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Abstract—Wireless sensor networks (WSNs) are vulnerable to
selective forwarding attacks that can maliciously drop a subset of
forwarding packets to degrade network performance and jeop-
ardize the information integrity. Meanwhile, due to the unstable
wireless channel in WSNs, the packet loss rate during the com-
munication of sensor nodes may be high and vary from time to
time. It poses a great challenge to distinguish the malicious drop
and normal packet loss. In this paper, we propose a channel-aware
reputation system with adaptive detection threshold (CRS-A) to
detect selective forwarding attacks in WSNs. The CRS-A eval-
uates the data forwarding behaviors of sensor nodes, according
to the deviation of the monitored packet loss and the estimated
normal loss. To optimize the detection accuracy of CRS-A, we the-
oretically derive the optimal threshold for forwarding evaluation,
which is adaptive to the time-varied channel condition and the esti-
mated attack probabilities of compromised nodes. Furthermore,
an attack-tolerant data forwarding scheme is developed to collab-
orate with CRS-A for stimulating the forwarding cooperation of
compromised nodes and improving the data delivery ratio of the
network. Extensive simulation results demonstrate that CRS-A
can accurately detect selective forwarding attacks and identify
the compromised sensor nodes, while the attack-tolerant data for-
warding scheme can significantly improve the data delivery ratio
of the network.

Index Terms—Wireless sensor network, selective forward-
ing attack, reputation system, packet dropping, channel-aware,
routing.

I. INTRODUCTION

A S a promising event monitoring and data gathering tech-
nique, wireless sensor network (WSN) has been widely

applied to both military and civilian applications. Many WSNs
are deployed in unattended and even hostile environments to
perform mission-critical tasks, such as battlefield reconnais-
sance and homeland security monitoring. However, due to
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the lack of physical protection, sensor nodes are easily com-
promised by adversaries, making WSN vulnerable to various
security threats [1], [2]. One of the most severe threats is
selective forwarding attack, where the compromised nodes
can maliciously drop a subset of forwarding packets to dete-
riorate the data delivery ratio of the network. It also has
significantly negative impacts to data integrity, especially for
data-sensitive applications, e.g., health-care and industry mon-
itoring. On the other hand, since WSNs are generally deployed
in open areas (e.g., primeval forest), the unstable wireless chan-
nel and medium access collision can cause remarkable normal
packet losses. The selective forwarding attacks are concealed
by the normal packet losses, complicating the attack detec-
tion. Therefore, it is very challenging to detect the selective
forwarding attacks and improve the network performance.

Most of related works focus on monitoring the packet
losses in each transmission link and isolating the nodes with
high packet loss rates from the data forwarding path [3]–[6].
These solutions can improve the data delivery ratio or net-
work throughput but have little effect on detecting selective
forwarding attacks. Since the main challenge of attack detec-
tion is to distinguish the malicious drop from normal packet
loss, the normal packet loss rate of the transmission link should
be considered in the forwarding evaluation. For example, a
source node Ns sends 10 packets to the destination node Nd

via two forwarding nodes Na and Nb, respectively. Na for-
wards 6 packets to Nd , while Nb only forwards 5 packets to Nd .
Intuitively, Na behaves better than Nb during the data forward-
ing. However, if the normal packet loss rates from Ns to Na and
Nb are 20% and 50%, respectively, Na should have a higher
probability to misbehave in this data forwarding. Therefore, we
consider the deviation between the normal losses and actual
losses as the key factor to detect selective forwarding attacks.

However, for the WSNs deployed in hostile environments
where the wireless channel is unstable, normal packet loss rate
highly depends on the wireless channel quality that varies spa-
tially and temporally. If we use a measured or estimated normal
packet loss rate to detect selective forwarding attacks, some
innocent nodes may be falsely identified as attackers due to the
time-varied channel condition. For instance, if a mobile obsta-
cle abruptly blocks the data transmission of two sensor nodes,
the unexpected packet losses may mislead the attack detection.
Therefore, a flexible and fault-tolerant evaluation technique is
crucial to accurately identify the attacks and compromised sen-
sor nodes [7], [8]. Meanwhile, due to the negative impacts
of selective forwarding attacks, data delivery ratio of a net-
work becomes the primary performance metric for resisting the
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attacks. Although compromised sensor nodes can be accurately
identified, they are still available candidates to forward data for
other sensor nodes before physically renewed or replaced. If a
compromised node launches attack with a low probability but
has good channel condition, it may forward more data pack-
ets than a normal node with poor channel condition, in spite of
the malicious drops. Therefore, it is of paramount importance
to design an attack-tolerant routing scheme to make full use
of these nodes or stimulate their cooperation for improving the
data delivery ratio.

In this paper, we propose a Channel-aware Reputation
System with adaptive detection threshold (CRS-A) to detect
selective forwarding attacks in WSNs. Specifically, we divide
the network lifetime to a sequence of evaluation periods.1

During each evaluation period, sensor nodes estimate the nor-
mal packet loss rates between themselves and their neighboring
nodes, and adopt the estimated packet loss rates to evaluate
the forwarding behaviors of its downstream neighbors along
the data forwarding path. The sensor nodes misbehaving in
data forwarding are punished with reduced reputation values
by CRS-A. Once the reputation value of a senor node is below
an alarm value, it would be identified as a compromised node
by CRS-A. Compared to our previous work [10], this paper has
the following enhancements and new contributions.

(i) We propose CRS-A, which evaluates the forwarding
behaviors of sensor nodes by utilizing an adaptive detec-
tion threshold. By theoretically analyzing its perfor-
mance, we derive an optimal detection threshold for eval-
uating the forwarding behaviors to optimize the detection
accuracy of CRS-A. The optimal detection threshold is
determined for each transmission link in a probabilistic
way, and can also be adaptive to the time-varied chan-
nel condition and the attack probability of the forwarding
node.

(ii) We develop a distributed and attack-tolerant data forward-
ing scheme to collaborate with CRS-A for stimulating
the forwarding cooperation of compromised nodes and
improving the data delivery ratio of the network. Rather
than isolating all the compromised nodes from data for-
warding, it jointly considers the time-varied channel con-
dition and attack probabilities of neighboring nodes in
choosing forwarding nodes.

(iii) Extensive simulation results demonstrate that the pro-
posed CRS-A with attack-tolerant data forwarding
scheme can achieve a high detection accuracy with both
of false and missed detection probabilities close to 0,
and improve more than 10% data delivery ratio for the
network.

The remainder of this paper is organized as follows.
Section II reviews the related works. Section III introduces
the system model and design goals. The proposed CRS-A is
detailed in Section IV and the adaptive detection threshold
is determined in Section V. Section VI presents the attack-
tolerant data forwarding and summarizes the adaptive and

1The network lifetime is divided into a sequence of time slots. Since we
periodically evaluate the forwarding behaviors of sensor nodes in each time
slot, we use “evaluation period” to replace “time slot” in this paper similar
to [9].

channel-aware forwarding evaluation scheme. Section VII val-
idates the performance of the proposed scheme by extensive
simulation results. Finally, Section VIII concludes the paper
and outlines our future works.

II. RELATED WORK

Increasing attention has been paid to developing countermea-
sures against selective forwarding attacks, due to their negative
impacts on network performance and information integrity.
The basic idea of existing works is to monitor the forward-
ing behaviors of sensor nodes, which can provide evidence and
guidance for attack detection and defense [11]. In the following
literature review, we divide the existing works into two cate-
gories: acknowledgment based and neighbor-surveillance based
schemes, according to different monitoring techniques for data
forwarding.

A. Acknowledgment Based Defense Techniques

This type of schemes is to use acknowledgments from dif-
ferent nodes in the routing path to determine the packet loss
rate of each hop and detect the attackers [12], [13]. Xiao et al.
[3] propose a scheme that randomly chooses a number of
intermediate nodes along a forwarding path as checkpoints to
return acknowledgments for each received packet. If suspicious
behavior is detected, it generates an alarm packet and delivers
it to the source node. Shakshuki et al. [14] design and imple-
ment an intrusion-detection system, named Enhanced Adaptive
ACKonwledgment (EAACK), for mobile ad hoc networks. Due
to the high load of hop-by-hop acknowledgments, EAACK
combines a two-hop acknowledgment scheme and an end-to-
end acknowledgment scheme to detect the malicious behaviors
and reduce the network overhead. In addition, EAACK adopts
a digital signature with acknowledgment to ensure authentica-
tion, integrity, and non-repudiation. As an elastic evaluation
scheme, reputation system is also applied to attack detection.
Zhang et al. [4] develop an audit-based misbehavior detec-
tion system to integrate reputation management, trustworthy
route discovery, and identification of misbehaving nodes based
on behavior audits in ad hoc networks. In [15], the correla-
tions between link errors and malicious drops are investigated
to detect selective forwarding attacks. In order to guaran-
tee truthful calculation for the correlations, they propose a
homomorphic linear authenticator (HLA) based public auditing
architecture that allows the detector to verify the truthfulness of
acknowledgments reported by nodes.

B. Neighbor-Surveillance Based Defense Techniques

With the Watchdog hardware [16], sensor nodes can mon-
itor the forwarding behaviors of their neighboring nodes and
record the actual packet loss accurately. Suat Ozdemir [5]
investigates a functional reputation based reliable data aggre-
gation method against selective forwarding attacks in clustered
WSNs. Each node maintains a reputation table to evaluate the
behaviors of its neighbor nodes, based on the forwarding moni-
toring of the neighboring nodes. The nodes with low reputation
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values are isolated from the routing path. However, the repu-
tation evaluation is only based on the monitored packet loss
during the forwarding. Hao et al. [6] design a repeated game
based approach to analyze the collusion on selective forward-
ing attacks in multi-hop wireless networks. In [17], Li et al.
propose a Side Channel Monitoring (SCM) scheme to detect
selective forwarding attacks in wireless ad hoc networks. SCM
use the nodes adjacent to a data communication route, to consti-
tute a side channel for monitoring the forwarding behaviors of
the nodes en route. Once misbehaviors are detected, the mon-
itoring nodes send alarm packets to the source node through
both channels.

Besides these two categories of countermeasures, multi-path
routing is also a widely applied technique to minimize the
impact of selective forwarding attacks on data delivery rather
than detect them [18]–[20]. The idea is to divide each data
packet into M shares by a (T, M)-threshold secret sharing algo-
rithm. Each packet share is assigned a TTL (time to live) field
and forwarded by a randomly selected neighboring node. As
the TTL decreases after each transmission, the random for-
warding is repeated until TTL decreases to 0. As long as the
destination receives T shares, the original message can be suc-
cessfully reconstructed. In such a way, the data integrity can be
guaranteed.

Most of related works discussed above can effectively mit-
igate the negative impacts of selective forwarding attacks on
information integrity and network performance. However, they
have limited capability to accurately detect the attacks and
identify the compromised sensor nodes. Several recent studies
consider the normal packet loss into selective forwarding attack
detection for wireless mesh networks [21], [22]. However,
both of the works use an estimated normal packet loss rate
to evaluate the data forwarding behaviors over a long period.
Such approaches are not applicable for the WSNs in unstable
radio environment, where the high and time-varied packet loss
may significantly reduce detection accuracy. Moreover, in their
schemes, a node will be identified as an attacker once the num-
ber of lost packets during its forwarding exceeds a certain value.
The one-time detection can also produce a large false detec-
tion probability for the innocent nodes [23]. In our previous
work [10], a reputation system is exploited to detect selective
forwarding attacks by taking the normal packet loss rate into
consideration. However, it is based on a fixed evaluation thresh-
old and simply isolates all the compromised nodes from the
data forwarding paths. In this paper, we determine an adap-
tive threshold to evaluate the data forwarding behaviors, which
can optimize the detection accuracy of the reputation system.
Moreover, we develop an attack-tolerant routing scheme collab-
orating with the reputation system to stimulate the cooperation
of compromised nodes for an improved data delivery ratio.

III. SYSTEM MODEL AND DESIGN GOALS

A. Network Model

We consider a WSN consisting of a set of randomly dis-
tributed sensor nodes, denoted by N, and a sink node to
monitor an open area. Each sensor node periodically senses the

TABLE I
FREQUENTLY USED NOTATIONS

interested information from the surroundings, and transmits the
sensed data to the sink via multi-hop routing among sensor
nodes. Sensor nodes communicate with their neighboring nodes
based on the IEEE 802.11 DCF. The monitored area has an
unstable radio environment, making the packet loss rates dur-
ing the communications of sensor nodes significantly increased
and vary from time to time [21].

Since sensor nodes are deployed in open area and lack
adequate physical protection, they may be compromised by
adversaries through physical capture or software vulnerabili-
ties to misbehave in data forwarding. We use PM to denote the
compromising probability of sensor node, which is defined as
the probability that a sensor node is compromised by the adver-
sary. Meanwhile, we assume that sensor nodes can monitor the
data forwarding traffic of their neighboring nodes by neigh-
bor monitoring with Watchdog [16] or acknowledgment-based
approaches [12]. It means that a sensor node can obtain that
how many data packets are forwarded by its forwarding sensor
nodes. Existing works [5], [13] provide a comprehensive study
on monitoring forwarding traffic of sensor nodes, which is not
the focus of this paper. Since the unstable radio environment
causes fluctuated packet loss rates between the neighboring
nodes, it is challenging to distinguish the monitored forward-
ing behavior is normal or not. For easy understanding of the
work, Table I summarizes the frequently used mathematical
notations.
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B. Attack Model

Compromised sensor nodes can launch selective forwarding
attacks to degrade the performance of the network. Specifically,
when a compromised sensor node receives a data packet, it
maliciously drops it with a probability, referred to as attack
probability. Since the adversary can control the attack proba-
bilities of compromised nodes, it is difficult to distinguish if
the packet losses are caused by fluctuated channel condition
or malicious drops, especially for the nodes with low attack
probabilities [24].

Furthermore, several neighboring compromised sensor nodes
can collaborate with each other to launch promotion/demotion
attacks to achieve benefits [25]. For example, if Na and Nb

are two neighboring compromised sensor nodes and data traf-
fic is from Na to Nb, Na may provide a partial evaluation for
Nb’s forwarding behaviors. Besides, Na can announce Nb as a
normal node to its other neighboring nodes, in spite of Nb mis-
behaving in the data forwarding. However, we do not consider
the special case where Na is totally honest in data forwarding to
cover for Nb’s misbehaviors to achieve benefits. This case can
be effectively addressed by the hop-by-hop acknowledgment or
two directional neighbor monitoring techniques [4], [22].

We consider that cryptographic techniques have been uti-
lized in the network to provide sufficient data confidentiality
and authentication against the adversary, then we can focus on
resisting selective forwarding attacks. In addition, we assume
there are only a fraction of sensor nodes compromised by
the adversary to misbehave in data forwarding, since the net-
work would be useless if the majority of sensor nodes are
manipulated by the adversary. In the following, we call the com-
promised sensor nodes as malicious nodes, and the other sensor
nodes as normal nodes.

C. Design Goals

The objective of this paper is to detect selective forwarding
attacks based on the monitored forwarding traffic information
and improve the data delivery ratio for WSNs. Specifically, the
proposed scheme aims to achieve the following two goals.

1) Detection accuracy: A high detection accuracy should be
achieved for detecting selective forwarding attacks and iden-
tifying the malicious nodes, which can be measured by two
metrics. The one is the attacks should be accurately detected
once the malicious nodes misbehave in data forwarding. The
other is normal nodes cannot be falsely detected as malicious
nodes due to the fluctuated normal packet losses.

2) Data delivery ratio improvement: Besides the detection of
selective forwarding attacks, the data delivery ratio of the net-
work should be improved by the proposed scheme to mitigate
the negative impacts caused by the attacks. Meanwhile, the pro-
posed scheme should be able to partly stimulate the cooperation
of malicious nodes in data forwarding.

IV. CRS-A: THE CHANNEL-AWARE REPUTATION SYSTEM

WITH ADAPTIVE DETECTION THRESHOLD

In this section, we propose CRS-A to detect selective for-
warding attacks and identify malicious nodes. In CRS-A,

Fig. 1. The overview of evaluation periods.

Fig. 2. The architecture of CRS-A.

each sensor node maintains a reputation table to evaluate
the long-term forwarding behaviors of its neighboring nodes.
The essence of CRS-A is to dynamically update the repu-
tation table based on the forwarding behavior evaluation for
the neighboring nodes, by taking the normal packet loss rate
into consideration. However, as the unstable radio environment
make the quality of wireless channel vary with time, normal
packet loss may be different over a long time period. Therefore,
we divide the whole network lifetime into a sequence of evalua-
tion periods T = {T1, . . . , Tt , . . .}. In each evaluation period Tt ,
the channel condition of each data transmission link is assumed
to be stable. Meanwhile, for each Tt , we introduce a channel
estimation stage at the beginning of Tt , and a reputation update
stage at the end of Tt . During the channel estimation stage,
sensor nodes estimate the normal packet loss rates of the com-
munication links with their neighboring nodes, and use them to
evaluate the forwarding behaviors of neighboring nodes. Fig. 1
shows the overview of evaluation periods over the network
lifetime.

The reputation update in CRS-A consists of three procedures:
reputation evaluation, propagation and integration. Reputation
Evaluation is to evaluate short-term reputation scores for the
forwarding behaviors of sensor nodes, based on the devia-
tion of estimated normal packet loss rate and monitored actual
packet loss rate. With Reputation Propagation, the evaluated
short-term reputation scores can be propagated within the
neighboring nodes to achieve a more comprehensive evalua-
tion. Finally, by Reputation Integration, sensor nodes integrate
the reputation scores evaluated by themselves and the propa-
gated reputation scores from their neighboring nodes to update
the reputation table. Fig. 2 shows the architecture of CRS-A. In
the following, we describe each procedure of CRS-A in detail.

A. Normal Packet Loss Estimation

Since the wireless channel of the WSN is easily impacted by
unstable radio environment to cause noticeable packet losses
during wireless transmission, the normal packet loss should be
considered into the forwarding behavior evaluation for sensor
nodes. According to the network model, normal packet loss
is mainly caused by the poor and unstable wireless channel
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and MAC layer collisions. We discuss the normal packet loss
estimation from the two aspects as follows.

1) Packet Loss Caused by Radio Link Quality: The poor
and unstable radio link quality is the primary reason for the
time-varied packet losses. In [21], [22], the link condition is
formulated as a two-state Markov model, and the packet loss
rate is determined as an average value over a long-term period.
However, adopting an average value to represent a time-varied
value may mislead the evaluation for forwarding behaviors
[26], [27]. Furthermore, dynamic environments make the link
quality varied in different locations. Therefore, the packet loss
estimation should be performed in each evaluation period by
each sensor node. In CRS-A, the link quality estimation for
each pair of neighboring nodes is based on the Received Signal
Strength Indicator (RSSI) and Signal-to-Noise Ratio (SNR),
under the symmetric channel assumption [27], [28]. For each
Tt , the packet loss rate caused by poor link quality, denoted by
p1

i, j (t), can be estimated by RSSI and SNR for the transmission
link from Ni to N j .

2) Packet Loss Caused by MAC Layer Collisions: As data
transmission between two neighboring nodes is based on the
IEEE 802.11 DCF, MAC layer collisions may increase the
normal packet loss rate. Since sensor nodes are static in our
network, it means each sensor node has a fixed number of
neighboring nodes. Then, we can use the analytical results in
[21], [29] to estimate the packet loss caused by medium access
collisions without the impact of hidden terminals [26], [27].
Let n be the number of nodes contending for channel access at
N j and pt as the probability that a node transmits data in time
slot. When MAC channel is at steady state, the probabilities for
observing an idle, successful, and colliding slot, denoted as pi ,
ps , and pc, respectively, are⎧⎪⎨

⎪⎩
pi = (1 − pt )

n

ps = n · pt · (1 − pt )
n−1

pc = 1 − pi − ps .

(1)

And the channel busy ratio Rb can be calculated as

Cb = 1 − (pi · td)/(pi · σ + ps · ts + pc · tc), (2)

where td , ts and tc denote the idle slot length, the duration
of a successful transmission, and the duration of a collision,
respectively, which can be determined by [30].

Therefore, the packet loss rate caused by MAC layer colli-
sions p2

i, j is the probability that a node encounters collisions
when it transmits, i.e.,

p2
i, j = 1 − (1 − pt )

n−1. (3)

Combining Eq. (1) and (2), Cb can be expressed as a function
of pt . Since Cb can be obtained by channel monitoring, pt can
be calculated to determine p2

i, j based on Eq. (3).
In summary, the estimated normal packet loss rate between

Ni and N j in Tt is pi, j (t) = p1
i, j (t) + p2

i, j − p1
i, j (t)p2

i, j ≈
p1

i, j (t) + p2
i, j .

B. Reputation Evaluation

In CRS-A, sensor nodes monitor their neighbors to evaluate
reputation scores for their forwarding behaviors during each

evaluation period. The evaluated reputation scores are named
as first-hand reputation scores. Specifically, in the data trans-
mission stage of Tt , node Ni (Ni ∈ N) records the number of
data packets sent to its next hop node N j as Si, j (t), and the
number of data packets forwarded by N j as fi, j (t). Thus, the
number of data packets lost in the transmission from Ni to N j is
mi, j (t) = Si, j (t) − fi, j (t). Based on the discussion of the pre-
vious subsection, we can estimate the normal packet loss rate
between Ni and N j as pi, j (t). Since each data packet is trans-
mitted to N j independently, the data transmission from Ni to
N j can be regarded as a sequence of independent repeated tri-
als. It means, if Ni sends l data packets to N j , the probability
of k (0 ≤ k ≤ l) out of l packets lost during the transmission,
denoted by Pi, j (X = k), follows a binomial distribution, i.e.,

Pi, j (X = k) =
(

l

k

)
(pi, j (t))

k(1 − pi, j (t))
l−k . (4)

We consider the forwarding behavior evaluation for N j dur-
ing an evaluation period Tt as a sampling test. If N j behaves
normally during data forwarding, mi, j (t) should slightly fluc-
tuate around the estimated number of normal lost data packets
pi, j (t) · Si, j (t). However, when mi, j (t) > pi, j (t) · Si, j (t), with
the increase of mi, j (t), the probability of N j misbehaving
in data forwarding increases. In order to evaluate mi, j (t),
we introduce a detection threshold ξi, j (t) (Si, j (t) · pi, j (t) <

ξi, j (t) < Si, j (t), ξi, j (t) ∈ N
+) and define the reputation eval-

uation function of Ni to N j as follows.

r1
i, j (t) =

⎧⎪⎨
⎪⎩

+δ, if mi, j (t) ≤ pi, j (t) · Si, j (t)

−δ, if pi, j (t) · Si, j (t) < mi, j (t) ≤ ξi, j (t)

−λ, if mi, j (t) > ξi, j (t).

(5)

where λ is a punishment factor and δ is a adjustment factor. We
set λ � δ and explain the function as follows.

• If mi, j (t) ≤ pi, j (t) · Si, j (t), the sampling test is accept-
able, which means the transmission between Ni and N j

is successful. Thus, Ni rewards a positive δ to N j .
• If pi, j (t) · Si, j (t) < mi, j (t) ≤ ξi, j (t), we consider it is a

normal fluctuation of pm
i, j around pi, j , and rate −δ to N j

to neutralize the reputation evaluation.
• When mi, j (t) > ξi, j (t), we consider there is a high prob-

ability for N j to misbehave in the data forwarding. If it
happens, Ni rates a punishment −λ to N j .

As we discussed above, if N j is a normal node, mi, j (t) will
slightly fluctuate around pi, j (t) · Si, j (t). The proposed repu-
tation evaluation function should make the reputation value
of N j stable or increased after a number of evaluation peri-
ods. On the other hand, if N j misbehaves in data forwarding,
mi, j (t) may be larger than pi, j (t) · Si, j (t) with a high probabil-
ity. The proposed function should decrease the reputation value
of N j sharply after a number of evaluation periods. According
to Eq. (5), it can be found that both of the expected two charac-
teristics are highly impacted by the value of ξi, j (t). Therefore,
how to determine the optimal ξi, j (t) is of significant importance
for improving the performance of the reputation evaluation,
which will be discussed in the next section.
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C. Reputation Propagation

In order to share the monitored forwarding behavior infor-
mation and hence to improve the attack detection accuracy,
Ni propagates the first-hand reputation scores, such as r1

i, j (t),
to their neighbors during each Tt . The received reputation
scores from the neighboring nodes are called as second-hand
reputation scores, which reflect the evaluation of the neighbor-
ing nodes on their next hop nodes. However, the reputation
propagation causes CRS-A vulnerable to collaborative pro-
motion/demotion attacks, which means neighboring malicious
nodes can collaborate with each other to mutually promote their
reputation scores [25]. To mitigate the impact of the poten-
tially partial reputation scores, we determine the second-hand
reputation scores as follows.

Denote the set of Ni ’s neighboring sensor nodes as NCi , and
the number of nodes in NCi as |NCi |. We further divide the
nodes of NCi into two subsets, NCi,g and NCi,b, based on
their long-term reputation values in Ni . Let Ns be a node of
NCi . We put Ns into the honest neighbor set NCi,g , if Ri,s >∑

x∈NCi
Ri,x

|NCi | . Otherwise, Ns is allocated to the dishonest

neighbor set NCi,b. Therefore, we calculate the second-hand
reputation score of Ni to its neighboring node N j as

r2
i, j (t) =

∑
x∈NCi,g

Ri,x∑
s∈NCi

Ri,s
· r1

x, j (t)

+
∑

x∈NCi,b

Ri,x∑
s∈NCi

Ri,s
· αr1

x, j (t) (6)

where α is a penalty factor to reduce the weight of the infor-
mation propagated by the potentially dishonest neighbors and
α < 1.

Since the long-term reputation values of malicious nodes
may decrease after misbehaving in a number of evaluation peri-
ods, these nodes are classified into the dishonest neighbor set
and the weights of their propagating information are reduced by
the penalty factor α. As a result, the negative impacts of mutual
reputation promotions among neighboring malicious nodes can
be significantly mitigated by Eq. (6). To reduce the commu-
nication overhead of reputation propagation, the propagated
reputation scores can be piggybacked to other data packets,
such as the periodically exchanged neighbor information.

D. Reputation Integration

After reputation propagation, the first-hand and second-hand
short-term reputation scores should be integrated to update
the reputation table. Denote Ri, j as the long-term reputation
value of N j in Ni ’s reputation table, and Rm and Rs as the
upper bound and lower bound of reputation value. We calcu-
late the integrated reputation score as RI

i, j (t) = σr1
i, j (t) + (1 −

σ)r2
i, j (t), and update Ri, j as the following equation.

Ri, j =

⎧⎪⎨
⎪⎩

Rs, i f Ri, j + RI
i, j ≤ Rs

Ri, j + RI
i, j , i f Rs < Ri, j + RI

i, j < Rm

Rm, otherwise.

(7)

Here, σ is the weight factor of the first-hand information and
σ > 0.5. Rm and Rs are system parameters that can be cho-
sen based on the system requirements. For instance, we can set
Rs = 0 and Rm = 255 to keep each reputation value only take
1 byte. Such that, the storage requirement of the sensor nodes
and the communication overhead can be reduced.

E. Malicious Nodes Identification

In each Tt , sensor nodes can evaluate the forwarding behav-
iors of their next hop sensor nodes and update their reputation
table with the above three procedures. After a number of eval-
uation periods, the reputation values of malicious nodes are
significantly reduced in the reputation tables of their neighbor-
ing nodes. To identify the malicious nodes, sensor nodes send
their reputation tables to the sink for identification after a fixed
time. When the average reputation value in N j ’s neighbors is

below Ra , i.e.,

∑
Ni ∈NC j

Ri, j

|NC j | < Ra , N j is identified as a mali-

cious node. Here, Ra is an alarm reputation value that can be
predefined according to system requirements. If N j is identi-
fied as a malicious node, the network operator can perform a
security check or software reset for these nodes. However, since
malicious nodes can mutually promote their reputation val-
ues or collaboratively degrade the reputation values of normal
nodes, the average reputation value should be adjusted against
the promotion and demotion attacks [31].

We denote the original average reputation value of N j

as R j =
∑

Ni ∈NC j
Ri, j

|NC j | , and the adjusted average reputation

value as R
′
j . Then, the standard deviation Ds(N j ) of all the

reputation values Ri, j (Ni ∈ |NC j |) is

Ds(N j ) =
√√√√ 1

|NC j |
∑

Ni ∈{NC j }
(Ri, j − R j )2. (8)

We define a standard deviation threshold as dh [31], [32].
If Ds(N i

k) ≤ dh , we have R
d
k = Rk . Otherwise, it is suspicious

that there is a promotion or demotion attack. We remove the
Ri, j with largest deviation to R j and recalculate the Ds(N j )

until we have Ds(N j ) ≤ dh . Then, we use the average value

of the rest Ri, j as R
′
j . If R

′
j < Ra , N j will be identified as a

malicious node.

V. ADAPTIVE DETECTION THRESHOLD FOR CRS-A

As we discussed in Sec. IV-B, the detection accuracy of
CRS-A is significantly impacted by the misbehaving detec-
tion threshold for reputation evaluation. In this section, we
aim to determine the optimal evaluation threshold for each
pair of neighboring nodes along the data forwarding path to
optimize the detection accuracy of CRS-A. According to the
attack model, malicious nodes can launch attacks with differ-
ent probabilities, which indicates the detection threshold should
be different for each communication link. Meanwhile, due to



3724 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 15, NO. 5, MAY 2016

the nature of dynamic routing and time-varied channel condi-
tion in WSNs, the detection threshold should be adaptive to the
time-varied data traffic and normal packet loss rate of the link.
Without loss of generality, we focus on determining the optimal
threshold for the transmission from Ni to N j during the period
Tt , in the following analysis.

A. Metrics of Detection Accuracy

Since CRS-A is proposed to detect selective forwarding
attacks and identify malicious nodes, we first identify some per-
formance metrics to evaluate CRS-A before optimizing them.
According to Eq. (5), if ξi, j (t) is set as a large value, the
forwarding misbehavior of N j will be regarded as a normal
fluctuation, without being punished with −λ. It means the
attacks launched by N j are not detected by the detection of
CRS-A. On the other hand, if ξi, j (t) is set as a small value
close to Si, j (t) · pi, j (t), the normal fluctuation of mi, j (t) will
be detected as a misbehavior, when N j acts normally in data
forwarding. It leads to that a normal sensor node has a large
probability to be falsely identified as a compromised node by
the detection of CRS-A. Therefore, there exists a trade-off
in determining the value of ξi, j (t) to optimize the detection
accuracy for selective forwarding attacks.

To this end, we introduce two metrics, missed detection prob-
ability and false detection probability. The Missed Detection
Probability is the probability that a malicious forwarding
behavior is detected as a normal behavior, while the False
Detection Probability refers to the probability that a normal for-
warding behavior is detected as a malicious behavior. If we use
X to denote the data packets lost in the transmission from Ni

to N j , and Y to denote the data packets maliciously dropped by
N j , the missed detection probability ηi, j (t) is

ηi, j (t) = P{X + Y ≤ ξi, j (t)| j misbehaved in Tt }
= P{X + Y ≤ ξi, j (t)|Y > 0}
= P{{X + Y ≤ ξi, j (t)} ∩ {Y > 0}}

P{Y > 0} , (9)

and the false detection probability μi, j (t) is

μi, j (t) = P{X + Y > ξi, j (t)| j behaved well in Tt }
= P{X + Y > ξi, j (t)|Y = 0}
= P{X > ξi, j (t)}. (10)

Since both X and Y are discrete random variables, the prob-
ability mass function (PMF) of X and Y should be determined
for calculating ηi, j (t) and μi, j (t). As X is defined as the num-
ber of normally lost data packets during the transmission, the
PMF of X should be Eq. (4). If the number of data packets sent
by Ni during Tt is Si, j (t), the false detection probability μi, j (t)
is the CDF of X , i.e.,

μi, j (t) = 1 −
ξi, j (t)∑
k=0

[(
Si, j (t)

k

)
(pi, j (t))

k(1 − pi, j (t))
Si, j (t)−k

]
.

(11)

However, due to ηi, j (t) depending on the variable Y , we
should determine the PMF of Y and X + Y . According to the
attack model, each sensor nodes has a probability PM to be
compromised by the adversary. It means P{Y = 0} = 1 − PM

and P{Y = Y ′} = PM , where Y
′

is a discrete random variable
denoting the number of maliciously dropped packets by N j

when N j is a malicious node.
According to the attack model, when a malicious node suc-

cessfully receives a data packet, it decides to maliciously drop
the packet with a probability, which is called attack probability.
We denote the attack probability of N j as p j . Since the number
of data packets sent by Ni during the evaluation t are Si, j (t),
the PMF of Y ′ should be a binomial function with the number
of experiments as Ai (t) = Si, j (t) − X . Obviously, Ai (t) is a
random variable depending on X , so we first calculate the con-
ditional probability when Ai (t) is fixed as a, (0 ≤ a ≤ Si, j (t),
0 ≤ k ≤ a) as

P{Y ′ = k|Ai (t) = a} =
(

a

k

)
pk

j (1 − p j )
a−k . (12)

And the PMF of Y ′ is

P{Y ′ = k} =
Si, j (t)∑
a=0

[
P{Y ′ = k|Ai (t) = a}P{Ai (t) = a}]

=
Si, j (t)∑
a=0

[
P{Y ′ = k|X = Si, j (t) − a}P{X = Si, j (t) − a}]

=
Si, j (t)∑
x=0

[
P{Y ′ = k|X = x}P{X = x}]

=
Si, j (t)∑
x=0

[(
Si, j (t) − x

k

)
pk

j (1 − p j )
Si, j (t)−x−k P{X = x}

]
(13)

where the third step is based on substituting Si, j (t) − a by x .
And we have 0 ≤ x ≤ Si, j (t) due to 0 ≤ a ≤ Si, j (t).

Therefore, we can use the PMF of Y ′ to determine the PMF
of Y as

P{Y = k} =
{
(1 − PM ) + PM · P{Y ′ = 0}, if k = 0

PM · P{Y ′ = k}, if 1 ≤ k ≤ Si, j (t)
(14)

According to Eq. (14), we calculate the missed detection
probability ηi, j (t) in Theorem 1.

Theorem 1: If Ni sends Si, j (t) data packets to N j dur-
ing the evaluation period Tt and the detection threshold is
ξi, j (t)

(
Si, j (t) · pi, j (t) < ξi, j (t) < Si, j (t)

)
, the missed detec-

tion probability for evaluating N j is

ηi, j (t) =
∑ξi, j (t)

k=1

[
P{X ≤ ξi, j (t) − k} · P{Y = k}]

PM − PM · (1 − p j )
Si, j (t)

, (15)

where P{X ≤ k} is the CDF of X , which can be calculated by
Eq. (4), and P{Y = k} can be calculated by combining Eq. (13)
and (14).
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Proof: Based on the PMF of X and Y , we further expand
Eq. (9) to calculate η j as follows.

η j = P{{X + Y ≤ ξi, j } ∩ {Y > 0}}
P{Y > 0}

= P{{X + Y ≤ ξi, j } ∩ {∑Si, j (t)
k=1 {Y = k}}}

P{∑Si, j (t)
k=1 Y = k}

=
∑Si, j (t)

k=1 P{{X + Y ≤ ξi, j } ∩ {Y = k}}∑Si, j (t)
k=1 P{Y = k}

=
∑Si, j (t)

k=1

[
P{X + Y ≤ ξi, j |Y = k} · P{Y = k}]∑Si, j (t)

k=1 P{Y = k}

=
∑ξi, j

k=1

[
P{X ≤ ξi, j − k} · P{Y = k}]

1 − P{Y = 0}

=
∑ξi, j

k=1

[
P{X ≤ ξi, j − k} · P{Y = k}]

PM − PM · (1 − p j )
Si, j (t)

,

where P{X ≤ k} is the CDF of X , which can be calculated by
Eq. (4), and P{Y = k} can be calculated by combining Eq. (13)
and (14). �

B. Determining the Optimal Threshold

In this section, we determine the optimal threshold ξ∗
i, j (t)

for reputation evaluation in CRS-A. According to Eq. (15), the
missed detection probability η j depends on the attack prob-
ability of N j (i.e., p j ). Generally, the attack probabilities of
malicious nodes are various and not known by the system in
advance. However, we can use the historical data to estimate
p j for each malicious node N j . Specifically, in each Tt , Ni can
estimate p j with the following Eq. (16), i.e.,

p j =
[∑t

w=0[mi, j (w) − Si, j (w) · (
1 − pi, j (w)

)
]∑t

w=0[Si, j (w) · (
1 − pi, j (w)

)
]

]+
, (16)

where [a]+ = a, if a ≥ 0; otherwise, [a]+ = 0.
In Eq. (16), Si, j (w) · (

1 − pi, j (w)
)

is the expected number
of forwarded data packets at time period w, while mi, j (w) −
Si, j (w) · (

1 − pi, j (w)
)

is deviation between the actual num-
ber of forwarded data packets and the expected number of
forwarded data packets at time period w. Thus, Eq. (16) can par-
tially show the probability that node j attacks (or maliciously
drops) in data forwarding. When p j is small or equal to 0, we
consider N j behaves well during the past data forwarding. The
false detection probability μ j should be minimized for CRS-
A. As p j keeps increasing, N j has an increasing probability
to be an attack. It indicates that the missed detection proba-
bility η j should be emphasized to optimize the performance
of CRS-A. Meanwhile, both of the missed detection proba-
bility η j and false detection probability μ j depend on ξi, j (t).
When ξi, j (t) increases, η j increases and μ j decreases. And
if ξi, j (t) decreases, the situation reverses. It means η j and μ j

are two contradictory optimization objectives. In order to find
a trade-off between them, we can integrate η j and μ j as a
single objective function ν j by weighting them with p j and

Fig. 3. An example of the optimal threshold.

1 − p j , respectively. The objective function is defined as ν j =
p j · η j + (1 − p j ) · μ j . Therefore, for each transmission from
Ni to N j in Tt , the optimal threshold determination problem
can be formulated as calculating ξ∗

i, j (t) to

(PP) minimize ν j = p j · ηi, j (t) + (1 − p j ) · μi, j (t)

s.t.

{
pi, j (t) · Si (t) < ξi, j (t) < Si (t)

ξi, j (t) ∈ N
+ .

It is obvious that (PP) has only one optimization variable
and a closed-form objective function. As ξi, j (t) is discrete, the
objective function is non-differentiable with respect to ξi, j (t),
which indicates the hardness of deriving a closed-form optimal
solution for (PP). However, due to the constraint that ξi, j (t)
should be an integer between pi, j (t) · Si (t) and Si (t), we can
adopt a brute-force algorithm to calculate all the possible val-
ues for determining the optimal one. Since Si (t) is the only
input variable of (PP) which impacts the time complexity of
finding a solution, the brute-force algorithm can guarantee the
time complexity is O(Si (t)), i.e., O(n).

Fig. 3 shows an example of the optimal threshold for Ni to
evaluate N j ’s forwarding behavior, where Si (t) = 50, pi, j (t) =
30%, PM = 35% and p j = 40%. The black line shows the
PMF of the number of lost data packets, if N j behaves normally
during the forwarding. And the red line is PMF of the num-
ber of lost data packets when N j misbehaves in forwarding and
p j = 40%. Actually, the PMF of normal packet loss is P{X =
k} (0 ≤ k ≤ Si (t)), while the PMF of packet loss with attacks
is P{X + Y = k|Y > 0} (0 ≤ k ≤ Si (t)) that can be calculated
according to Eq. (4) and (14). As shown in the figure, the opti-
mal evaluation threshold is calculated as ξ∗

i, j (t) = 21 by solving
(PP). And the area of η j and μ j are the missed detection
probability and false detection probability of the evaluation,
respectively.

VI. CRS-A WITH ATTACK-TOLERANT DATA

FORWARDING

As a trust evaluation technique independent of route deci-
sion, CRS-A can be applied with any data forwarding protocol
for WSNs. However, due to the negative impacts of selective



3726 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 15, NO. 5, MAY 2016

Fig. 4. An example of dynamic routing.

forwarding attacks on data forwarding, data delivery ratio is
a key performance metric for evaluating a defense technique,
besides the detection accuracy for attacks and malicious nodes.
In this section, we first develop a distributed and attack-tolerant
data forwarding scheme to collaborate with CRS-A to improve
the data delivery ratio of the network. Then, we summarize
the main idea and procedures of CRS-A with attack-tolerant
data forwarding into an algorithm, and have a discussion on its
cooperation stimulation and overhead.

A. Attack-Tolerant Data Forwarding

For a distributed data forwarding scheme, the key challenge
is to decide which sensor node should be chosen in the for-
warding path to optimize the network performance, based on
the local knowledge [33], [34]. In this paper, we consider data
delivery ratio as the primary metric of network performance.
Although we can detect the malicious nodes by CRS-A, it is
unreasonable to isolate all the malicious nodes from the data
forwarding path. We can illustrate it with the following Fig. 4.
Na and Nb are two routing candidates of Ns , and Na is iden-
tified as a malicious node by Ns . During Tt , Ns estimates the
normal loss rate of each link as ps,a(t) = 10% and ps,b(t) =
50%. The attack probabilities of Na and Nb are pa = 20% and
pb = 0, respectively. In this case, Ns has 6 data packets to for-
ward. If Ns chooses Nb as the next hop, the expected number
of data packets that are successfully forwarded by Nb is 3.
Contrastively, the expected number of data packets forwarded
by Na should be 5, even if its reputation in Ns is low and it has
an attack probability 20% according to the historical records.

To select a better forwarding node to improve the data deliv-
ery ratio, we introduce the expected data forwarding ratio
(DFR), which is defined as the ratio between the expected
number of forwarded data packets and the total number of
sent data packets. In each evaluation period Tt , Ni chooses
the node with the highest DFR from its forwarding candi-
date set as the next hop. The forwarding candidate set of Ni

is the set of its neighboring nodes that are geographically
closer to the sink than Ni . Specifically, the forwarding deci-
sion can be formulated as follows. For each Ni , given the
number of data packets that Ni transmits in Tt as Si (t), if choos-
ing N j as the data forwarding node, the expected number of
lost data packets should be L j (t) = Si (t) · pi, j (t) + [Si (t) −
Si (t) · pi, j (t)] · p j (t). And, the DFR of N j is

DF R j (t) = (Si (t) − L j (t))/Si (t)

= 1 − pi, j (t) − p j (t) + pi, j (t) · p j (t). (17)

Algorithm 1. Adaptive and Channel-aware Forwarding
Evaluation during Each Evaluation Period

Description: Updating the reputation of sensor nodes and data
forwarding during Tt (Tt ∈ T).

1 Phase I Normal Loss Estimation;
2 for each Ni ∈ N do
3 Estimate the normal packet loss rate pi, j (t) between Ni

and each N j in Ni ’s neighbor set;
4 end
5 Phase II Data Transmission and Monitoring;
6 for each Ni ∈ N do
7 Choosing N j from RCi as the next hop according to

Eq. (17) and (18), and use N j to forward its data;
8 Record the number of sent data packets Si, j (t) and the

number of data packets mi, j (t) forwarded by N j

9 end
10 Phase III Reputation Evaluation and Updating;
11 for each Ni ∈ N do
12 Calculate the attack probability p j of N j according to

Eq. (16);
13 Determine the optimal detection threshold ξ∗

i, j (t) by
solving the problem (PP);

14 Evaluate the first-hand reputation score r1
i, j (t) according

to Eq. (5);
15 Propagate r1

i, j (t) to its neighboring nodes;
16 if receive propagated reputation scores then
17 Calculate the second-hand reputation score r2

i, j (t)
based on Eq. (6);

18 end
19 Calculate the integrated reputation score RI

i, j (t) with

r1
i, j (t) and r2

i, j (t) and use it to update Ri, j according to
Eq. (7);

20 end

Let RCi denote the forwarding candidate set of Ni . If Ni can
directly communicate with the sink, the next hop is the sink;
otherwise, Ni ’s next hop node Ni, f (t) in Tt is

Ni, f (t) = argmax
N j ∈RCi

DF R j (t). (18)

B. CRS-A With Attack-tolerant Data Forwarding

Based on the preceding description on CRS-A and the attack-
tolerant data forwarding, we summarize the procedures of rep-
utation updating in CRS-A with attack-tolerant data forwarding
in Algorithm 1. In the following, we discuss how the CRS-
A with attack-tolerant data forwarding stimulates malicious
nodes to cooperate during data forwarding, and the overhead
of maintaining CRS-A in the network.

1) Cooperation Stimulation: According to Algorithm 1,
when a malicious node N j is selected into the routing path
by Ni , the evaluation threshold is determined by pi, j and p j

to evaluate its forwarding behavior in the current evaluation
period. If N j misbehaves in this period with a probability p′

j
that is higher than p j , i.e., p′

j > p j , the number of lost data
packets will be larger than the evaluation threshold and it will be
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punished with a negative reputation score. Only if N j adopts a
lower attack probability, it could avoid a reputation punishment.
For the irrational malicious nodes increasing the attack proba-
bility without considering the punishment, they are removed by
the security check soon. Meanwhile, rational malicious nodes
can be stimulated to behave better to achieve an improved data
delivery ratio.

2) Overhead: We consider the overhead of maintaining
CRS-A, in terms of its storage overhead and communication
overhead. In CRS-A, each node maintains a reputation table
to record the reputation values of its neighboring nodes, which
produces the storage overhead for sensor nodes. If the range of
reputation value is set as [0, 255], each reputation value only
take 8 bits and the total storage overhead of Ni for maintain-
ing the CRS-A is 8 · |NCi | bits, where NCi is the neighbor
set of Ni . The communication overhead of CRS-A is mainly
produced by channel estimation and reputation propagation 2.
Let B be the number of bits in a PROBE packet that sensor
nodes broadcast to their neighboring nodes for channel estima-
tion [28]. The overhead for channel estimation is B bits data
broadcasting and B · |NCi | bits data receiving for each node
in an evaluation period. Similarly, each sensor node evaluates
a reputation score for its data forwarding node, and propagates
the score to its neighboring nodes in each evaluation period.
Thus, the communication overhead of reputation propagation
includes 8 bits data broadcasting and 8 · |NCi | bits data receiv-
ing. Since the PROBE packet and reputation score information
are much smaller than the transmitted data packets of sensor
nodes, it means CRS-A has a small communication overhead to
be employed into WSNs.

VII. SIMULATION RESULTS

In this section, we evaluate the performance of CRS-A
and the attack-tolerant routing scheme by the simulations on
OMNET++ [33], [35]. The simulation scenario consists of
100 stationary sensor nodes uniformly distributed in a 500m ×
500m area. The sink node is located at the center of the area.
Each sensor node has a probability PM to be compromised as
a malicious node, the value of which is identified in different
simulations. The attack probability of each malicious nodes N j

is randomly initialized as a value p j ∈ [0.1, 0.6]. Each sensor
node generates 10 data packets to transmit to the sink via multi-
hop routing in each evaluation period, and the transmission
range of a sensor node is 85m. The communication between
two neighboring node is based on the IEEE 802.11 DCF, while
a finite state Markov model is adopted to model the unstable
wireless channel [21], [22]. Although data delivery ratio can be
improved by data retransmission, we assume no retransmission
technique is applied in the simulation, where we can only focus
on the impacts of selective forwarding attacks on data integrity.

We setup the parameters of CRS-A as follows. The range of
the reputation value of a sensor nodes is [0, 200], i.e., Rs = 0
and Rm = 200. The initial reputation is 100 for all the sensor

2Although sensor nodes should send their reputation tables to the sink for
malicious node identification, we consider that this part of overhead can be
ignored because the interval of malicious node identification is much longer
than an evaluation period.

Fig. 5. Reputation value comparison.

nodes. The value of adjustment and punishment are δ = 1 and
λ = 10, respectively. Meanwhile, we set the penalty factor for
calculating the second-hand reputation score as α = 0.6, and
the weight for reputation integration as σ = 0.75. The alarm
reputation value for malicious node identification is Ra = 20.

A. Reputation Evaluation and Threshold Optimization

CRS-A updates the reputation values of sensor nodes based
on their behaviors in data forwarding. The sensor nodes with
low reputation values will be identified as malicious nodes over
a number of evaluation periods. In Fig. 5, we compare the repu-
tation values of different sensor nodes in 30 evaluation periods.
The compromising probability is PM = 35% in the simula-
tion. It means that a sensor node has a probability of 35% to
be compromised as a malicious node. A larger compromising
probability means a larger number of malicious nodes in the
network. As shown in the figure, the reputation value of the
normal sensor node is slightly increased after 30 periods, while
the reputation values of three malicious nodes decrease with
different rates. As long as a malicious node increases its attack
probability, its reputation value would suffer a dramatic drop
after several evaluation periods.

In order to optimize the detection accuracy of CRS-A, we
have determined the optimal evaluation threshold in Section V.
In Fig. 6, we show the false and missed detection probabili-
ties under different evaluation thresholds, and the determined
optimal evaluation period. The simulation results are generated
during the transmission from N j to Ni during an evaluation
period, where Si (t) = 50, pi, j (t) = 30%, PM = 30% and the
attack probability of N j is p j = 40%. We can see that with the
increment of detection threshold, the missed detection prob-
ability ηi, j (t) increases dramatically but the false detection
probability μi, j (t) quickly decreases to 0. The optimal thresh-
old is 21 which can make the objective optimizing probability,
i.e., nui, j (t), minimized as 3.1%.

B. Attack Detection Accuracy

In this subsection, we aim to evaluate the detection accuracy
of CRS-A by comparing CRS-A with the CAD algorithm [21].
The parameter settings of CAD are adopted according to [21].



3728 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 15, NO. 5, MAY 2016

Fig. 6. Evaluation threshold vs False/Missed detection probability.

Fig. 7. Detection ratio comparison (CBA means collaborative promo-
tion/demotion attack).

Fig. 7 shows the comparison of malicious node detection
ratio in CRS-A and CAD. For both CRS-A and CAD, we com-
pare them in two attack scenarios. The one is that malicious
nodes can launch collaborative promotion and demotion attacks
(CPDA) to protect each other and defame the normal nodes,
while the other is without CPDA. As shown in the figure, CRS-
A can detect nearly 100% malicious nodes in both scenarios,
while the detection ratio of CAD is much lower in the scenario
with CPDA than in the scenario without CPDA. Moreover, even
in the scenario without CPDA, the detection ratio of CRS-A
is better than CAD’s. It demonstrates that CRS-A outperforms
CAD in terms of the detection ratio of malicious nodes and is
also effective to resist CPDA in attack detection.

Fig. 8 shows the false and missed detection probability
comparison between CRS-A and CAD in different compromis-
ing probabilities. It can be seen that both the false detection
probability and missed detection probability of CRS-A are
close to 0 with the increase of the compromising probabil-
ity. Contrastively, the increment of compromising probability
brings a significant ascent in both the false detection probability
and missed detection probability.

Fig. 8. Detection accuracy comparison. (DP means detection probability in the
figure).

Fig. 9. Packet delivery ratio comparison.

C. Data Delivery Ratio

We evaluate the proposed attack-tolerant routing scheme in
this subsection, in terms of the data delivery ratio of the net-
work. In order to show the improvement clearly, we compare
the attack-tolerant routing scheme with the attack-avoid routing
scheme, where sensor nodes indiscriminately isolate the mali-
cious nodes with low reputation values (below the alarm value
Ra) from the routing path. Fig. 9 shows the packet delivery
ratio comparison of the two routing scheme over 66 evalu-
ation periods. Both of the routing schemes are applied with
CRS-A to the network. The compromising probability of sen-
sor nodes is PM = 25%, and the security check is performed at
the 55-th period, which can update all the identified malicious
nodes to be normal. As shown in the figure, the first significant
improvement of the data delivery ratio is in the evaluation peri-
ods [0, 15] for both routing schemes, where the malicious nodes
with high attack probabilities are detected and isolated from the
routing path. Meanwhile, after the security check, both rout-
ing schemes experience an improvement on data delivery ratio
due to the removal of malicious nodes. However, in the periods
from 20 to 54, the attack-tolerant routing scheme has a more
than 10% improvement on data delivery ratio, compared with
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Fig. 10. CRS-A performance for different compromising probabilities.

the attack-avoid routing scheme. That is because the malicious
nodes with good channel condition and low attack probabilities
are selected into the routing path, and stimulated to perform
better to avoid a reputation punishment.

D. Impacts of System Parameters

In this subsection, we evaluate the impacts of system param-
eters, including compromising probability and Ra , on the per-
formance of CRS-A. Fig. 10 shows the CRS-A performance
for different compromising probabilities. To show the detection
performance, all the compromised nodes in the simulation are
irrational to launch attacks but still can collaborative to pro-
tect each other. We aim to compare the number of evaluation
periods, within which 90% compromised nodes are identified
under different compromising probabilities. The performance
is compared under two attack scenarios, where the attacking
probabilities of compromised nodes follow two normal distri-
butions with mean values 10% and 40%, respectively. It can be
seen that CRS-A can identify the compromised nodes within a
very small number of evaluation periods under the compromis-
ing probability below 35%. With the increasing compromising
probability, the number of evaluation periods increases obvi-
ously. Especially, when the compromising probability is 45%,
CRS-A has to use a very long time to identify 90% compro-
mised nodes (sometimes cannot identify). It indicates that when
there are a large number of compromised nodes, their collabo-
ration can make the performance of CRS-A low and also can
make CRS-A ineffective. In addition, it can be observed from
the figure that more time should be spent to identify the compro-
mised nodes with low attack probabilities by CRS-A. However,
the compromised nodes with low attack probabilities have rel-
atively few impacts on network performance. Fig. 11 shows
the impacts of Ra on the performance of CRS-A, in terms of
the false identification probability and identification speed. It
can be seen that the number of evaluation periods for malicious
node identification decreases with the increasing Ra , while the
false identification probability increases with the increasing Ra .
If WSN applications require the false identification probability
below 1%, Ra can be set as 40 to accelerate the malicious node
identification while meeting the application requirement.

Fig. 11. The Impacts of Ra on the Performance of CRS-A.

VIII. CONCLUSION

In this paper, we have proposed a channel-aware reputation
system with adaptive detection threshold (CRS-A) to detect
selective forwarding attacks in WSNs. To accurately distinguish
selective forwarding attacks from the normal packet loss, CRS-
A evaluates the forwarding behaviors by the deviation between
the estimated normal packet loss and monitored packet loss.
To improve the detection accuracy of CRS-A, we have fur-
ther derived the optimal evaluation threshold of CRS-A in a
probabilistic way, which is adaptive to the time-varied channel
condition and the attack probabilities of compromised nodes.
In addition, a distributed and attack-tolerant data forwarding
scheme is developed to collaborate with CRS-A for stimulating
the cooperation of compromised nodes and improving the data
delivery ratio. Our simulation results show that the proposed
CRS-A can achieve a high detection accuracy with low false
and missed detection probabilities, and the proposed attack-
tolerant data forwarding scheme can improve more than 10%
data delivery ratio for the network. In our future work, we will
extend our investigation into WSNs with mobile sensor nodes,
where the detection of selective forwarding attacks becomes
more challenging, since the normal packet loss rate is more
fluctuant and difficult to estimate due to the mobility of sensor
nodes.
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