing

2The sink is assumed to connect with an electrical wire, and thus there is no
need to consider the energy constraint on it.

and strictly concave [21]. For example, let W
(
rh

i

)
� log

(
rh

i

)
,

which is known to guarantee the fairness of each source.
The NUM problem in static-routing RSNs with the link and
battery capacity constraints is to maximize the network util-
ity

∑
h∈H

∑
i∈N W

(
rh

i

)
over the sampling rate matrix R �[

rh
i

]
i∈N,h∈H and missed energy matrix � �

[
δh

i

]
i∈N,h∈H,

under the link capacity constraint (1) and battery capacity
constraint (7):

Primal Problem:

max
R,�

∑
h∈H

∑
i∈N

W
(

rh
i

)
(8)

s.t.

{
(1) and (7)
rh

i , δ
h
i ≥ 0

∀i ∈ N, ∀h ∈ H.

IV. DUAL DECOMPOSITION

With the coupled link and battery capacity constraints (1)
and (7), especially the spatiotemporally-coupled constraint (7)
which couples one source’s sampling rate with that of its ances-
tors across the time horizon, the primal problem (8) cannot
be directly tackled. However, by means of dual decomposition
[28]–[32], we can decouple the original problem equivalently
into separable subproblems and then solve them locally. Due
to strong duality, the primal problem and its dual problem are
equivalent.

A. Lagrangian

Define the Lagrangian

L (R,�,�, M, N) =
∑
h∈H

∑
i∈N

W
(

rh
i

)

+
∑
h∈H

∑
i∈N

{
λh

i

[
h∑

t=1

Dt
i

(
r t , δt

i

)− Lh
i

]

+ μh
i

[
U h

i −
h∑

t=1

Dt
i

(
r t , δt

i

)]

+ νh
i

⎡
⎣ch

i −
⎛
⎝rh

i +
∑

j∈A(i)
rh

j

⎞
⎠
⎤
⎦
⎫⎬
⎭,

where we relax the coupled constraints (1) and (7), respec-
tively, by introducing the Lagrangian multipliers λh

i , μ
h
i , ν

h
i ≥

0 for each source at each time slot, and � �
[
λh

i

]
i∈N,h∈H,

M �
[
μh

i

]
i∈N,h∈H, and N �

[
νh

i

]
i∈N,h∈H are the Lagrangian

multiplier matrixes. Note that

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
h∈H

[(
λh

i − μh
i

) h∑
t=1

Dt
i

]
= ∑

h∈H

[
ψi

(
rh
)
�h + δh

i

]
αh

i∑
i∈N

ψi
(
rh
)
�h · αh

i =
∑

i∈N
rh

i β
h
i

∑
i∈N

νh
i

(
rh

i +
∑

j∈A(i)
rh

j

)
= ∑

i∈N
rh

i χ
h
i ,
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if we define the intermediate variables⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αh
i �

H∑
t=h

(
λt

i − μt
i

)
(9a)

βh
i �

⎡
⎣αh

i

(
es

i + et
i

)+ ∑
j∈R(i)

αh
j

(
er

j + et
j

)⎤⎦�h (9b)

χh
i � νh

i +
∑

j∈R(i)
νh

j . (9c)

These equations can be proved through expansion of both sides
and mathematical induction. Thus the Lagrangian is

L (R,�,�, M, N) =∑
h∈H

∑
i∈N

[
W

(
rh

i

)
+
(
βh

i − χh
i

)
rh

i + αh
i δ

h
i

]

+
∑
h∈H

∑
i∈N

(
−λh

i Lh
i + μh

i U h
i + νh

i ch
i

)
.

B. Subproblem and Dual Problem

The dual function is the maximum value of the Lagrangian
over the system variables R and �:

D (�, M, N) = sup
R,�

L (R,�,�, M, N) .

Define
Subproblem:⎧⎪⎪⎨
⎪⎪⎩

Fh
i (�, M, N) � max

rh
i ≥0

[
W

(
rh

i

)
+
(
βh

i − χh
i

)
rh

i

]
(10a)

Gh
i (�, M) � max

δh
i ≥0

αh
i δ

h
i (10b)

as the (i, h)th Lagrangian to be maximized by the source i at
the time slot h. Thus the dual function is

D (�, M, N) =
∑
h∈H

∑
i∈N

[
Fh

i (�, M, N)+ Gh
i (�, M)

]

+
∑
h∈H

∑
i∈N

(
−λh

i Lh
i + μh

i U h
i + νh

i ch
i

)
.

The dual problem is to minimize the dual function over the
Lagrangian multipliers � and M:

Dual Problem:

min
�,M,N

D (�, M, N) (11)

s.t. λh
i , μ

h
i , ν

h
i ≥ 0 ∀i ∈ N, ∀h ∈ H.

The dual problem (11) can be iteratively solved using the
subgradient projection method, and the Lagrangian multipliers
are updated in an opposite direction to the subgradient of the
dual function: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
λ

h,k+1
i =

[
λ

h,k
i − γλ∇λh

i
D
]+

μ
h,k+1
i =

[
μ

h,k
i − γμ∇μh

i
D
]+

ν
h,k+1
i =

[
ν

h,k
i − γν∇νh

i
D
]+
,

where γλ, γμ, and γν > 0 are the step sizes which adjust the
convergence rate, and k ∈ N

+ denotes the index of iteration.
Theorem 1: The primal problem (8) has strong duality.

Proof: First, the primal problem (8) is the maximization
over a concave function, which is equivalent to the minimiza-
tion over a convex function. Then, the inequality constraint
functions (1) and (7) are affine. It is proved in [28, Sec.
5.3.2] that strong duality holds since (8) satisfies the constraint
qualification. �

With strong duality, the optimal duality gap is zero.
Therefore, to solve the primal problem (8) is equivalent to
solving its dual problem (11).

V. SOLUTION

A. Subproblem Solution

By means of dual decomposition, the global optimization
problem (8) has been equivalently decoupled into separable
local optimization subproblems (10a) and (10b) at each source
at each time slot. One subproblem (10a) corresponds to rate
control — to determine the optimal sampling rate. The other
subproblem (10b) is battery control — to calculate the missed
energy due to limited battery capacity. We solve these subprob-
lems in the context of joint rate and battery control.
1) Rate control: for the subproblem (10a) at each source at each

time slot, given �k , Mk , and Nk , the sampling rate

r̃ h
i =

[(
W ′

)−1
(
χ

h,k
i − βh,k

i

)]+
(12)

is unique due to the strict concavity of W (·). Besides, the
function

(
W ′

)−1
(·) is monotonely decreasing. Under arbi-

trary �k , Mk , and Nk , the local maximizer r̃ h
i may not be

globally optimal. However, by duality theory, there exists
dual optimal �∗, M∗, and N∗ such that rh∗

i will be globally
optimal.

2) Battery control: for the subproblem (10b) at each source at
each time slot, given �k and Mk , the missed energy can be
iteratively solved using the gradient projection method:

δ̃h
i =

[
δ̃h

i + θαh,k
i

]+
, (13)

where θ > 0 is the step size which adjusts the convergence
rate.

From the above, given �∗, M∗, and N∗ from the dual prob-
lem (11), each source can solve the subproblems (10a) and
(10b) locally without the need to coordinate with other sources
or time slots. In such sense, the Lagrangian multipliers serve as
coordination signals which align the local optimality of (10a)
and (10b) with the global optimality of (8).

B. Dual Problem Solution

Recall that the subproblems (10a) and (10b) have the local
optimal solutions r̃ h

i and δ̃h
i respectively. Thus we have{

Fh
i (�, M, N) = W

(
r̃ h

i

)+ (
βh

i − χh
i

)
r̃ h

i
Gh

i (�, M) = αh
i δ̃

h
i ,
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and ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∇λh
i
D =

h∑
t=1

Dt
i

(
r̃ t , δ̃t

i

)
− Lh

i

∇μh
i
D = U h

i −
h∑

t=1
Dt

i

(
r̃ t , δ̃t

i

)

∇νh
i
D = ch

i −
(

r̃ h
i +

∑
j∈A(i)

r̃ h
j

)
.

We obtain the following Lagrangian multiplier update rules:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ
h,k+1
i =

{
λ

h,k
i − γλ

[
h∑

t=1

Dt
i

(
r̃ t , δ̃t

i

)
− Lh

i

]}+
(14a)

μ
h,k+1
i =

{
μ

h,k
i − γμ

[
U h

i −
h∑

t=1

Dt
i

(
r̃ t , δ̃t

i

)]}+
(14b)

ν
h,k+1
i =

⎧⎨
⎩νh,k

i − γν
⎡
⎣ch

i −
⎛
⎝r̃ h

i +
∑

j∈A(i)
r̃ h

j

⎞
⎠
⎤
⎦
⎫⎬
⎭
+
, (14c)

which indicates, if the source’s accumulated energy demand∑h
t=1 Dt

i

(
r̃ t , δ̃t

i

)
is less than the lower bound Lh

i (conserva-

tive case), λh
i will rise, increasing αh

i and βh
i , which will in turn

increase the sampling rate rh
i and missed energy δh

i ; however, if
it exceeds the upper bound U h

i (aggressive case), μh
i will rise,

decreasing αh
i and βh

i , which will in turn decrease the sampling
rate rh

i and missed energy δh
i . On the other hand, the Lagrangian

multiplier νh
i can be interpreted as the link congestion price,

which indicates, if at time slot h the flow r̃ h
i +

∑
j∈A(i) r̃ h

j over

link i exceeds the link capacity ch
i , the link congestion price

νh
i will rise, increasing χh

i , which will in turn decrease the
sampling rate rh

i to avoid link congestion, and vice versa.

C. Distributed Algorithm

Let NA (i) denote the set of the neighbor ancestors of the
source i , and N R (i) for the neighbor relay of the source
i . Taking the tree-topology RSN in Fig. 1(a) for example,
NA (4) = {2, 3} and N R (1) = 2. At each time slot h ∈ H, let
Rh

i � rh
i +

∑
j∈A(i) rh

j denote the sum of the sampling rates
that the source i needs to transmit, which can be expressed in a
recursive way as

Rh
i = rh

i +
∑

j∈NA(i)

Rh
j . (15)

Then Eq. (2) and Eq. (14c) can be rewritten as

ψi

(
rh
)
�
(
es

i + et
i

)
rh

i +
(
er

i + et
i

) (
Rh

i − rh
i

)
, (16)

and

ν
h,k+1
i =

[
ν

h,k
i − γν

(
ch

i − R̃h
i

)]+
. (17)

Similarly, if we at the same time denote Ah
i � αh

i

(
es

i + et
i

)+∑
j∈R(i) αh

j

(
er

j + et
j

)
in a recursive way as

Ah
i = αh

i

(
es

i + et
i

)+ Ãh
N R(i), (18)

where

Ãh
N R(i) � Ah

N R(i) + αh
N R(i)

(
er

N R(i) − es
N R(i)

)
, (19)

then Eq. (9b) can be rewritten as

βh
i � Ah

i �h. (20)

Similarly, Eq. (9c) can be expressed in a recursive way as

χh
i � νh

i + χh
N R(i). (21)

Algorithm 1. DSCC
Input: network topology and configuration, energy

consumption rate and energy harvesting profile,
link/battery capacity and initial battery level

Output: sampling rate R∗ and missed energy �∗
1 Initialization: k ← 1, each source i ∈ N begins with

arbitrary nonnegative Lagrangian multipliers
{
λ

h,1
i

}
h∈H,{

μ
h,1
i

}
h∈H, and

{
ν

h,1
i

}
h∈H;

2 repeat
3 for each source i = N , · · · , 1 do

4 receives
{

Ãh,k
N R(i)

}
h∈H and

{
χ

h,k
N R(i)

}
h∈H from its

neighbor relay N R (i);
5 for each time slot h = H, · · · , 1 do
6 calculates αh,k

i , Ah,k
i , Ãh,k

i , βh,k
i , and χh,k

i from
(9a), (18), (19), (20), and (21);

7 computes r̃ h
i and δ̃h

i from (12) and (13);
8 end for

9 sends
{

Ãh,k
i

}
h∈H and

{
χ

h,k
i

}
h∈H to all its

neighbor ancestors NA(i);
10 end for
11 for each source i = 1, · · · , N do

12 receives
{

R̃h
j

}
h∈H from all its neighbor ancestors

j ∈ NA(i);
13 for each time slot h = 1, · · · , H do

14 calculates R̃h
i , ψi

(
r̃h
)

, and
∑h

t=1 Dt
i

(
r̃ t , δ̃t

i

)
from (15), (16), and (6);

15 updates λh,k+1
i , μh,k+1

i , and νh,k+1
i from (14a),

(14b), and (17);
16 end for

17 sends
{

R̃h
i

}
h∈H to its neighbor relay N R (i);

18 end for
19 k ← k + 1;
20 until �, M, and N converge within a small range ε;

From the discussion in the previous section, each source can
be treated as processors in the distributed computation system
to solve the NUM problem in static-routing RSNs with the
link and battery capacity constraints. Assume that all source
nodes are indexed in descending order of their hop counts
to the sink, taking the tree-topology RSN in Fig. 1(a) for
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example. We propose a distributed algorithm (Algorithm 1) in
the context of joint rate and battery control, called Decouple
Spatiotemporally-Coupled Constraint (DSCC), which can con-
verge to the globally optimal solution. Each iteration includes
two rounds. In the first round, each source i = N , · · · , 1 from
bottom (root) to top (leaf) locally computes its sampling rate
r̃ h

i and missed energy δ̃h
i (line 7), based on the information

from its neighbor relay (line 4). Specifically, once a source
receives message from its neighbor relay, it performs local
computing, and then sends message to all its neighbor ances-
tors. The process goes so on and so forth, from bottom (root)
to top (leaf). Similarly, in the second round, each source i =
1, · · · , N from top (leaf) to bottom (root) locally updates its
Lagrangian multipliers λh,k+1

i , μh,k+1
i , and νh,k+1

i (line 15),
based on the information from all its neighbor ancestors (line
12). Specifically, once a source receives message from all its
neighbor ancestors, it performs local computing, and then sends
message to its neighbor relay. The process goes so on and so
forth, from top (leaf) to bottom (root). From the above, synchro-
nization is not needed for iterations. To deal with lost message,
besides waiting for retransmission, an alternative way is to
use the former message received in the previous iteration. The
cycle repeats until all Lagrangian multipliers converge within
a small range ε, which indicates the error tolerance (stopping
criterion) to stop the calculation. The overhead is the neighbor-
hood communication with a few control messages to exchange.
DSCC is a low-cost algorithm, as neighbor sources collabo-
rate with each other to adjust their sampling rates and missed
energies in a distributed manner. The amount of communica-
tion overhead is relatively small, compared to that of one day’s
sampling data. Besides, since the algorithm performs only once
at the beginning of the time cycle (one day), compared to the
amount of battery capacity and one day’s energy harvesting, the
energy consumption has relatively small impact on the problem
investigated.

Theorem 2: With the sufficiently small step sizes γλ, γμ,
and γν , the DSCC algorithm converges to the globally optimal
sampling rate R∗ and missed energy �∗, as long as the primal
problem (8) is feasible.

Proof: We define the single Lagrangian multiplier � �
[�, M, N]. Since the utility function W (·) is strictly concave,
and thus the relationship from the sampling rate R and missed
energy � to the Lagrangian multiplier � is monotone, there
exist the sufficiently small step sizes γλ, γμ, and γν that guaran-
tee the convergence of the subgradient projection method [33].
The DSCC algorithm converges when 0 < γλ, γμ, and γν <
2/K , where K is the Lipschitz constant for the dual function:

‖∇D (�1)− ∇D (�2)‖2 ≤ K ‖�1 −�2‖2 .
�

VI. NUMERICAL RESULTS

A. Simulation Setup

In this section, we provide numerical results to demonstrate
the performance of the proposed algorithm. Consider an RSN
comprised of four source nodes, with the network topology

TABLE II
PARAMETER SETTING

shown in Fig. 1(a) [21], [23], where the node (link) 4 is the
bottleneck node (link). Each source has a 37×33 mm2 solar
photovoltaic panel, and a super capacitor as the rechargeable
battery, whose capacity is 304 J . Besides, each source has a
wireless transceiver module such as Telos [34], and the energy
consumption rates for receiving, sampling, and transmitting are
0.069 J/kb, 0.0054 J/kb, and 0.063 J/kb, respectively [21],
[23]. We use the real solar data collected from the Baseline
Measurement System at the NREL Solar Radiation Research
Laboratory [35]. For example, the data at noon on December
12, 2012 is 512 W/m2, so the energy harvesting rate at that
time is 0.625 J/s, as shown by the energy harvesting profile in
Fig. 1(b)3. Assume that the initial battery level of each source
is zero. Let the utility function be W

(
rh

i

)
� log

(
rh

i

)
, which is

known to guarantee the fairness of each source. The above sim-
ulation parameters are summarized in TABLE II for reference.
All the following results are obtained by MATLAB R2007b
running on a laptop PC with Intel Core i5-3320 CPU @ 2.6
G H z, 4 G B RAM memory, and 32-bit Windows 7 OS.

B. Performance Comparison

We first compare DSCC with QuickFix [20], whose energy
constraint is that the energy consumption rate does not exceed
the energy harvesting rate. The simulation results of DSCC and
QuickFix are shown in Fig. 2(a) and Fig. 2(b), respectively.
In both algorithms, no source depletes the battery and stops
working. DSCC allocates the sampling rate more evenly among
sources and time horizon, while the curves of source rate in
QuickFix tightly follow the trend of the energy harvesting rate.

We also compare DSCC with the algorithm that the battery
capacity is assumed to be unlimited, so the conservative case
that the battery level reaches maximum and misses recharg-
ing opportunities is prohibitive. Based on DSCC, we can either
set each source’s battery capacity

{
Bmax

i

}
i∈N to be sufficiently

large, or set the Lagrangian multiplier � and missed energy
� to be zero (i.e., to relax the left half

∑h
t=1 Dt

i

(
r t , δt

i

) ≥
Lh

i of the battery capacity constraint (7)), to reach such an
assumption. The revised algorithm is referred to as DSCC-with
unlimited battery capacity (DSCC-un) and its simulation result
is shown in Fig. 2(c). We see that the battery level can reach
very high and DSCC-un flattens the curves of source rate as
much as possible.

The performance of DSCC, QuickFix, and DSCC-un is
numerically compared in TABLE III. We compare their net-
work utility, total sampling rates, and total missed energy in five
days from 2012 December 10 to 14. It shows that DSCC always

3The following figures are based on the solar data of December 12, 2012. We
focus on the daytime since the energy harvesting rate is zero at night.
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Fig. 2. Simulation results.

TABLE III
PERFORMANCE COMPARISON

obtains higher network utility than QuickFix. This is because,
for the logarithmic utility function, the flatter the curves of
source rate, the higher the network utility. It is also observed
that, all three algorithms have almost the same total sampling
rates; however, DSCC-un can store all harvested energy due to
unlimited battery capacity. Hence, it can flatten the curves of
source rate as much as possible, and thereby obtains the best

network utility. On the other hand, DSCC and QuickFix have
almost the same total missed energy; however, by use of bat-
tery, DSCC can allocate the sampling rate more evenly among
sources and time horizon, and thereby obtains higher network
utility than QuickFix.

We finally compare DSCC with EACH [21], whose energy
constraint is that the energy consumption rate does not exceed
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Fig. 3. Battery capacity impact on network utility.

the energy allocation. Although the energy allocation is based
on the energy harvesting rate and current battery level, it is
heuristically solved without considering the global optimality.
The remaining problem, without the temporally-coupled part,
is then similar to QuickFix. Although EACH improves the net-
work utility a little bit, it still cannot obtain the globally optimal
solution. The simulation result of EACH is shown in Fig. 2(d)
and partly in Fig. 3. It can be seen that EACH improves the net-
work utility by 2.66%, and DSCC improves it by 16.53% when
the battery capacity is 304 J .

From the above, the proposed DSCC algorithm has bet-
ter performance than the baseline approaches QuickFix and
EACH. The underlying reason is that DSCC uses battery more
efficiently from the global optimal view, such that the sampling
rates are allocated more evenly among sources and time hori-
zon; while the curves of source rate in QuickFix and EACH
tightly follow the trend of the energy harvesting rate, either
without consideration of battery or from the local optimal view.
Therefore, DSCC improves the network utility of QuickFix and
EACH by 16.53% and 13.87% respectively when the battery
capacity is 304 J .

C. Battery Capacity and Initial Battery Level Impact

We first evaluate the impact of battery capacity on the net-
work utility. QuickFix can be viewed as the algorithm with
zero battery capacity, because its energy constraint is that the
energy consumption rate does not exceed the energy harvest-
ing rate. Without consideration of battery, such constraints are
not coupling across the time horizon, making the problem eas-
ier to solve. However, since the excessive harvested energy is
not considered to be stored in the battery for later usage, there
is no flexibility to allocate the sampling rate evenly among
sources and time horizon, and thus the network utility is low. On
the contrary, DSCC-un is the algorithm with unlimited battery
capacity, so it has the maximum flexibility to flatten the curves
of source rate as much as possible, and hence the network util-
ity is high. Finally, DSCC, with limited battery capacity, is
the algorithm between these two. The impact of battery capac-
ity on the network utility is shown in Fig. 3. We see that the

Fig. 4. Initial battery level impact on network utility.

network utility of DSCC and EACH increases with the bat-
tery capacity. Figure 3 also shows that their performance does
not increase indefinitely with the battery capacity but reaches
their saturation points when the battery capacity is over 2500
and 1000 J respectively. When the battery capacity is zero,
DSCC corresponds to QuikFix. And when the battery capac-
ity becomes large enough, DSCC is referred to as DSCC-un.
It is also observed that, without battery, the network utility is
the worst. No matter which algorithm (QuickFix, EACH, or
DSCC) is applied, the results are the same. However, by use of
battery, EACH improves the performance a little bit, but DSCC
improves it much more and always outperforms EACH. The
best network utility is achieved by DSCC-un, i.e., DSCC-with
unlimited battery capacity.

We also evaluate the impact of initial battery level on the
network utility. Note that in the above simulations, we have
assumed that the initial battery level of each source is zero. Now
we fix the battery capacity of each source at 2500 J , while vary
their initial battery level from zero to full. The impact of initial
battery level on the network utility is shown in Fig. 4. We can
observe that the network utility of DSCC and EACH increases
with the initial battery level. Figure 4 also shows that the perfor-
mance of EACH does not increase indefinitely with the initial
battery level but reaches a saturation point when the initial bat-
tery level is over 1500 J . The reason is because the EACH
algorithm does not take the initial battery level into considera-
tion. Therefore the curve for EACH flattens out after the initial
battery level exceeds a threshold. When the initial battery level
is zero, the network utility is the worst. But the network util-
ity of DSCC is much better than that of EACH, because DSCC
makes use of battery more efficiently. Besides, the network util-
ity of DSCC increases with the initial battery level much faster
than that of EACH. It is also seen that, when the initial battery
is full, DSCC outperforms EACH most, where the outperfor-
mance of the network utility is almost twice of that when the
initial battery is zero.

We finally evaluate the impact of both battery capacity and
initial battery level on the network utility. We vary the bat-
tery capacity of each source from zero to 2500 J . While for
each battery capacity, we also vary the initial battery level from
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Fig. 5. Battery capacity and initial battery level impact on network utility.

Fig. 6. DSCC under link capacity constraint.

zero to full. The impact of both battery capacity and initial bat-
tery level on the network utility is shown in Fig. 5, where the
upper layer is the performance of DSCC, and the lower layer
for EACH. Note that in this figure, when the initial battery level
is larger than the battery capacity, the corresponding result is set
equally to that when the initial battery level is full. It can be seen
that, when the battery capacity is zero, the network utility is the
worst, despite of DSCC or EACH. The network utility increases
with both the battery capacity and initial battery level. The best
performance, for both DSCC and EACH, is achieved when the
battery capacity is the largest and the initial batter level is full.
In addition, DSCC always obtains higher network utility than
EACH, under any battery capacity and any initial batter level.
This is because DSCC uses battery more efficiently to allocate
the sampling rate evenly among sources and time horizon, and
thus achieves better performance.

D. Link Capacity Impact

Note that in the above simulations, we have assumed that the
link capacity is large enough. Based on DSCC, we can either set
all links’ capacities

{
ch

i

}
i∈N to be sufficiently large, or set the

link congestion price N to be zero (i.e., to relax the link capacity

Fig. 7. Flow over link (top, solid), link capacity (top, dashed), and link
congestion price (bottom).

Fig. 8. Link capacity impact on network utility.

constraint (1)), to reach such an assumption. We first set each
link’s capacity at 4 kbps and see its impact on the algorithms.
We take DSCC as an example, whose performance under the
link capacity constraint is shown in Fig. 6, and the other three
algorithms have the similar results. Compared with Fig. 2(a),
we can observe that from 11:00 to 14:00, although the energy
harvesting rate is high, the corresponding sampling rate is not
accordingly increased, due to the link capacity constraint of the
bottleneck link 4.

Specifically, for the DSCC algorithm under the link capac-
ity constraint, the flow over link f h

i � rh
i +

∑
j∈A(i) rh

j and

the link congestion price νh
i are shown in Fig. 7. It is verified

that the link capacity constraint (1) is satisfied, especially for
the bottleneck link 4. It can be seen that the link congestion
prices are zero whenever the link is un-congested. This is due
to the complementary slackness condition νh

i

(
ch

i − f h
i

) = 0,
which states that for all inactive constraints the corresponding
Lagrangian multipliers should be zero.

To evaluate the impact of link capacity on the network util-
ity, we fix the battery capacity of each source at 304 J (except
for DSCC-un who has unlimited battery capacity) and their ini-
tial battery level is zero, while vary each link’s capacity from
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TABLE IV
COMPARISON BETWEEN DSCC AND YALMIP SOLUTIONS

1 to 10 kbps. The impact of link capacity on the network util-
ity is shown in Fig. 8. It is observed that the network utility
increases with the link capacity. As aforementioned, QuickFix
and DSCC-un indicate the lower and upper bounds respec-
tively as benchmarks. EACH improves the lower baseline a
little bit, but DSCC improves it much more and always outper-
forms EACH. Figure 8 also shows that the performance does
not increase indefinitely with the link capacity but reaches their
saturation points when the link capacity is over 5 or 6 kbps.

E. Optimality and Scalability

In this paper, we propose the DSCC algorithm to solve the
problem (8) in a distributed fashion. As a nonlinear problem
(NLP), it could be centrally solved through an NLP solver. To
demonstrate the global optimality of the distributed algorithm,
we compare the solution of DSCC with that of a centralized
solver YALMIP [36]. We utilize YALMIP to solve the prob-
lem (8) with various parameter settings, which have covered all
scenarios mentioned above. In TABLE IV we list a few sample
solutions for comparison. The left column of solution is under
the scenario that the battery capacity impacts on the network
utility. The initial battery level of each source is zero, while
their battery capacity varies from zero to 2500 J . The solution
of DSCC is also shown in Fig. 3. The middle column of solu-
tion is under the scenario that the initial battery level impacts
on the network utility. The battery capacity of each source is
fixed at 2500 J , while their initial battery level varies from zero
to full. The solution of DSCC is also shown in Fig. 4. The right
column of solution is under the scenario that the link capac-
ity impacts on the network utility. The battery capacity of each
source is fixed at 2500 J and their initial battery level is zero,
while each link’s capacity varies from 1 to 6 kbps. The solution
of DSCC is also shown in Fig. 8. It is observed that the DSCC
and YALMIP solutions are almost the same, where the very
small differences result from the error tolerance ε. Since DSCC
can achieve almost the same results as a centralized solver,
its global optimality is guaranteed. This is where our propose
algorithm outperforms existing distributed approaches.

To investigate the scalability issue of the DSCC algorithm,
we extend the above simulation to dense-deployed large-scale
RSNs with more sources. The impact of source number on the
iteration number and simulation time is shown in Fig. 9. We
consider RSNs with the topology of full and complete binary
trees, taking the sink as the root. That is, the source number is
2l+1-2, which increases exponentially with the tree level l. We
perform simulations on these binary trees to show the iteration

Fig. 9. Source number impact on iteration number and simulation time.

Fig. 10. Source number impact on network utility and total missed energy.

number and simulation time required for DSCC convergence. It
can be observed that, as the source number increases exponen-
tially, the iteration number also increases exponentially. Since
the simulation time is dependent on the iteration number, the
changing trend of the simulation time is similar. As the source
number increases to more than 500, the proposed distributed
algorithm consumes the simulation time of less than 900 s.
Since the algorithm performs only once at the beginning of
the time cycle (one day), the simulation time is acceptable.
The impact of source number on the network utility and total
missed energy is shown in Fig. 10. It is seen that, with the
network scale expansion, the network utility decreases and the
total missed energy increases. The reason is that, as the source
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number increases, the burden on the bottleneck source (link)
becomes heavier, but the harvested energy and link capac-
ity of the bottleneck source (link) do not change. Therefore,
more harvested energy will be missed and the network utility
degrades.

VII. CONCLUSION AND FUTURE WORK

In this paper, the NUM problem in static-routing RSNs with
the link and battery capacity constraints has been fully investi-
gated. The challenge lies in that the battery capacity constraint
is spatiotemporally coupling, which cannot be directly tackled.
We attempt to jointly optimize the sampling rate and battery
level by carefully tackling the spatiotemporally-coupled link
and battery capacity constraints. By means of dual decom-
position, we decouple the original problem equivalently into
separable subproblems, which can be locally solved in the
context of joint rate and battery control. Based on this, we
have proposed a distributed algorithm to obtain the globally
optimal solution. Numerical results demonstrate that the pro-
posed algorithm always achieves higher network utility than
existing approaches. In addition, the impact of link/battery
capacity and initial battery level on the network utility is further
investigated.

For our future work, the NUM problem in dynamic-routing
RSNs with the link and battery capacity constraints will be
considered. In this context, flow rates will be the additional
variables in the problem formulation to determine the optimal
routing. Thus, the sampling rate, battery level, and routing strat-
egy need to be jointly optimized. However, since the energy
consumption rate for data transmitting will be dependent on the
routing design and no longer fixed as in the static-routing case,
the problem would become more complicated to solve.
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