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Abstract—With the ever-increasing demands on multimedia
applications, cloud computing, due to its economical but powerful
resources, is becoming a natural platform to process, store, and
share multimedia contents. However, the employment of cloud
computing also brings new security and privacy issues as few public
cloud servers can be fully trusted by users. In this paper, we focus
on how to securely share video contents to a certain group of people
during a particular time period in cloud-based multimedia systems,
and propose a cryptographic approach, a provably secure time-
domain attribute-based access control (TAAC) scheme, to secure
the cloud-based video content sharing. Specifically, we first propose
a provably secure time-domain attribute-based encryption scheme
by embedding the time into both the ciphertexts and the keys,
such that only users who hold sufficient attributes in a specific
time slot can decrypt the video contents. We also propose an
efficient attribute updating method to achieve the dynamic change
of users’ attributes, including granting new attributes, revoking
previous attributes, and regranting previously revoked attributes.
We further discuss on how to control those video contents that
can be commonly accessed in multiple time slots and how to make
special queries on video contents generated in previous time slots.
The security analysis and performance evaluation show that TAAC
is provably secure in generic group model and efficient in practice.

Index Terms—ABAC, cloud computing, MA-CP-ABE,
multimedia, time-domain, time-domain attribute-based access
control (TAAC), video content sharing.

I. INTRODUCTION

W ITH the rapid development of communication technolo-
gies and mobile devices, video applications (e.g., video

chat, video conference, movies, short sight, etc.) have become
more and more popular in our daily life. Meanwhile, the de-
mands on video quality and user experience have also been
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Fig. 1. Example of live video streaming in multiple time periods.

increasing significantly in many video applications, such as
Ultra-high definition (UHD) live streaming, 3-D movies, instant
high definition (HD) video messages, etc. The ever-increasing
demands pose great challenges on video processing, coding,
presentation as well as communication, especially when the
resources of media devices (e.g., bandwidth, power and compu-
tation) are limited. Cloud computing, due to its flexible, scalable
and economic resources [1], is a natural fit for storing, process-
ing and sharing multimedia contents [2]–[4].

In cloud-based multimedia systems [5], some contents may
be time-sensitive and can only be accessed by a certain group of
people during a particular time period. For example, as shown in
Fig. 1, if a user only purchases a live streaming service for time
period t2 , this user may be granted to access the live streaming
or videos recorded in time period t2 . However, this user does not
have any permission to access the live streaming in time period
t3 or videos recorded in time periods t1 and t3 when he/she
does not purchase the service. Moreover, during each time pe-
riod, users may purchase different types of services, e.g., live
streaming service, regular recorded video service, HD recorded
video service, UHD recorded video service, etc. Therefore, it
is necessary to achieve fine-grained time-domain access control
for diverse video content sharing.

When outsourcing video contents into the cloud, it is not easy
to achieve fine-grained access control especially in time-domain,
as the owners of video contents are not able to control their data
as on their own servers. The untrustworthy cloud servers further
make this issue more challenging, because: 1) cloud servers may
not be fully trusted by the owners to control the access of their
video contents; and 2) cloud servers may also be curious about
the stored video contents. Thus, existing server-based access
control methods (e.g., access control lists) are not applicable
for cloud-based video content sharing. A possible approach is
to encrypt video contents and only authorized users are given
decryption keys. In the above mentioned example in Fig. 1, all
the video frames in t1 are encrypted by one key, while all the
video frames in t2 are encrypted by another key.

However, due to the large volume of video contents and
the performance requirements (e.g., speed, visual quality,
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compression friendliness, etc.), traditional encryption methods
(e.g., AES, DES, IDEA, RSA, etc.) may not be suitable for
data encryption. Some video encryption algorithms [6]–[9] are
proposed to balance the privacy and the quality of video con-
tents. When video contents are encrypted by using these video
encryption algorithms with session keys, the access control of
video contents becomes the control of session key distribution
in time-domain, which is a challenging problem due to the large
number of users. Hence, traditional public key encryption [10]–
[12] may produce multiple copies of ciphertexts for each session
key, the number of which is proportional to the number of users.
To solve this problem, attribute-based encryption (ABE) meth-
ods [13]–[15] can be applied for session key encryption, where
only one copy of encrypted session key is generated for all the
users. However, these ABE methods do not take the time into
consideration, and hence the main challenging issue to achieve
time-domain access control is how to embed the time into the
ABE.

Another challenging issue to control video content sharing
in time-domain is the dynamic change of attributes. During
different time periods, users may purchase different types of
services and accordingly be assigned various sets of attributes. In
each time period, a user may be entitled some new attributes, or
revoked some attributes, or re-granted some previously revoked
attributes. Existing attribute revocation methods [16]–[19] need
to re-encrypt all the previous data so that all the new coming
users may still be able to decrypt the previous data if their
attributes satisfy data access policies. Hence, these methods may
not be suitable for fine-grained video content sharing within a
certain time period.

In this paper, we focus on how to securely share video con-
tents to a certain group of people during a particular time pe-
riod in cloud-based multimedia systems, and propose a cryp-
tographic approach, a provably secure Time-domain Attribute-
based Access Control (TAAC) scheme, to control the access of
session keys that are used to encrypt video contents. Specifi-
cally, TAAC is constructed based on a typical multi-authority
ciphertext policy attribute-based encryption (CP-ABE) scheme
proposed by Lewko and Waters [15], so TAAC can support
attributes issued from multiple attribute authorities as well.
In order to support time-domain access control, we embed
the time into both the ciphertexts and the keys in the multi-
authority CP-ABE scheme in [15], such that only those users
who hold sufficient attributes in a specific time period can de-
crypt the data. To deal with the attribute update problem, we
follow the ideas in identity-based encryption revocation [20]
and divide the time into slots. At the beginning of each time
slot, each authority can revoke/re-grant any attribute in its do-
main from/to any user. Different from the revocation method
in [20], our scheme does not allow any new users to de-
crypt the data by making use of the update keys published in
the previous time intervals. Moreover, compared with exist-
ing revocation methods [16]–[19], our scheme does not need
any ciphertext re-encryption/update, which can significantly
improve the efficiency especially in large scale cloud-based
multimedia systems.

The contributions of this paper are summarized as follows.

1) We formulate the time-domain video content sharing
problem in cloud-based multimedia systems and propose
a cryptographic approach—TAAC scheme.

2) We propose a provably secure time-domain ABE scheme
by embedding the time into both the ciphertexts and the
keys, such that only users who hold sufficient attributes in
a specific time period can decrypt the data.

3) We propose an efficient attribute updating method to
achieve the dynamic change of users’ attributes, including
granting new attributes, revoking previous attributes and
re-granting previously revoked attributes.

The remainder of this paper is organized as follows. We first
review some existing work that may be related to secure video
sharing and time-domain access control in Section II. Then, we
describe the system model of video content sharing and define
a framework as well as a security model to achieve TAAC in
Section III. Section IV describes the technique overview and
the detailed construction of TAAC and Section V shows how to
solve the attribute dynamic updating problem. Section VI pro-
vides security analysis and performance evaluation of TAAC. In
Section VII, we also discuss on how to achieve access control
of video contents that are commonly accessed in multiple time
slots and how to make special queries on video contents gener-
ated in previous time slots. Finally, the conclusion of this paper
is drawn in Section VIII.

II. RELATED WORK

Cloud-based multimedia content sharing is one of the most
significant services in cloud-based multimedia systems. In [21],
some security and privacy issues of multimedia services are
proposed by exploring the multimedia-oriented mobile social
network. In [22], ABE is adopted to share scalable media based
on the attributes rather than the names of the consumers. Some
works focus on dealing with the security issues in wireless
sensor networks [23], [24] and crowdsourcing networks [36],
[37], which is important in multimedia data collection and
transmission.

Multi-authority CP-ABE [15], [25]–[27] is regarded as one of
the most appropriate techniques for access control of data stored
in the cloud, because it allows the data owner to define and en-
force the access policy over attributes from multiple attribute
authorities. For example, data owners may share the data us-
ing access policy “Google.Engineer ANDUniversity X.Alumni”
where the attribute “Engineer” is issued by Google and the at-
tribute “Alumni” is issued by the University X. Among these
existing multi-authority CP-ABE schemes, the scheme proposed
by Lewko and Waters [15] is widely accepted due to its high
scalability and security. However, we cannot directly apply this
scheme to achieve time-domain access control, because the ac-
cess policy and the encryption in [15] does not involve in any
time parameters.

To achieve access control in time-domain, the main chal-
lenging issue is how to embed the time into the ABAC. A
straightforward method is to take time as an attribute and embed
it into the access policy by changing the access policy from P
to (P AND Attr(t)). Here comes the problem: Taking the most
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popular multiple authority ABE scheme proposed by Lewko
and Waters [15] as an example, if the policy of a ciphertext CT
is (A AND B AND Attr(t)), a user who holds A and Attr(t) at
time t cannot decrypt CT. Suppose the user obtains the attribute
B at time t + 1, the user then can decrypt CT with A, B and
Attr(t) at time t + 1, because the attribute B is only associated
with the user identity uid which is the same as the attributes A
and Attr(t). To solve this problem, one approach is to associate
the time with each attribute as (A,A(t)), (B,B(t + 1)), etc.
That is, for each attribute, there is a corresponding time attribute
issued by the same authority, which doubles the size of attribute
universe. Moreover, for each time slot tj , the authority needs to
generate and distribute all the corresponding time-attributes at
tj to each user, which also eliminates the advantages of ABE.

Towards the attribute dynamic updating problem, some
methods[16]–[19], [28]–[30] are proposed to deal with the at-
tribute revocation in ABE systems. For example, in [16], the au-
thors propose a revocable CP-ABE method, by using ciphertext
delegation and piecewise property of secret keys. For each time
slot, the authority will generate a set of update keys (the other
piece of secret keys) according to the revocation list. Then, all
the ciphertexts should be re-encrypted with a new access control
policy, i.e., the principal access policy (A, ρ) is not changed but
the additional access policy (B, β) will be changed during each
time slot. They also proposed a ciphertext delegation method
for changing/re-encrypting a ciphertext encrypted under a cer-
tain access policy to a more restrictive policy using only public
information.

However, the method in [16] requires to re-encrypt the ci-
phertexts such that for those new users entitled with sufficient
attributes in later time slots can still decrypt the ciphertext.
However, in our problem, the time-domain access control does
not allow any new users to decrypt the ciphertexts generated in
the previously time periods. If simply removing the ciphertext
update/re-encryption procedure in [16], it still cannot achieve
the requirement of time-domain access control, because a user
who is entitled x at a later time slot t′ > t can make use of
the update keys for (x, t) to decrypt the previous published
ciphertexts. Furthermore, their scheme is proposed for single
authority ABE systems, and it is not straightforward to extend
to multi-authority systems.

III. SYSTEM MODEL AND FRAMEWORK DEFINITIONS

In this section, we first introduce the system model of cloud-
based video content sharing and then define the framework as
well as its security model for time-domain access control. For
convenience, some notations are summarized in Table I.

A. System Model of Cloud-Based Video Content Sharing

We consider a cloud-based video content sharing system as
follows. The time in the system is slotted and the time space
is defined as T = {1, 2, . . . }. Without loss of generality, the
system initializes its time to 0, and then increases it by 1 for the
next time slot (for any time slot t ∈ T , t − 1 is its last time slot
and t + 1 is its next time slot). As shown in Fig. 2, the system
model consists of four types of entities: attribute authorities

TABLE I
NOTATIONS

Symbol Meaning

T Slotted Time Space
D Index Set of all the Authorities
Ud Attribute Set managed by AAd (the dt h AA )
U Universe Attribute Set (U =

⋃
d Ud )

CTA, t e Ciphertext with access policy A at time slot te

g id User Global Identity
Sg id Set of all attributes user gid has EVER had
Sg id , t Attribute Set user gid possesses at time slot t

SK g id , x Secret Key of attribute x for user gid

STx State Tree of Attribute x

ULx , t Update List for Attribute x at time slot t

UKx , t Update Key of Attribute x at time slot t

DKg id , x , t Decryption Key of attribute x at t for user gid

Fig. 2. System model of cloud-based video content sharing.

(AAs), the cloud server (server), data owners (owners) and data
consumers (users).

Each AA is an independent attribute authority that is respon-
sible for entitling, revoking or re-granting attributes to/from/to
users according to their roles or identities in its domain. Each at-
tribute is associated with a single AA, but each AA can manage
an arbitrary number of attributes. In practice, attributes belong
to different authorities can be identified by encoding the at-
tributes with different prefix. For simplicity, we use a mapping
φ : U �→ D to map any attribute to the index of corresponding
authority. Each AA has full control over the structures and se-
mantics of its attributes, and maintains a state tree and an update
list for each attribute in its domain. Each AA is also responsible
for issuing secret keys to users when they are entitled attributes
in its domain, and publishing update keys for each attribute at
the beginning of each time slot to reflect the users’ possessions
of the attribute at this time slot.

Data owners define access policies A on attributes from mul-
tiple authorities and a time slot te , then encrypt the video content
under the policies before outsourcing to cloud servers. They do
not rely on the server to enforce the access policy. Instead, the
access control happens inside the cryptography: only the users
who possess eligible attributes (satisfying the access policy A)
at a particular time slot te can decrypt the ciphertext CTA,te

associated with (A, te).
Each user has a global identity gid in the system. Let Sgid

denote all attributes that user gid has ever had. As the user’s
attributes may change dynamically from time slot to time slot,
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Sgid,t is used to denote the attribute set that the user gid pos-
sesses at time slot t. When a user gid is entitled an attribute x, he
will be issued a corresponding secret key SKgid,x . However, the
secret keys of a user gid are insufficient to decrypt a ciphertext
encrypted under (A, te) even when the corresponding attributes
satisfyA. The user has to obtain a set of update keys at each time
slot t (i.e., UKx,t) from the corresponding authorities. Based on
the received update keys and his secret keys, the user can com-
pute decryption keys for each time slot t, and further uses them
to decrypt the ciphertext.

B. Framework of TAAC

Let AA1 , AA2 , . . . be attribute authorities and D =
{1, 2, . . . } be the index set of the AAs. Let d(d ∈ D) denote the
index of attribute authority AAd and Ud be the set of attributes
managed by AAd , where Ui ∩ Uj = ∅ for all i �= j ∈ D. The at-
tribute universe of the system is defined as U =

⋃
d∈D Ud . The

AAs are independent from each other and do not need to know
the existence of others. The framework of TAAC is defined as
follows.

Definition 1: TAAC is a collection of the follow-
ing algorithms: Global Setup, Authority Setup, SKeyGen,
UKeyGen, DKeyCom, Encrypt and Decrypt.

� GlobalSetup(λ) → GPP: The global setup algorithm
takes the security parameter λ as input. It outputs the global
public parameters GPP.

� AuthoritySetup(GPP,Ud) → (PKd , MSKd): The au-
thority setup algorithm is run by each AA. It takes as
inputs the global public parameters GPP, an attribute do-
main Ud . It outputs the authority’s public key PKd and the
master secret key MSKd . In addition, for each attribute
x ∈ Ud , this algorithm initializes the state tree STx , and
initializes the update list of x to empty.

� SKeyGen(gid, x, STx , GPP, MSKφ(x)) →
(SKgid,x , STx): The secret key generation algorithm
is run by each AA. It takes as inputs the user’s global
identity gid, an attribute x and its state tree STx , the
global public parameters GPP and the master secret key
MSKφ(x) . The algorithm outputs a secret key SKgid,x for
the (attribute, identity) pair (x, gid), and an updated state
tree STx .

� UKeyGen(t, x, STx , UL x,t , GPP, MSKφ(x)) →
(UKx,t): At each time slot t, for each attribute x ∈ Uφ(x) ,
the authority AAφ(x) runs the update key generation
algorithm once by taking as inputs the state tree STx of x,
the update list UL x,t of x at time slot t, the global public
parameters GPP, and its master secret key MSKφ(x) .
The algorithm outputs the update key UKx,t for x at t,
which will be published on the public bulletin board of
the authority, which is stored on cloud servers.

� DKeyCom(SKgid,x , UKx,t) → (DKgid,x,t) or⊥: For any
time slot t and any attribute x, a user gid can run the decryp-
tion key computation algorithm with secret key SKgid,x

and update key UKx,t as inputs. The algorithm outputs a
decryption key DKgid,x,t implying that gid possesses x at

t, or a special symbol ⊥ implying that gid does not possess
x at t.

� Encrypt(M, te ,A, GPP, {PKd}) → (CT): The encryp-
tion algorithm is run by data owners. It takes as inputs
a message M , a time slot te , an access policy A over
attributes from multiple authorities, the global public pa-
rameters GPP, and the public keys {PKd} related to A. It
outputs a ciphertext CT which includes A and te .

� Decrypt(CT, GPP, {PKd}, {DKgid,x,t}x∈Sg id , t
) → (M)

or ⊥: The decryption algorithm is run by users. It takes
as inputs a ciphertext CT which includes access policy
A and time slot te , the global public parameters GPP,
the public keys {PKd} related to A, and decryption keys
{DKgid,x,t}x∈Sg id , t

corresponding to a (global identity,
time slot) pair (gid, t). The algorithm outputs a message
M or a special symbol ⊥ implying decryption failure.

Correctness: The system must satisfy the following correct-
ness property: for all access policies A over the whole attribute
universe U , all time slots te ∈ T , all messages M , all global
identities gid, and all possible states trees {STx}x∈Sg id and up-
date lists {ULx,te

}x∈Sg id , if Sgid,te
satisfies A, the following

experiment returns 1 with probability 1:

(GPP) ← GlobalSetup(λ),

{(PKd , MSKd ) ← Authority Setup(GPP,Ud )},

{(SKgid ,x , STx ) ← SKeyGen(gid, x, STx , GPP, MSKφ (x ) )}x∈S g id ,

{UKx,te ← UKeyGen(te , x, STx , ULx,te , GPP, MSKφ (x ) )}x∈S g id ,

{DKgid ,x ,t e ← DKeyCom(SKgid ,x , UKx,te )}x∈S g id ,

CT ← Encrypt(M, te ,A, GPP, {PKd} ).

If Decrypt(CT, GPP, {PKd}, {DKgid,x,t}x∈Sg id , t e
) = M ,

then it returns 1; Otherwise, it returns 0.

C. Security Model of TAAC

In cloud-based video content sharing systems, we consider
the case that the server may send data to the users who do
not have access permission. The server is also curious about
the video contents. The users, however, are dishonest and may
collude to obtain unauthorized access to video contents. Some
of the AAs can be corrupted or compromised by the attackers.
The security of TAAC is defined by the following game run
between a challenger and an adversary A.

Setup.
1) The challenger runs GlobalSetup and gives the output

GPP to A.
2) A specifies index set Dc ⊂ D as the corrupted AAs.

For good (non-corrupted) AAs in D \Dc , the challenger
runs the AuthoritySetup algorithm and gives the output
PKd(d ∈ D \Dc) to A.

Phase 1.A can obtain secret keys and update keys by querying
the following oracles:

1) SKQ(gid, x): A makes secret key queries by submitting
pairs (gid, x), where gid is a global identity and x is an
attribute belonging to some good authority (i.e., φ(x) ∈
D \Dc ). The challenger runs SKeyGen to return a secret
key SKgid,x to A and update the state tree STx .
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2) UKQ(t, x, ULx,t): A makes update key queries by sub-
mitting tuples (t, x, ULx,t), where t ∈ T is a time slot,
x is an attribute belonging to some good authority (i.e.,
φ(x) ∈ D \Dc ), and ULx,t is a valid update list of x at
t. The challenger runs UKeyGen to return an update key
UKx,t to A.

Challenge Phase. A submits to the challenger two equal-
length messages M0 , M1 , an access policyA∗ overU , and a time
slot t∗ ∈ T . In addition,Amust also give the challenger the pub-
lic keys {PKd} for any corrupted authorities whose attributes
appear in A∗. The challenger flips a random coin β ∈ {0, 1} and
sends to A an encryption of Mβ under (A∗, t∗).

Phase 2. A makes further queries as in Phase 1.
Guess. A submits a guess β′ for β.
A wins the game if β′ = β under the following restrictions.
1) UKQ(t, ·, ·) can be queried on time slot which is greater

than or equal to the time slot of all previous queries, i.e.,
the adversary is allowed to query only in non-decreasing
order of time slot.1 Also, for any pair (t, x), UKQ(t, x, ·)
can be queried only once (because at each time slot t, for
any attribute x, the corresponding authority will publish
the corresponding update key UKx,t only once).

2) For any queried gid, Sgid,t∗ does not satisfy A∗.
The advantage of A is defined as |Pr[β = β′] − 1/2|.
Definition 2: TAAC is secure in generic group model if for

all polynomial-time adversary A in the above game, the advan-
tage of A is negligible.

IV. TAAC: TIME-DOMAIN ATTRIBUTE-BASED

ACCESS CONTROL

In this section, we first go through the main technical ideas
of secure cloud-based video content sharing, and then describe
the detailed construction of TAAC.

A. Technique Overview

Due to the large volume of video contents and the perfor-
mance requirements (e.g., speed, visual quality, compression
friendliness, etc.), video contents are firstly encrypted by using
video encryption methods [6]–[9] with session keys. To support
time-domain access control of video contents, we control the
distribution of session keys by proposing a new time-domain
ABE method, which embeds the time into both the ciphertexts
and the keys of the multi-authority CP-ABE in [15]. Specifi-
cally, the system first defines a slotted time space T . For each
attribute x ∈ Ud , AAd maintains a state tree STx (a binary tree
that describes the users who have ever hold the attribute x, and
the construction of a state tree is described in the Supplemen-
tary File) and an update list ULx,t . The state tree STx is updated
when a user is entitled x, and the update list ULx,t (initially
empty) is updated at time slot t if any user is revoked or re-
granted x at that time slot.

When a user gid is entitled an attribute x ∈ Ud , AAd is-
sues a secret key SKgid,x to gid and updates STx . When the

1This captures the practical scenarios, where the authority will always gen-
erate and publish update keys for current time slot, so that the update keys can
only be obtained in the non-decreasing order of time slot.

owner encrypts a session key κ, besides specifying an access
policy A over attribute universe U , he also specifies a time slot
te ∈ T , which implies that only the users who possess eligible
attributes at time slot te can decrypt the ciphertext. Specifically,
a user gid who only has secret keys {SKgid,x}x∈Sg id is unable
to decrypt a ciphertext encrypted by (A, te) even when Sgid
satisfies A. Besides, he has to obtain the update key for (x, te)
(i.e., {UKx,te

}x∈Sg id , t e
) from the corresponding AAs. By using

SKgid,x and UKx,te
, the user gid can compute a decryption key

DKgid,x,te
and use it to decrypt the ciphertext encrypted under

(A, te), if Sgid,te
satisfies A. Only those users who hold suffi-

cient attributes in a specific time slot can decrypt session keys
of video contents.

To deal with the attribute revocation problem, we follow the
ideas in identity-based encryption revocation [20] and divide the
time into slots. At each time slot t ∈ T , for any x ∈ Ud , AAd

generates the update keys UKx,t according to STx and ULx,t

so that only the users who possess x at time slot t are able to
obtain valid UKx,t . Thus, by setting the update list ULx,t and
publishing the corresponding UKx,t the authority can achieve
dynamic change of x. However, a critical issue is how to prevent
a user who is entitled x at a later time slot t′ > t from making
use of the update keys for (x, t). To solve this issue, we assign a
random number to each node in the state tree, which is embedded
into both secret keys and update keys. Moreover, our proposed
minimum cover set selection algorithm MinCSS guarantees
that the previous released update keys will not cover any nodes
in the paths of new users. These two mechanisms together can
guarantee that the new user in our scheme cannot apply the
previous released update keys to cancel the random number in
its secret keys.

B. Construction of TAAC

Based on the algorithms defined in Section III-B, TAAC con-
tains the following phases: System Initialization, Key Genera-
tion by AAs, Data Encryption by Owners, and Data Decryption
by Users.

Phase 1: System Initialization
The system initialization consists of two steps: Global Setup

and Authority Setup.
1) Global Setup
The system is initialized by running the global setup algorithm

Global Setup. Let G and GT be a bilinear group of order p,
where p is a prime.2 Let g be a generator of G. The global
public parameter is published as GPP = (p, g, e,H), where e
is a bilinear pairing, and H is a hash function that maps global
identities to elements of G.

2) Authority Setup
The authority setup algorithm Authority Setup is run by each

authority AAd(d ∈ D). For each attribute x ∈ Ud , the algorithm
chooses two random exponents αx, βx, γx ∈ Zp . The algorithm
chooses a random element τx ∈ Zp as the seed of a pseudo
random function F . Then, for each node vx in the state tree STx ,

2Note that we consider groups in prime order in this paper due to the efficiency
of group operations. Our methods can also be applied to the CP-ABE methods
constructed with composite order bilinear groups in [15].
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it sets a random number Rvx
= F (τx, vx) ∈ G, which will be

used to generate the user’s secret key. Let Hd : Ud × T �→ G be
a hash function that maps (attribute, time slot) pairs in Ud × T
to elements of G. The public key is set to

PKd = ({e(g, g)αx , gβx , g
1

γ x }x∈Ud
, Hd)

and the master secret key is set to MSKd = {αx, βx, γx}.
Phase 2: Key Generation by AAs
The key generation contains both Secret Key Generation and

Update Key Generation.
1) Secret Key Generation
When a user gid is entitled an attribute x ∈ Uφ(x) , the cor-

responding authority AAφ(x) runs the secret key generation
algorithm SKeyGen to update STx and generate a secret key
SKgid,x for this user gid as follows.

a) Sets ux,gid = 2hx + ctrx , adds (gid, ux,gid) to Listx (as-
signing the leaf node ux,gid , i.e., the most left empty leaf
node, to gid), and sets ctrx = ctrx + 1.

b) Sets

SKgid,x={Kgid,x,vx
=gαxH(gid)βx(Rvx

)αx rg id , x , v x+r ′
g id , x , v x

K ′
gid,x,vx

=rgid,x,vx
,

K ′′
gid,x,vx

=(Rvx
)γx r ′

g id , x , v x}vx ∈Path (ux , g i d)

where Path(ux,gid) is the set of nodes on the path from
vx to the root node (including both vx and the root node),
rgid,x,vx

∈ Z∗
p is randomly chosen.

Then, the authority AAφ(x) sends the secret key SKgid,x to
the user gid. Note that only when a new attribute x ∈ Uφ(x) is
assigned to the user gid, a corresponding secret key SKgid,x

is issued to this user gid by the authority AAφ(x) . This secret
key assignment happens at most once for each attribute on each
user. When the attribute x is revoked or re-granted some time,
the secret key SKgid,x will not be removed or re-assigned to the
user gid anymore.

2) Update Key Generation
At the beginning of each time slot t, for each attribute

x ∈ Uφ(x) , the corresponding authority AAφ(x) determines the
update list ULx,t and runs the update key generation algorithm
UKeyGen once to generate and publish the update key UKx,t .
The algorithm computes the minimum set of nodes Nx,t that
covers all the non-revoked users who possess x at t by running
the Minimum Cover Set Selection algorithm MinCSS (which
will be described in Section V), then for each vx ∈ Nx,t it
chooses a random exponent ξvx ,t ∈ Zp . The update key for
(x, t) is set to

UKx,t=
{(

Evx =(Rvx)
αx γx Hφ(x)(x, t)ξv x , t , E ′

vx
=g

ξ v x , t
γ x

)}

vx ∈Nx , t

.

Then, all the update keys {UKx,t} are published on the public
bulletin board of the corresponding authority AAφ(x) at the
beginning of the time slot t. All the users in the system can
access these update keys from the public bulletin board of each
authority, which is also stored in the cloud. When all the users
have downloaded the update keys or after a time period, the old
update keys on the cloud server can be deleted in order to reduce
storage overhead.

Phase 3: Data Encryption by Owners
The owner first encrypts the video content with a session key

by using video encryption algorithms. It then runs the encryption
algorithm Encrypt to encrypt the session key κ. The encryption
algorithm is defined as:

Encrypt(κ, te ,A = (A, ρ), GPP, {PKd}) → (CT). κ is the
session key, te is a time slot, A is the access policy which
is expressed by an LSSS matrix (A, ρ), where A is an m ×
n matrix and ρ maps each row Ai of A to an attribute ρ(i),
and {PKd} are the public keys related to (A, ρ), where d ∈
{φ(ρ(i))|1 ≤ i ≤ m}. The algorithm chooses a random number
s ∈ Zp as the encryption secret.

Then, it chooses two random vectors 
v, 
u ∈ Zn
p , with s and 0

as the first entry respectively, and for each i ∈ {1, 2, . . . ,m}, it
randomly picks ri ∈ Zp . Let λi = Ai · 
v and μi = Ai · 
u. The
ciphertext of the session key is

CT = 〈 (A, ρ), te , C = κ · e(g, g)s

{Ci,1 = e(g, g)λi e(g, g)αρ ( i ) ri

Ci,2 = gμi gβρ ( i ) ri

Ci,3 = gri , C ′
i,3 =

(
g

1
γ x

)ri

Ci,4 = Hφ(ρ(i))(ρ(i), te)ri }m
i=1 〉.

Then, data owners send both the ciphertext CT of κ and the
video content encrypted under κ to cloud server.

Phase 4: Data Decryption by Users
All legal users can download any ciphertexts they are in-

terested in. But only the users who possess eligible attributes
(satisfying the access policy A) at a particular time slot te can
decrypt the ciphertext associated with (A, te). The decryption
phase consists of two steps: Decryption Key Computation and
Ciphertext Decryption.

1) Decryption Key Computation
At each time slot t, each user can get update keys for each

attribute it possesses at this time slot from the public bulletin
boards of the authorities. For each attribute x it possesses at
time slot t, the user gid computes a decryption key DKgid,x,t for
this attribute by running the algorithm DKeyCom constructed
as follows.

DKeyCom(SKgid,x , UKx,t) → (DKgid,x,t) or ⊥. If x ∈
Sgid,t , i.e., gid possesses x at t, then there exists a unique
vx such that vx ∈ Path(ux,gid) ∧ vx ∈ Nx,t (this is guaranteed
by the Minimum Cover Set Selection algorithm MinCSS), the
algorithm sets the decryption key for attribute x of gid at t to

DKgid,x,t = (Dgid,x,t = Kgid,x,vx
,

D′
gid,x,t = (Evx

)K ′
g id , x , v x · K ′′

gid,x,vx
,

D′′
gid,x,t = (E ′

vx
)K ′

g id , x , v x ).

If x /∈ Sgid,t , as there does not exist such a vx (this is guaran-
teed by the MinCSS algorithm as well), the algorithm outputs⊥.

Only the users who possess x at time t can compute a valid
decryption key, i.e., a user gid who is entitled x at a later time
slot t′ > t is unable to compute a valid DKgid,x,t even he has
SKgid,x (issued at t′) and UKx,t (generated at t). However, in
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practice, sometimes such a user is allowed to obtain a valid
DKgid,x,t as a special case. Later we will also give a discussion
how to efficiently handle such special cases.

2) Ciphertext Decryption
Each user can freely get the ciphertext from the server, but he

can decrypt the ciphertext only when the attributes he possesses
at time slot te satisfy the access policy defined in the ciphertext.
Suppose the user gid has sufficient attributes at time slot te , it can
generate sufficient valid decryption keys {DKgid,x,te

}x∈Sg id , t e

to decrypt the ciphertext by running the following decryption
algorithm.

Decrypt(CT, GPP, {PKd}, {DKgid,x,t}x∈Sg id , t
) → (M) or

⊥. Assume CT is associated with access policy and time
〈(A, ρ), te〉 and the set of decryption keys {DKgid,x,t}x∈Sg id , t

is associated with the pair (gid, t). If t �= te or Sgid,t does not
satisfy (A, ρ), the algorithm outputs ⊥, otherwise, it decrypts
the ciphertext as follows:

a) finds a set I = {i|ρ(i) ∈ Sgid,te
} and computes corre-

sponding constants {wi |i ∈ I} such that
∑

i∈I wiAi =
(1, 0, . . . , 0);

b) for each i ∈ I , computes

C̄i =
Ci,1 · e(H(gid), Ci,2)
e(Dgid,ρ(i),te

, Ci,3)
·
e(D′

gid,ρ(i),te
, C ′

i,3)

e(D′′
gid,ρ(i),te

, Ci,4)

=
e(g, g)λi e(g, g)αρ ( i ) ri · e(H(gid), gμi gβρ ( i ) ri )

e(gαρ ( i ) H(gid)βρ ( i ) , gri )

·
e((Rvρ ( i ) )

αρ ( i ) γρ ( i ) rg id , ρ ( i ) , v ρ ( i ) , gri /γρ ( i ) )

e((Rvρ ( i ) )
αρ ( i ) rg id , ρ ( i ) , v ρ ( i ) , gri )

·
e(Hφ(ρ(i))(ρ(i), t)ξv ρ ( i ) , t rg id , ρ ( i ) , v ρ ( i ) , gri /γρ ( i ) )

e(gξv ρ ( i ) , t rg id , ρ ( i ) , v ρ ( i )
/γρ ( i ) ,Hφ(ρ(i))(ρ(i), te)ri )

·
e((Rvρ ( i ) )

γρ ( i ) r
′
g id , ρ ( i ) , v ρ ( i ) , gri /γρ ( i ) )

e((Rvρ ( i ) )
r ′

g id , ρ ( i ) , v ρ ( i ) , gri )

= e(g, g)λi · e(H(gid), g)μi

c) computes
∏

i∈I

C̄wi
i = e(g, g)

∑
i∈I wi λi · e(H(gid), g)

∑
i∈I wi μi

= e(g, g)s

and recovers the session key κ by κ = C/e(g, g)s .
Then, the user can use this session key to further decrypt the

encrypted video contents.

V. ATTRIBUTE DYNAMIC UPDATING IN TAAC

Let ULx,t be the update list of attribute x at time slot t. In
particular, ULx,t is a set of global identities, and gid ∈ ULx,t

means that gid possesses the attribute x at time slot t. The at-
tribute dynamic updating in TAAC contains the following three
phases:

Phase 1: Update List Determination
At the beginning of each time slot t, AAd sets the elements of

ULx,t for any attribute x ∈ Ud . Attributes can be easily revoked

Algorithm 1: MinCSS(STx , ULx,t)
1: Xe,Xr ← ∅
2: Nx,t ← ∅
3: ue ← the most left empty leaf node
4: Xe ← Path(ue)
5: for each ur ∈ ULx,t do
6: add Path(ur ) to Xr

7: Xr ← Xr \ Xe

8: for each ve ∈ Xe do
9: if ve is not a leaf node then
10: vlc ← left child of ve

11: if vlc /∈ Xr ∪ Xe then
12: add vlc to Nx,t

13: for each vr ∈ Xr do
14: if vr is not a leaf node then
15: vlc ← left child of vr

16: if vlc /∈ Xr then
17: add vlc to Nx,t

18: vrc ← right child of vr

19: if vrc /∈ Xr then
20: add vrc to Nx,t

21: if Nx,t = ∅ then
22: add the root node x to Nx,t

23: Return Nx,t

or re-granted from or to users by using the update list. Note
that it is not required that ULx,t ⊆ ULx,t+1 , i.e., the system can
support access control on time slot level. For example, a user gid
is revoked the decryption privilege of attribute x only at time
slot t (i.e., gid ∈ ULx,t), but at time slot t + 1 he needs to be re-
granted the decryption privilege of x. Such a case can be easily
supported by removing gid from ULx,t+1 (i.e., gid /∈ ULx,t+1).

Phase 2: Minimum Cover Set Selection
After determining the update list ULx,t for each attribute x

at time slot t, the corresponding authority AAφ(x) finds the
minimal set of nodes for which it publishes update keys so that
only the users who possess x at t can make use of the published
update keys to compute corresponding decryption keys. The
minimum cover set selection algorithm MinCSS(STx , ULx,t)
is defined in Algorithm 1.

Moreover, different from the algorithm in [20], our algorithm
prevents a user who is entitled x at a later time slot t′ > t from
making use of the update keys for (x, t). Fig. 3 shows an example
where ULx,t = {gid3}. The AA only needs to compute the
update key UKx,t,4 for {gid1 , gid2}, UKx,t,6 for {gid5 , gid6},
and UKx,t,11 for gid4 .

Phase 3: Update Key Generation
In this phase, AAφ(x) generates the UKx,t according to

STx and ULx,t so that only the users who possess x at time
slot t are able to obtain valid UKx,t . For any attribute x, the
corresponding authority runs UKeyGen only once at the be-
ginning of each time slot t, taking the current values of STx

and ULx,t . Note that for any time slot t and attribute x,
once UKeyGen(t, x, STx , UL x,t , GPP, MSKd) → (UKx,t) is
run and UKx,t is published, the later changes of STx and ULx,t
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Fig. 3. Example of minimum cover set selection where gid3 was revoked.

TABLE II
SIZE COMPARISON OF COMPONENTS

Scheme PK SK UK CT

[16] na 2nu , a log nu na , t nu log nu 2nu (nc + 1)
TAAC 3na 3nu , a log nu 2na , t log nu 5nc + 2

will not affect UKx,t , and will be reflected at next time slot, i.e.,
UKx,t+1 . Thus, by setting the update list ULx,t and publishing
the corresponding UKx,t , the authority achieves access control
of x on time slot level.

VI. SECURITY ANALYSIS AND PERFORMANCE EVALUATION

A. Security Analysis

Similar to the underlying multi-authority CP-ABE scheme in
[15, Appendix D], we will prove TAAC is secure in the generic
bilinear group model previously used in [31]–[33], modeling H
and {Hd}d∈D as random oracles. Security in this model assures
us that an adversary cannot break TAAC with only black-box
access to the group operations as well as H and {Hd}d∈D .

Theorem 1: In the generic bilinear group model and ran-
dom oracle model, no polynomial time adversary can break
TAAC with non-negligible advantage in the security game of
Section III-C.

Proof: The formal proof is given in the Supplementary
File. �

B. Performance Analysis

We analyze the performance of TAAC by comparing with
Sahai, Seyalioglu and Waters’s scheme (SSW’s scheme) [16]
under the metrics of Storage Overhead, Communication Cost
and Computation Cost. Because SSW’s scheme does not
support multi-authority scenario, the comparison here is in
single scenario. We first compare each component in TAAC
with SSW’s Scheme, as shown in Table II, where na denotes
the total number of attributes; nu denotes the total number
of users; nu,a denotes number of attributes user u holds; na,t

denotes the number of revoked attributes at time t; and nc

denotes the number of attributes associated with the ciphertext.

Fig. 4. Comparison of encryption/decryption time. (a) Encryption.
(b) Decryption.

TABLE III
ENCRYPTION (DECRYPTION) TIME ON VIDEO CONTENTS [35]

Frame Pattern Encryption (Decryption)
Name Size (I:P:B) Time of Video

bus.mpeg 352 × 240 10:40:98 3.9779 s
space.mpeg 160 × 128 647:0:0 5.0372 s
twister.mpeg 320 × 240 206:206:824 38.3258 s

1) Storage Overhead: The storage overhead on the server
mainly comes from the ciphertexts CT. Note that here we do not
consider the size of encrypted data. The public key PK and the
secret key SK also contribute to the overhead on data owners and
users respectively. The overhead on each AA comes from both
the overhead of MSK and the overhead of user management.
From Table II, we can easily find that TAAC incurs less storage
overhead on the server, because of its smaller size of ciphertext
compared to SSW’s scheme.

2) Communication Cost: The communication cost mainly
comes from the delivery of update keys. Thus, the communi-
cation cost in TAAC is O(na,tnu ), where na,t is the number
of attributes that need to be updated at time slot t. However, in
SSW’s scheme, the communication cost is O(na,tnu log nu ),
which is much larger than the one of TAAC.

In TAAC, the minimum cover set selection algorithm
MinCSS is designed for reducing the communication cost. If no
one is revoked in time slot t, the overhead of update keys will be
reduced from O(na,tnu ) to O(na,t) (i.e., only one update key
is generated for each attribute). In general, by using the NNL
technique [34], the number of nodes in the minimum cover set
|Nx,t | is approximate to r log nu , x

r , where nu,x is the number
of users who possess x and r is the number of revoked users.
Thus, the communication overhead caused by update keys can
be reduced from O(na,tnu ) to O(na,tr log nu

r ).
3) Computation Cost: In TAAC, all the ciphertexts do not need

to be updated during each time slot, while in SSW’s scheme, the
ciphertexts should be updated. We also simulate the computation
time of encryption and decryption on a Linux system with an
Intel Core 2 Duo CPU at 3.16 GHz and 4.00 GB RAM. The
code uses the Pairing-Based Cryptography library version 0.5.14
to simulate the access control schemes. We use a symmetric
elliptic curve α-curve, where the base field size is 512-bit and
the embedding degree is 2. The α-curve has a 160-bit group
order, which means p is a 160-bit length prime. The session key
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TABLE IV
ENCRYPTION AND DECRYPTION TIME ON SESSION KEYS

Number of Involved Attributes in Encryption/Decryption

Time 1 2 4 6 8 10 14 16 20

Encryption (s) 0.034489 0.059939 0.113293 0.166348 0.218932 0.273655 0.408224 0.448147 0.550210
Decryption (s) 0.012035 0.023120 0.045970 0.068165 0.090815 0.126357 0.160122 0.182653 0.231622

size is set to 128 bits. All the simulation results are the mean of
20 trials.

As shown in Fig. 4(a) and (b), the decryption in TAAC is more
efficient than the one in SSW’s scheme, while the encryption
in SSW’s scheme is more efficient than the one in TAAC. In
cloud-based multimedia systems, users usually access the data
with their mobile devices, such as smart phones, tablets, etc.,
so TAAC is very suitable for end users to efficiently decrypt
multimedia data with their mobile devices.

Due to the large volume of video contents, our proposed
TAAC cannot be directly applied to encrypt video contents, es-
pecially for live video streaming. Instead, video contents are
firstly encrypted by using video encryption methods with ses-
sion keys. Then, the session keys are encrypted by TAAC for ac-
cess control purpose. Authorized users who can decrypt session
keys can further decrypt video contents. Because TAAC is only
applied to control the access of session keys associated with the
encrypted video contents, the quality of video contents are not
affected by TAAC except the delay caused by encryption and de-
cryption of session keys. To illustrate the encryption/decryption
delay caused by TAAC, we first give encryption/decryption3

time for video contents using video encryption algorithm [35]
in Table III.

Then, we simulate the session key encryption and decryption
by setting the length of session key to be 128-bit. The delay time
for session key encryption and decryption is shown in Table IV,
which is closely related to the number of attributes involved in
the encryption and decryption. As shown in Tables III and IV, it
is not difficult to find that the delay caused by the access control
of session keys is not significant compared to the video con-
tent encryption/decryption. Moreover, in practical cloud-based
multimedia systems, the number of attributes involved in the
decryption is usually less than ten.

Besides, by using the minimum cover set selection algorithm
MinCSS the computation cost on the update key generation can
also be reduced from O(nu ) to O(r log nu

r ). The computation
complexity of MinCSS is O(log nu,x) + O(n′

u,x), where nu,x

is the total number of users who possess x, and n′
u,x is the num-

ber of users in update list ULx,t . Moreover, the update keys can
also be generated in the previous time slot (when the revocation
list has been determined in the next time slot) and released at
the beginning of the current time slot. As a result, the renew
of update keys does not cause significant delay for live video
streaming compared with the video decryption and decoding
operations. Therefore, we can conclude that TAAC achieves

3The video encryption algorithm is symmetric, such that the time of encryp-
tion and decryption is the same.

time-domain access control for cloud-based video content shar-
ing without significant delay.

VII. DISCUSSION

In the above construction of TAAC, the data access is limited
to one time slot. That is, video contents are encrypted under
access policies in a time slot, and only users who hold sufficient
attributes in that time slot can access them. However, some video
contents may be commonly accessed during multiple time slots.
In this section, we first discuss on how to modify TAAC to
support the commonly accessed video contents during multiple
time slots. Then, we further discuss on how to enable users to
make special queries on video contents generated in previous
time slot.

A. Commonly Accessed Video Contents During Multiple
Time Slots

In cloud-based video content sharing systems, some video
contents may be accessed by any users who hold sufficient
attributes in any of these time slots. TAAC can be extended
to support those commonly accessed video contents during
multiple time slots by modifying the encryption algorithm
Encrypt to a general one which encrypts video contents us-
ing ((A, ρ), Te ⊆ T ). In particular, Ci,4 can be modified to

Ci,4 = {Hφ(ρ(i))(ρ(i), te)ri }te ∈Te
.

During the time period Te , anyone who obtain sufficient at-
tributes in any time slot t ∈ Te can access the video contents.

B. Special Queries on Video Contents Generated in Previous
Time Slots

In TAAC, a user gid who does not have sufficient attributes at
time slot t cannot decrypt the ciphertext CTA,t , even when the
user is entitled sufficient attributes at a later time slot t′(t′ > t).
However, in some scenarios, this user may be authorized to
query the ciphertext CTA,t . To achieve this, the authority will
assign a special update key to the queried user. Specifically,
for each attribute x required for decryption at time slot t, the
authority AAφ(x) generates a special update key as

UKx,t,gid = (Eux , g id = Rux , g id Hφ(x)(x, t)ξu x , g id ,

E ′
ux , g id

= gξu x , g id )

where ux,gid is the leaf node assigned to gid and ξux , g id ∈ Zp

is randomly chosen. Note that such an update key is useless to
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other users, and the user gid can only use this update key to
obtain the decryption privilege of x at time slot t.

VIII. CONCLUSION

In this paper, we have proposed a cryptographic approach,
TAAC, to achieve time-domain attribute-based access control
for cloud-based video content sharing. Specifically, we have
proposed a provably secure time-domain ABE scheme by em-
bedding the time into both the ciphertexts and the keys, such
that only users who hold sufficient attributes in a specific time
period can decrypt the data. To achieve the dynamic change of
users’ attributes, we have also proposed an efficient attribute up-
dating method which enables attribute authorities to grant new
attributes, revoke previous attributes and re-grant previously re-
voked attributes to users at the beginning of each time slot. We
have further discussed on how to achieve access control of video
contents that are commonly accessed in multiple time slots and
how to make special queries on video contents generated in pre-
vious time slots. We have provided the security proof for the
proposed TAAC scheme in generic bilinear group model and
random oracle model.

In our future work, we will implement TAAC on real cloud-
based multimedia systems and explore the time-domain access
control scheme in standard model.
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