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Abstract—In the Part I of the paper (“Delay-Optimal Dy-
namic Mode Selection and Resource Allocation in Device-to-
Device Communications - Part I: Optimal Policy”), we inves-
tigated dynamic mode selection and subchannel allocation for
an Orthogonal Frequency Division Multiple Access (OFDMA)
cellular network with device-to-device (D2D) communications
to minimize the average end-to-end delay performance under
dropping probability constraint. We formulated the optimal
resource control problem into an infinite horizon average reward
constraint Markov decision process (CMDP), and the optimal
control policy derived in Part I using the brute-force offline
value iteration algorithm based on the reduced state equiv-
alent Bellman’s equation still faces the well-known curse of
dimensionality problem, which limits its practical application in
realistic scenarios with multiple D2D users and cellular users.
In the part II of the paper, we use linear value approximation
techniques to further reduce the state space. Moreover, online
stochastic learning algorithm with two time scales is applied to
update the value functions and Lagrangian Multipliers (LMs)
based on the real-time observations of channel state information
(CSI) and queue state information (QSI). The combined online
stochastic learning solution converges almost surely to a global
optimal solution under some realistic conditions. Simulation
results show that the proposed approach achieves nearly the
same performance as the offline value iteration algorithm, and
outperforms the conventional CSI-only scheme and throughput-
optimal scheme in stability sense.

Index Terms—Device-to-Device Communication; Mode Selec-
tion; Resource Allocation; Online Stochastic Learning

I. INTRODUCTION

In the Part I of the paper [1], we introduced the problem
of optimal dynamic mode selection and resource allocation to
minimize the average end-to-end delay under the constraint
of packet dropping probability for network assisted device-to-
device (D2D) communications [2]–[4] with bursty traffic. We
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considered an Orthogonal Frequency Division Multiple Access
(OFDMA) system with one base station (BS), multiple D2D
user equipment (UE) pairs, and cellular UEs with uplink or
downlink transmission. Compared with the resource control
problem in traditional cellular networks, there are a number
of unique issues to address to obtain resource optimization
in D2D communications, such as (1) route selection between
the one-hop route of D2D link (direct over-the-air link) in
D2D Mode and the two-hop route of cellular links in Cellular
Mode; (2) resource allocation for D2D links and cellular links
with resource reuse; (3) joint uplink and downlink resource
optimization for the end-to-end performance of the two-hop
route when a pair of D2D UEs works in the Cellular Mode.
In order to characterize the above issues, we first developed
a queuing model whose underlying system state dynamics
evolves as a controlled Markov chain, where the system state
includes the joint queue state of the queues at the UEs for
uplink transmission and the queues at the BS for downlink
transmission as well as the joint channel state of all the D2D
links, cellular uplinks and cellular downlinks. Specifically, we
introduced two important concepts to characterize the unique
features of D2D communications. The first concept is radio
resource group (RRG), which defines a group of links that
may reuse radio resources. Therefore, the channel state of a
link is a tuple including its Adaptive Modulation and Coding
(AMC) states in all the RRGs that this link belongs to. The
second concept is link constraint set of a queue to characterize
the set of servers for the queue in different routes. Based on
the queuing model, the delay-optimal resource control over
frequency-selective fading channel with AMC scheme in the
physical layer is formulated as an infinite horizon average
reward constrained Markov Decision Process (CMDP) [6],
[7]. In order to formulate the CMDP model, the transition
kernel of the controlled Markov chain was derived, which
takes into account the coupling relationship between the
uplink and downlink resource allocation. Moreover, closed-
form expressions for end-to-end performance metrics such
as average delay and dropping probability were given as
functions of steady-state probabilities of the controlled Markov
chain, based on which the cost function of CMDP model was
given. We utilized the Lagrangian approach to turn the CMDP
problem into an unconstraint Markov Decision Process (MDP)
problem, and established the strong duality result over the
space of randomized policy. Moreover, we further proved the
existence of an optimal policy, which is either a deterministic
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policy or a mix of two deterministic policies, equivalent to
choosing independently one of two deterministic policies at
each epoch by the toss of a (biased) coin. To solve the un-
constraint MDP problem, we derived an equivalent Bellman’s
equation with reduced state space. We showed by simulations
that the optimal policy derived by the brute-force offline value
iteration algorithm based on the equivalent Bellman’s equation
achieves significant gain compared to various baselines such as
the conventional CSI-only control and the throughput optimal
control (MaxWeight algorithm).

It is worth noting that the complexity of the brute-force
offline value iteration algorithm based on the reduced state
equivalent Bellman’s equation still grows exponentially with
the number of users in the network, limiting its application
in practical scenarios. In fact, it is well-known that there is
no simple solution for the infinite horizon average reward
MDP problem that delay-aware resource control belongs to,
because the brute-force value iterations or policy iterations
could not lead to any viable solution due to the curse of
dimensionality [8]–[11]. Moreover, our problem for network
assisted D2D communications is further complicated due to
the unique issues listed above. For example, the channel state
transition probabilities, which are used to derive the condi-
tional expectations of cost function and queue state transition
probabilities in the equivalent Bellman’s equation, are very
difficult to obtain when more than two links are allowed to
reuse the same time-frequency resource.

In the Part II of the paper, we address the curse of dimen-
sionality problem in solving the CMDP formulated in Part I,
so that a practical algorithm with acceptable computational
complexity and signaling overhead can be derived. To reduce
the complexity, we obtain a delay-optimal solution using ap-
proximate dynamic programming and online stochastic learn-
ing. Specifically, we approximate the value function in the
equivalent Bellman’s equation by a sum of per-queue value
functions. The per-queue value functions are estimated and
learned using an online stochastic learning algorithm based
on the real-time observations of the CSI and QSI, eliminating
the need of deriving the channel state transition probabilities.
Moreover, the Lagrangian Multipliers (LMs) for the constraint
optimization problem are updated simultaneously with the
value functions over different time scales. The optimal dy-
namic mode selection and resource allocation actions can be
determined by an algorithm that has a similar structure with
the MaxWeight algorithm in Lyapunov stability approach, with
the weight determined by the per-queue value functions instead
of the queue lengths. We prove the almost-sure convergence
of the proposed algorithm. We also show by simulations that
our proposed scheme achieves significant gain compared to
various baselines such as the conventional CSI-only control
and the throughput optimal control (MaxWeight algorithm).
Together with Part I, this pair of works provide a general
framework for the dynamic constrained optimization of mode
selection and resource allocation in D2D communications
under bursty traffic model, where the general form of the
optimal policy and a practical algorithm with simple structure
and near-optimal performance are given.

The organization of the paper is as follows. We recall the

general network model for network assisted D2D communi-
cations as well as the MDP problem formulation for dynamic
mode selection and resource allocation in Section II. In Section
III, we derive a low complexity learning algorithm, which
updates the per-queue value functions based on real-time
observations of CSI and QSI, as well as a resource allocation
algorithm with similar structure as the MaxWeight algorithm.
In Section IV, we discuss the performance simulations. Finally,
we summarize the main results in Section V.

II. NETWORK MODEL AND PREVIOUS RESULTS

A. Network Model

Consider a Frequency Division Duplex (FDD) OFDMA
cellular network with D2D communications capability, where
there are D D2D UE pairs, Cu cellular UEs (CUEs) with
uplink communications and Cd CUEs with downlink com-
munications in a single cell. A D2D UE pair consists of
a source D2D UE (src. DUE) and a destination D2D UE
(dest. DUE) within direct over-the-air communications range
with each other, which is formed through the various neigh-
bor/peer/service discovery mechanisms proposed in literature.
The whole uplink or downlink spectrum is divided into NF

equal size subchannels. A subchannel in the uplink (resp.
downlink) spectrum shall be referred to as uplink (resp.
downlink) subchannel in the rest of the paper. Moreover, we
assume that D2D links share uplink resources with cellular
uplinks. Time is slotted and each time slot has an equal length.

The above OFDMA cellular network with D2D commu-
nications can be formulated as a general network model
with a set N of nodes and a set L of transmission links.
Define N := {0, 1, . . . , N}, where node 0 represents the base
station (BS) and nodes 1, . . . , 2D represent the DUEs, nodes
2D + 1, . . . , 2D + Cu represent the uplink CUEs, and nodes
2D+Cu+1, . . . , N = 2D+Cu+Cd represent the downlink
CUEs. We use i or j to denote the index of a node within N
(i.e., i, j ∈ N ) in the rest of the paper. Each transmission link
represents a communication channel for direct transmission
from a given node i to another node j, and is labeled by
(i, j) (where i, j ∈ N ). All data that enter the network
are associated with a particular connection which defines the
source and destination of the data. Let CD = {1, . . . , D},
CCu = {D + 1, . . . , D + Cu}, and CCd = {D + Cu +
1, . . . , D + Cu + Cd} represent the set of D2D connections,
cellular uplink connections and cellular downlink connections,
respectively. Define C := {1, . . . , C} = CD

∪
CCu

∪
CCd (with

C = D+Cu+Cd) as the set of all connections in the network.
We use c to denote the index of a connection within C (i.e.,
c ∈ C) in the rest of the paper.

The data from connection c is transmitted hop by hop along
the route(s) of the connection to its destination node. Each
node i along the route(s) of connection c maintains a queue
q
(c)
i for storing its data except for the destination node, since

the data is considered to exit the network once it reaches the
destination. Define Θ as the set of queues in the system. We
assume each queue has a finite capacity of NQ < ∞ (in
number of bits or packets). The set of queues can be divided
into two non-overlapping disjoint sets, i.e., uplink queues Θu
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and downlink queues Θd, according to whether a queue is
maintained by an UE or the BS. Define ΘCu and ΘCd as
the set of queues for cellular uplink connections and cellular
downlink connections, respectively, while define ΘD−u and
ΘD−d as the set of uplink queues and downlink queues for
D2D connections, respectively. Define the per queue link
constraint set of a queue q

(c)
i as L(c)

i , where the data from
a queue q

(c)
i can only be transmitted via links in L(c)

i . Note
that there is only one link in L(c)

i for all the queues except the
uplink queues for D2D connections, i.e, q(c)i ∈ ΘD−u, which
can be served by either D2D link or cellular uplink.

B. Physical Layer Model

We define a Resource Reuse Group (RRG) Bu as the subset
of links (i, j) ∈ L that can be scheduled for transmission
simultaneously on any subchannel in a time slot. Let U
represent the set of RRG indexes, Uu and Ud represent the
subsets of RRG indexes for uplink and downlink subchannels,
respectively. We use u to denote the index of a RRG within U
(i.e., u ∈ U) in the rest of the paper. For any link (i, j) ∈ L,
define Uij := {u|(i, j) ∈ Bu, u ∈ U} as the index set of RRGs
that contain link (i, j).

Assume that the instantaneous channel gain comprising the
path loss, shadowing and fast fading effects of the wireless
channel from the transmitter of node i ∈ N to the receiver of
node j ∈ N on any subchannel m remains constant within a
time slot and i.i.d. between time slots, the value of which at
time slot t is denoted by G

(m)
ij,t . Let p(m)

ij,t be the transmission
power of link (i, j) ∈ L on subchannel m at time slot t.
Assume that every scheduled link on a downlink subchannel
(resp. uplink subchannel) always transmits at constant power
PBS
max/NF, (resp. PUE

max/NF). The SINR value of a link (i, j)
on a subchannel m when RRG Bu is scheduled on it at time
slot t can be derived as ∀ (i, j) ∈ Bu

SINR
(m,u)
ij,t =

p
(m)
ij,t G

(m)
ij,t

N
(m)
ij,t +

∑
(i′,j′)∈Bu\{(i,j)} p

(m)
i′j′,tG

(m)
i′j,t

, (1)

where N
(m)
ij,t denotes the noise power on subchannel m at time

slot t.
We assume that AMC is used, where the SINR values are

divided into K non-overlapping consecutive regions [12]. For
any k ∈ {1, . . . ,K}, if the SINR value SINR

(m,u)
ij,t of link

(i, j) falls within the k-th region [Γk−1,Γk), the instantaneous
data rate of link (i, j) on subchannel m when RRG Bu, ∀u ∈
Uij is scheduled is a fixed value Rk according to the selected
modulation and coding scheme in this state. Obviously, Γ0 = 0
and ΓK = ∞. Also, we have R1 = 0, i.e., no packet is
transmitted in channel state 1 to avoid the high transmission
error probability. Define the CSI of link (i, j) to be Hij,t :=

{H(m,u)
ij,t |(m ∈ {1, . . . , NF}, u ∈ Uij}, where H

(m,u)
ij,t denotes

the channel state of link (i, j) on subchannel m when RRG
Bu is scheduled. Specifically, H(m,u)

ij,t = k if SINR
(m,u)
ij,t is

between [Γk−1,Γk).

C. Bursty Source Model, Queuing Dynamics, and Queuing
Model

Let Ac,t denote the amount of new connection c data1 that
exogenously arrives to its source node during time slot t.
We assume that the data arrival process is i.i.d. over time
slots following general distribution fA(n) with average arrival
rate E[Ac,t] = λc. Let A

(c)
i,t denote the amount of data

arrived to node i for connection c during time slot t. When
q
(c)
i ∈ Θu

∪
ΘCd, node i is the source node of connection

c, and A
(c)
i,t = Ac,t. Otherwise, when q

(c)
0 ∈ ΘD−d, it is

the second-hop queue of connection c, and A
(c)
0,t depends

on the data departure process of the corresponding uplink
transmission on cellular uplink ((2c− 1), 0).

Let Q
(c)
i,t denote the length of q

(c)
i at the beginning of

time slot t. Let r
(c)
i,t be the instantaneous data rate of queue

q
(c)
i during time slot t2, which is equal to the sum of the

instantaneous data rate rij,t of the scheduled link (i, j) ∈ L(c)
i

at time slot t. If Q
(c)
i,t is less than r

(c)
i,t during time slot t,

padding bits shall be transmitted along with the data. However,
the amount of useful data transmitted from q

(c)
i during time

slot or the throughput of q(c)i is defined as

T
(c)
i,t = min[Q

(c)
i , r

(c)
i ]. (2)

Moreover, the amount of useful data transmitted via link (i, j)
during time slot t or the throughput of link (i, j) is defined
for any link within the link constraint set of queue q

(c)
i ∈

Θd

∪
ΘCu as

Tij,t = min[Q
(c)
i , rij,t], ∀(i, j) ∈ L(c)

i . (3)

For any queue q
(c)
i ∈ ΘD−u, we assume that the data in the

queue is first assigned to link (2c−1, 0) and then the remaining
data left in the queue (if any) shall be assigned to link (2c−
1, 2c). According to the above data assignment rule, we have
that T(2c−1)0,t obeys (3), while ∀q(c)(2c−1) ∈ ΘD−u

T(2c−1)(2c),t = min[Q
(c)
i − T(2c−1)0,t, r(2c−1)(2c),t]. (4)

Arriving data are placed in the queue throughout the time slot
t and can only be transmitted during the next time slot t +
1. If the queue length reached the buffer capacity NQ, the
subsequent arriving data will be dropped. According to the
above assumption, the queuing process evolves as follows:

Q
(c)
i,t+1 = min

[
NQ,max[0, Q

(c)
i,t − r

(c)
i,t ] +A

(c)
i,t

]
. (5)

The queuing model is illustrated in Fig.2 of Part I of this
work [1].

D. System state, Control Policy and State Transition Proba-
bilities

The global system state of the above queuing model at time
slot t can be characterized by the aggregation of the system

1The data can take units of bits or packets. The latter is appropriate when
all the packets have fixed length.

2The instantaneous data rate can take units of bits/slot or packets/slot. The
latter is appropriate when all the packets have fixed length and the achievable
data rates are constrained to integral multiples of the packet size.
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CSI and system QSI, i.e., St = (Ht,Qt). The system QSI is
defined as Qt :=

{
Q

(c)
i,t |q

(c)
i ∈ Θ

}
, which is a vector consist-

ing of the lengths of all the queues at the beginning of time
slot t. The system CSI is defined as Ht := {Hij,t|(i, j) ∈ L},
where Hij,t denotes the channel state of link (i, j) in time slot
t as defined Section II-B.

In each time slot, an uplink (resp. downlink) subchannel can
be allocated to at most one uplink (resp. downlink) RRG for
uplink (resp. downlink) transmission. Let m ∈ {1, . . . , NF}
denote the index of a subchannel, which can be either the m-
th uplink subchannel or the m-th downlink subchannel. Let
x
(m)
u,t ∈ {0, 1} denote the subchannel allocation for RRG Bu,

u ∈ U at time slot t, where x
(m)
u,t = 1 if subchannel m is

allocated to RRG Bu, and x
(m)
u,t = 0 otherwise. We have the

constraint that
∑

u∈Uu
x
(m)
u,t ≤ 1 and

∑
u∈Ud

x
(m)
u,t ≤ 1 for any

m ∈ {1, . . . , NF}. We assume that a RRG is scheduled for
transmission only when all its links have non-empty queues.

A queue q
(c)
i is scheduled in time slot t when at least one

RRG Bu containing a link (i, j) in its link constraint set L(c)
i is

scheduled on any subchannel. Note that except for the uplink
queues of D2D connections, the per-queue link constraint set
of every queue contains only one link. When mode selection
of a D2D connection c is performed dynamically at each time
slot, the problem becomes deciding whether to schedule the
D2D link (2c − 1, 2c) or the cellular uplink (2c − 1, 0) on a
subchannel to serve the queue q

(c)
(2c−1), which is essentially a

subchannel allocation decision. Therefore, the delay-optimal
dynamic mode selection and subchannel allocation problem
can be solved by only considering the design of delay-optimal
subchannel allocation algorithm.

In each time slot, the resource controller observes the
system state St and chooses a subchannel allocation ac-
tion from the set of allowable actions in the action space
Ax. A subchannel allocation action x is defined as x :={
x
(m)
u ∈ {0, 1}|u ∈ Uu

∪
Ud,m ∈ {1, . . . , NF}

}
∈ Ax.

A control policy prescribes a procedure for action selection
in each state at all decision epoches t. We consider stationary
Markovian deterministic control policies3. A deterministic
control policy given by Ω is a mapping S → Ax from the
state space to the action space, which is given by Ω(S) = x ∈
Ax, ∀S ∈ S .

Note that the instantaneous data rate r
(c)
i,t is impacted by the

subchannel allocation action at time slot t, i.e.,

r
(c)
i,t =

∑
(i,j)∈L(c)

i

NF∑
m=1

∑
u∈Uij

x
(m)
u,t RH

(m,u)
ij,t

. (6)

The system behavior of the above queuing model can
be represented by the controlled discrete-time Markov chain
(DTMC) {St}t=0,1,... := {(Ht,Qt)}t=0,1,.... Given a system
state St and an action x at time slot t, the state transition

3In Part I, we have proven that the optimal policy is either a deterministic
policy or a mix of two deterministic policies. In Part II, we focus only on
deterministic policy to facilitate implementation.

probability of the DTMC is given by

Pr.{St+1|St,x} = Pr.{Ht+1|Ht}Pr.{Qt+1|St,x}
= Pr.{Ht+1}Pr.{Qt+1|St,x}. (7)

According to (5), the conditional probability of Q(c)
i,t+1 given

the system state St and an action x can be derived as

Pr.{Q(c)
i,t+1|St,x} = Pr.(A

(c)
i,t = n),

if Q
(c)
i,t+1 = min

[
NQ,max[0, Q

(c)
i,t − r

(c)
i,t ] + n

]
, (8)

where

Pr.(A
(c)
i,t = n)

=


fA(n), if q(c)i ∈ Θu

∪
ΘCd,

1, if q(c)i ∈ ΘD−d and n = T(2c−1)0,t,

0, if q(c)i ∈ ΘD−d and n ̸= T(2c−1)0,t.

(9)

The queue state transition probability Pr.{Qt+1|St,x} can be
derived as the product of Pr.{Q(c)

i,t+1|St,x} over all queues
q
(c)
i ∈ Θ as

Pr.{Qt+1|St,x} =
∏

q
(c)
i ∈Θ

Pr.{Q(c)
i,t+1|St,x}. (10)

Remark 1 (channel state transition probability). Note that
we do not recall the derivation of channel state transition
probability Pr.{Ht+1|Ht} = Pr.{Ht+1} in (7) given in
Part I. This is because in order to derive the delay-optimal
subchannel allocation action in Section III, we shall utilize the
i.i.d. assumption of the CSI process and the stochastic approx-
imation method to simplify the optimization problem, so that
Pr.{Ht+1} does not need to be derived. However, we would
like to point out that if the i.i.d assumption of CSI process
does not hold or if the objective is to determine the steady-state
probabilities of the queuing model for performance evaluation,
Pr.{Ht+1|Ht} needs to be derived.

E. Optimization Problem Formulation

Our objective is to optimize the subchannel allocation policy
so as to minimize the average weighted sum delay of all the
connections subject to dropping probability constraints.

Problem 1. The delay-optimal subchannel allocation design
can be formulated as the constrained optimization problem

min
Ω

lim
T→∞

1

T

T∑
t=1

EΩ[g0(St,Ω(St))] (11)

s.t. lim
T→∞

1

T

T∑
t=1

EΩ[gc(St,Ω(St))] ≤ dmax, ∀c ∈ C,

where

g0(S,x) =
Q

(c)
i

λc(1− dmax)
, (12)

gc(S,x) =


1− T(c+D)0

λc
, if c ∈ CCu,

1− T0(c+D)
λc

, if c ∈ CCd,

1− T(2c−1)(2c)+T0(2c)

λc
, if c ∈ CD.

(13)
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For any given nonnegative LMs η = {ηc|c ∈ C}, we define
the Lagrangian function of Problem 1 as

L(Ω, η) = Eπ(Ω)[g(S,Ω(S))] +
∑
c∈C

λcηc(1− dmax)
2, (14)

where

g(S,Ω(S)) =
∑

c∈CCu

(
ωcQ

(c)
(c+D) − ηc(1− dmax)T(c+D)0

)
+
∑

c∈CCd

(
ωcQ

(c)
0 − ηc(1− dmax)T0(c+D)

)
+
∑
c∈CD

(
ωc(Q

(c)
(2c−1) +Q

(c)
0 )

− ηc(1− dmax)(T(2c−1)(2c) + T0(2c))
)
. (15)

Therefore, Problem 1 can be divided into the following two
subproblems:

Subproblem 1-1: G(η) = min
Ω

L(Ω,η),

Subproblem 1-2: G(η∗) = max
η

G(η).

where G(η) is the corresponding Lagrange dual function.
Subproblem 1-1 with given LMs η∗ can be solved by the

equivalent Bellman’s equation.

θ + V (Q(z̀)) = min
Ω(Q(z̀))

{
g(Q(z̀),Ω(Q(z̀)))

+
∑

Q(ỳ)∈Q

Pr.[Q(ỳ)|Q(z̀),Ω(Q(z̀))]V (Q(ỳ))
}
,∀Q(z̀) ∈ Q,

(16)

where V (Q(ỳ)) = EH

[
V (H,Q(ỳ))|Q(ỳ)

]
=∑

H∈H Pr.[H]V (H,Q(ỳ)) is the conditional expectation
of value function V (S) taken over the channel
state space H given the queue state Q(ỳ), while
g(Q(z̀),Ω(Q(z̀))) = EH

[
g(H,Q(z̀),Ω(H,Q(z̀)))|Q(z̀)

]
and Pr.[Q(ỳ)|Q(z̀),Ω(Q(z̀))] =

EH

[
Pr.[Q(ỳ)|H,Q(z̀),Ω(H,Q(z̀))]|Q(z̀)

]
are conditional

expectations of cost function g(H,Q(z̀),Ω(H,Q(z̀))) and
transition probability Pr.[Q(ỳ) |H,Q(z̀),Ω(H,Q(z̀))] taken
over the channel state space H given the queue state Q(z̀),
respectively. Ω(Q(z̀)) = {Ω(H,Q(z̀))|∀H} ⊆ Ax is the
partitioned actions of a policy Ω as the collection of |H|
actions, where every action is mapped by policy Ω from a
system state with given QSI Q(z̀), and a different realization
of CSI H ∈ H.

As a remark, note that equivalent Bellman’s equation (16)
represents a series of fixed-point equations, where the numbers
of equations are determined by the possible values of value
functions V (Q(z̀)), which is |Q|. Therefore, we only need to
solve |Q| instead of |H| × |Q| fixed-point equations with the
reduced-state Bellman’s equation (16). In order to solve one
such fixed-point equation using value iteration, the R.H.S. of
(16) has to be minimized with given value functions V (Q(ỳ)).
For this purpose, the R.H.S. of (16) can be written as

min
Ω(Q(z̀))

∑
H∈H

Pr.[H]f(H,Q(z̀),Ω(H,Q(z̀))), (17)

where

f(H,Q(z̀),Ω(H,Q(z̀))) = g(H,Q(z̀),Ω(H,Q(z̀)))

+
∑

Q(ỳ)∈Q

Pr.[Q(ỳ)|H,Q(z̀),Ω(H,Q(z̀))]V (Q(ỳ)). (18)

Since (17) is a decoupled objective function w.r.t. different
CSI realizations H with a given queue state Q(z̀), we need to
obtain |H| optimal actions in order to achieve the minimization
objective in the R.H.S. of equivalent Bellman equation (16),
where every optimal action is w.r.t. a system state (H,Q(z̀))
with given Q(z̀) and a different CSI realization H ∈ H that
minimizes the value of f(H,Q(z̀),Ω(H,Q(z̀))). This means
that the control policy obtained by solving (16) is based on
the system state S instead of only the queue state Q.

Since the brute-force value iteration algorithm in Part I faces
the curse of dimensionality problem, we will develop a solu-
tion with reduced complexity using linear value approximation
and online stochastic learning in the next section.

III. OPTIMAL SOLUTION BY APPROXIMATE MDP AND
STOCHASTIC LEARNING

In this section, we will first assume that the optimal LMs
are given and focus on the solution of Subproblem 1-1 in
Section V-A and V-B. Then, in Section V-C, we use an online
stochastic learning algorithm with two time scales to determine
the optimal LMs.

A. Linear Value Function Approximation

In this section, we use linear value function approximation
method to further reduce the state space.

First, we define the per-queue cost function as

g
(c)
i (S

(c)
i ,Ω(S))

=


ωcQ

(c)
2c−1 − ηc(1− dmax)T(2c−1)(2c), if q

(c)
2c−1 ∈ ΘD−u,

ωcQ
(c)
c+D − ηc(1− dmax)T(c+D)0, if q

(c)
c+D ∈ ΘCu,

ωcQ
(c)
0 − ηc(1− dmax)T0(2c), if q

(c)
0 ∈ ΘD−d,

ωcQ
(c)
0 − ηc(1− dmax)T0(c+D), if q

(c)
0 ∈ ΘCd.

(19)

Thus, the overall cost function is given by g(S,Ω(S)) =∑
q
(c)
i ∈Θ

g
(c)
i (S

(c)
i ,Ω(S)) according to (15) Moreover, de-

fine g
(c)
i (Q

(c)
i ,Ω(Q)) = EH

[
g(H

(c)
i , Q

(c)
i ,Ω(H,Q))|Q

]
as

the conditional per-queue cost function, which is equal to
the conditional expectation of the per-queue cost function
g(S

(c)
i ,Ω(S)) taken over the channel state space H given the

queue state Q.
Next, the linear approximation architecture for the value

function V (Q) is given by

V (Q) = V ({Q(c)
i |q(c)i ∈ Θ}) ≈

∑
q
(c)
i ∈Θ

NQ∑
q=0

I[Q
(c)
i = q]Ṽ

(c)
i (q)

= ṼTF(Q), ∀Q ∈ Q, (20)

where

Ṽ =
[
Ṽ

(c)
i |q(c)i ∈ Θ

]T
, Ṽ

(c)
i =

[
Ṽ

(c)
i (0), . . . , Ṽ

(c)
i (NQ)

]
,
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F(Q) =
[
I[Q

(c)
i = 0], . . . , I[Q

(c)
i = NQ] | q(c)i ∈ Θ

]T
.

Denote by Ṽ
(c)
i (q), q ∈ {0, 1, . . . , NQ} per-queue value

function and V (Q), Q ∈ Q} global value function in the
rest of the paper. Therefore, Ṽ

(c)
i and Ṽ are the per-queue

value function vectors for queue q
(c)
i and all the queues in

the network, respectively. Similarly, define the global value
function vector as

V = [V (Q)|Q ∈ Q]
T
.

As a remark, note that the number of global value functions is
|Q| = (NQ+1)|Θ| in total, which grows exponentially with the
number of queues. On the other hand, the number of per-queue
value functions is (NQ+1)×|Θ| in total, which grows linearly
with the number of queues. Therefore, we can represent the
(NQ + 1)|Θ| global value functions with (NQ + 1)× |Θ| per-
queue value functions by the linear approximation architecture.

From (16), the key issue in deriving the optimal control
actions is to obtain the global value function vector V.
With linear value function approximation, we only need to
obtain the per-queue value function vector Ṽ. To illustrate
the structure of our solution, we first assume we could obtain
the per-queue value functions via some means (e.g., via
offline value iteration) and focus on deriving the optimal
action under every system state to minimize the value of
f(H,Q(z̀),Ω(H,Q(z̀))). Define Q

(c,ỳ)
i ∈ {1, . . . , NQ} as the

local queue state of queue q
(c)
i when the global queue state is

Q(ỳ), i.e., Q(ỳ) = {Q(c,ỳ)
i |q(c)i ∈ Θ}. Therefore, according to

(20) we have

V (Q(ỳ)) ≈
∑

q
(c)
i ∈Θ

Ṽ
(c)
i (Q

(c,ỳ)
i ). (21)

The optimal control action is given by the following Subprob-
lem 1-1(a).

Subproblem 1-1(a). For given per-queue value function-
s Ṽ and LMs η, find the optimal action Ω∗(H,Q(z̀))
for system state {H,Q(z̀)} that minimizes the value of
f(H,Q(z̀),Ω(H,Q(z̀))), which can be written as equations
at the bottom of previous page, where the post-action system
state Q

(c,z̀)
i (r

(c)
i , x) is defined by the following equation

Q
(c,z̀)
i (r

(c)
i , x) = min

[
max

[
0, Q

(c,z̀)
i − r

(c)
i

]
+ x,NQ

]
,

and when Q
(c,z̀)
i = 0 and thus r

(c)
i = 0, we define

Q
(c,z̀)
i (x) = min [x,NQ] .

Step (22) follows from the linear value approximation struc-
ture in (21). Step (24) holds because the arrival process
for any queue q

(c)
i ∈ Θu

∪
ΘCd equals the arrival process

for connection c, while the arrival process for any queue
q
(c)
0 ∈ ΘD−d depends on the departure process of the previous

hop. Therefore, (8) and (9) are used to replace the local queue
state transition probabilities in the L.H.S. of the equality.

Remark 2 (complexity of solution based on (24)). If we
directly derive the optimal action based on (24), for every
action x ∈ Ax, we need to calculate the bid term B

(x)
i,c for

every q
(c)
i ∈ Θ and derive the summation of bids over all

queues. Finally, the action x∗ with the minimum sum bid value
is selected. The complexity of the above solution is O(|Ax|),
which grows exponentially with the number of subchannels.

In order to deal with the exponentially increasing ac-
tion space with the number of subchannels, we expand
Ṽ

(c)
i

(
Q

(c,z̀)
i (r

(c)
i , x)

)
in (24) using Taylor expansion

Ṽ
(c)
i

(
Q

(c,z̀)
i (r

(c)
i , x)

)
= Ṽ

(c)
i (Q

(c,z̀)
i )+(x−r

(c)
i )
(
Ṽ

(c)
i (Q

(c,z̀)
i )

)′
,

(25)
where(
Ṽ

(c)
i (Q

(c,z̀)
i )

)′ ≈ Ṽ
(c)
i (Q

(c,z̀)
i + 1)/2− Ṽ

(c)
i (Q

(c,z̀)
i − 1)/2.

Ω∗(H,Q(z̀)) = argmin
Ω

∑
q
(c)
i ∈Θ

g
(c)
i

(
H

(c)
i , Q

(c,z̀)
i ,Ω(H,Q(z̀))

)
+

∑
Q(ỳ)∈Q

{
Pr.
[
Q(ỳ)|H,Q(z̀),Ω(H,Q(z̀))

]
V (Q(ỳ))

}

= argmin
Ω

∑
q
(c)
i ∈Θ

g
(c)
i

(
H

(c)
i , Q

(c,z̀)
i ,Ω(H,Q(z̀))

)
+

∑
Q(ỳ)∈Q


∏

q
(c)
i ∈Θ

Pr.
[
Q

(c,ỳ)
i |H,Q(z̀),Ω(H,Q(z̀))

] ∑
q
(c)
i ∈Θ

Ṽ
(c)
i (Q

(c,ỳ)
i )


(22)

= argmin
Ω

∑
q
(c)
i ∈Θ

g
(c)
i

(
H

(c)
i , Q

(c,z̀)
i ,Ω(H,Q(z̀))

)
+

NQ∑
Q

(c,ỳ)
i =1

Pr.
[
Q

(c,ỳ)
i |H,Q(z̀),Ω(H,Q(z̀))

]
Ṽ

(c)
i (Q

(c,ỳ)
i )


= argmin

Ω

∑
q
(c)
i ∈Θu

∪
ΘCd

(
g
(c)
i

(
H

(c)
i , Q

(c,z̀)
i ,Ω(H,Q(z̀))

)
+
∑
n

fA(n)Ṽ
(c)
i

(
Q

(c,z̀)
i (r

(c)
i , n)

))
︸ ︷︷ ︸

B
Ω(H,Q(z̀))
i,c , q

(c)
i ∈Θu

∪
ΘCd

(23)

+
∑

q
(c)
0 ∈ΘD−d

(
g
(c)
0

(
H

(c)
0 , Q

(c,z̀)
0 ,Ω(H,Q(z̀))

)
+ Ṽ

(c)
0

(
Q

(c,z̀)
0 (r

(c)
0 , T(2c−1)0)

))
︸ ︷︷ ︸

B
Ω(H,Q(z̀))
0,c , q

(c)
0 ∈ΘD−d

(24)
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Therefore, (24) is equivalent to (26) at the bottom of this
page, where

B
(m,u)
(i,c) =



R
H

(m,u)

(2c−1)j

((
Ṽ

(c)
2c−1(Q

(c,z̀)
2c−1)

)′
+ηc(1− dmax)I1 −

(
Ṽ

(c)
0 (Q

(c,z̀)
0 )

)′
I2

)
,

if q
(c)
2c−1 ∈ ΘD−u,

R
H

(m,u)

(c+D)0

((
Ṽ

(c)
c+D(Q

(c,z̀)
c+D)

)′
+ ηc(1− dmax)

)
,

if q
(c)
c+D ∈ ΘCu,

R
H

(m,u)

0(2c)

((
Ṽ

(c)
0 (Q

(c,z̀)
0 )

)′
+ ηc(1− dmax)

)
,

if q
(c)
0 ∈ ΘD−d,

R
H

(m,u)

0(c+D)

((
Ṽ

(c)
0 (Q

(c,z̀)
0 )

)′
+ ηc(1− dmax)

)
,

if q
(c)
0 ∈ ΘCd,

(27)
and I1 = I

(
(2c− 1, j) =

(
(2c− 1), (2c)

))
and I2 = I

(
(2c−

1, j) =
(
(2c− 1), 0

))
with (2c− 1, j) ∈ Bu.

Recall that any uplink (resp. downlink) subchannel m ∈
{1, . . . , NF} can be allocated to at most one uplink (resp.
downlink) RRG. Moreover, note that the summation index m
in the first term and second term of (26) represent the index
of uplink subchannel and downlink subchannel, respectively.
Therefore, for every m in the first term or second term, at
most one x

(m)
u∗ = 1 while all the other x

(m)
u = 0. Now

Subproblem 1-1(a) becomes determining the largest B(m,u)

for every uplink subchannel and downlink subchannel m,
where for any m = 1, . . . , NF

B(m,u) =

{ ∑
q
(c)
i ∈Θu

B
(m,u)
(i,c) , if u ∈ Uu,

B
(m,u)
(0,c) , if u ∈ Ud.

(28)

Algorithm 1 (solution to Subproblem 1-1(a)). Given per-
queue value functions Ṽ and LMs η, based on the observed
system state St at the beginning of time slot t, the optimal
action for subproblem 1-1(a) is determined as

x(m)
u =

 1, if u ∈ Uu, u = argmaxu′ B(m,u′), ∀u′ ∈ Uu

or u ∈ Ud, u = argmaxu′ B(m,u′), ∀u′ ∈ Ud,
0, otherwise,

∀m = 1, . . . , NF. (29)

Remark 3 (complexity of Algorithm 1). Every uplink queue
needs to compute

∑
(i,j)∈L(c)

i
|Uij | × NF bids, while every

downlink queue needs to compute NF bids. Moreover, the
BS needs to find the minimum values of |Uu| × NF uplink
B(m,u) values and of |Ud| × NF downlink B(m,u) values.
Therefore, the overall computational complexity of Algorithm
is O((|Uu| + |Ud|) × NF) and only grows linearly with the
number subchannels.

Remark 4 (structure of Algorithm 1). The subchannel al-
location solution in (29) has a similar structure with the
MaxWeight algorithm based on Lyapunov stability approach
[13]. When the MaxWeight algorithm is applied to our network
model for D2D communications, the weight for each link
(i, j) at each time slot is defined as its differential backlog
Wij = Q

(c)
i,t −Q

(c)
j,t . Given the link weight, we can select a RRG

u∗ with maximum sum over all its links of the product of link
weight Wij and instantaneous data rate R

H
(m,u∗)
ij

. Compared
with the MaxWeight algorithm, Algorithm 1 only differs in that
the weight of link (i, j) is determined by the difference in the
derivatives of per-queue value functions and the LM instead
of the difference in queue length.

In the above discussion, we assume that the per-queue
value function vector Ṽ is already known in Subproblem 1-
1(a) and propose Algorithm 1 in order to derive the optimal
control action under every system state. However, we still
have to determine Ṽ in order to solve Subproblem 1-1. For
this purpose, we let Ṽ

(c)
i (0) = 0, ∀q(c)i ∈ Θ. Therefore,

according to the linear approximation architecture, among the
(NQ+1)|Θ| global value functions, there are NQ×|Θ| global
value functions that equal to the NQ × |Θ| per-queue value
functions {Ṽ (c)

i (q)|∀ q
(c)
i ∈ Θ, q = 1, . . . , NQ}. We refer the

system states of these global value functions as representative
states, and they share the same characteristics that only one
queue is non-empty while the queue length of all the other
queues are zero. The set of representative states QR is defined
as

QR = {Q(q)
(i,c)|∀ q

(c)
i ∈ Θ, q = 1, . . . , NQ},

where Q
(q)
(i,c) = {Q(c)

i = q,Q
(c′)
i′ = 0|q(c

′)
i′ ∈ Θ\q(c)i } denotes

the global queue state with Q
(c)
i = q ∈ {1, . . . , NQ} for queue

q
(c)
i and Q

(c′)
i′ = 0 for all the other queues q

(c′)
i′ ∈ Θ\q(c)i .

Therefore, given the solution of Subproblem 1-1(a), we still
have to solve the following Subproblem 1-1(b) in order to
solve subproblem 1-1.

Subproblem 1-1(b). Derive the per-queue value functions Ṽ
that satisfy the following equivalent Bellman’s equation under
every representative state Q

(q)
(i,c) ∈ QR

θ + Ṽ
(c)
i (q) = min

Ω

{
g
(c)
i (q,Ω(Q

(q)
(i,c)))

+
∑

q
(c)
i ∈Θ

NQ∑
Q

(c,ỳ)
i =1

Pr.[Q
(c,ỳ)
i |Q(q)

(i,c),Ω(Q
(q)
(i,c))]Ṽ

(c)
i (Q

(c,ỳ)
i )

)
,

(30)

where (30) is derived by combining (23) with (16).

Remark 5 (complexity reduction due to linear value function
approximation). Due to linear value function approximation,

Ω∗(H,Q(z̀)) = argmax
Ω

 NF∑
m=1

∑
q
(c)
i ∈Θu

∑
(i,j)∈L(c)

i

∑
u∈Uij

x(m)
u B

(m,u)
(i,c) +

NF∑
m=1

∑
q
(c)
0 ∈Θd

∑
(0,j)∈L(c)

0

∑
u∈U0j

x(m)
u B

(m,u)
(0,c)

 (26)
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Functions and LMs:

At the end of time slot t,

updates to using

the update function (31)-(34)

and

BS
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2
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~
++ tt
ηV

vtt
d<-+ ||
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Send local channel state

Broadcast optimal action

Fig. 1. The implementation flow of Algorithm 2 with online stochastic
learning (solution to Problem 1).

the following simplifications can be achieved in solving Prob-
lem 1.

• Only (NQ + 1)× |Θ| per-queue value functions need to
be stored instead of (NQ + 1)|Θ| global value functions.

• In order to determine the optimal control action in
Subproblem 1-1(a) with given per-queue value functions,
Algorithm 1 with a simple structure as MaxWeight algo-
rithm can be derived with the help of Taylor’s expansion.

• Only NQ × |Θ| fixed point equations in (30) instead
of (NQ + 1)|Θ| fixed point equations in (16) need to
be determined in order to derive the per-queue value
functions.

B. Online Stochastic Learning

1) Solution to Problem 1: Instead of solving the equivalent
Bellman’s equation on the representative states (30) using of-
fline value iteration, we will estimate Ṽ using online stochastic
learning algorithm in this section.

Remark 6 (motivation of online stochastic learning). The
motivation of using online stochastic learning algorithm to
update the per-queue value functions iteratively instead of
using offline value iteration algorithm is that the former
algorithm can solve Bellman’s equation iteratively without
the need of explicitly deriving the CSI probability distri-
bution Pr.[H] in order to calculate the “conditional cost”
g
(c)
i (q,Ω(Q

(q)
(i,c))) and “conditional transition probability”

Pr.[Q
(c,ỳ)
i |Q(q)

(i,c),Ω(Q
(q)
(i,c))] in (30).

The online iterative algorithm (Algorithm 2) is given by
the following, which simultaneously solves Subproblem 1-
1(b) in deriving per-queue value functions and Subproblem
1-2 in deriving LMs η. Since Algorithm 2 embeds Algorithm
1 to solve Subproblem 1-1(a), it is the complete solution for
Problem 1.

Algorithm 2 (solution to Problem 1). Fig.1 illustrates the
implementation flow of the overall solution with detailed steps
as follows:

• Step 1 (Initialization): The per-queue value function
vector Ṽ0 and LM vector η0 are initialized. The subscript
denote the index of time slot.

• Step 2 (Calculate Control Action): Based on the observed
system state St and the per-queue value functions Ṽt at
time slot t, the optimal control action x is calculated
using Algorithm 1 at the beginning of time slot t.

• Step 3 (Update Per-Queue Value Functions and LMs):
Based on the observed system state St and the optimal
action x, the instantaneous data rate and throughput of
every queue q

(c)
i and its associated links (i, j) ∈ L(c)

i are
known. Based on the above information, the per-queue
value functions Ṽt and LMs ηt can be updated at the
end of time slot t to Ṽt+1 and ηt+1 using the following
update function.

Ṽ
(c)
i,t+1(q) =

(
1− ϵv

τ
(c)
i (q,t)

)
Ṽ

(c)
i,t (q) + ϵv

τ
(c)
i (q,t)

∆Ṽ
(c)
i,t (q),

if Qt = Q
(q)
(i,c),

Ṽ
(c)
i,t (q),

if Qt ̸= Q
(q)
(i,c),

∀q(c)i ∈ Θ, q = 1, . . . , NQ, (31)

where ϵv
τ
(c)
i (q,t)

=
∑t

t′=0 I
[
Qt′ = Q

(q)
(i,c)

]
and

∆Ṽ
(c)
i,t (q) =

ωcq + ηc(1− dmax)min
[
q, r

(c)
i,t

]
+
∑

n fA(n)
(
Ṽ

(c)
i,t

(
q
(
r
(c)
i,t , n

))
− Ṽ

(c)
i,t (q(n))

)
,

if q
(c)
i ∈ ΘCu

∪
ΘCd,

ωcq + ηc(1− dmax)min[q, r(2c−1)(2c),t]

+
∑

n fA(n)
(
Ṽ

(c)
i,t

(
q
(
r
(c)
i,t , n

))
− Ṽ

(c)
i,t (q(n))

)
+Ṽ

(c)
0,t (T(2c−1)0,t),

if q
(c)
i ∈ ΘD−u,

ωcq + ηc(1− dmax)min
[
q, r

(c)
0,t

]
+ Ṽ

(c)
0,t

(
q
(
r
(c)
0,t , 0

))
,

if q
(c)
i ∈ ΘD−d.

(32)

Moreover, the LMs ηc,t of every connection c can be
updated at the end of time slot t to ηc,t+1 using the
following function

ηc,t+1 = ηc,t + ϵηt∆ηc,t, (33)
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where

∆ηc,t =

(1− dmax)(λc(1− dmax)− T(c+D)0),
if c ∈ CCu,
(1− dmax)(λc(1− dmax)− T0(c+D)),
if c ∈ CCd,
(1− dmax)(λc(1− dmax)− T(2c−1)(2c) − T0(2c)),
if c ∈ CD.

(34)

In the above equations, ({ϵvt }, {ϵ
η
t }) are the sequences of

step sizes, which satisfy

∞∑
t=0

ϵvt = ∞, ϵvt > 0, lim
t→∞

ϵvt = 0,

∞∑
t=0

ϵηt = ∞, ϵηt > 0, lim
t→∞

ϵηt = 0,

∞∑
t=0

[
(ϵvt )

2
+ (ϵηt )

2
]
< ∞, and lim

t→∞

ϵηt
ϵvt

= 0.

Step 4 (Termination):If ∥Ṽt+1−Ṽt∥ < δv and ∥ηt+1−ηt∥ <
δη, stop; otherwise, set t := t+ 1 and go to Step 2.

Remark 7 (complexity and implementation consideration of
Algorithm 2). In Algorithm 2, we assume that it is centralized
implemented by the BS. The BS needs to store (NQ+1)×|Θ|
per-queue value functions and C LMs. The computational
complexity of Algorithm 2 at each time slot is the sum of two
parts: (1) the computational complexity of determining the
optimal action according to Algorithm 1, which is O((Uu +
Ud) × NF) as given in Remark 3; (2) the computational
complexity of updating the per-queue value functions. Note
that Ṽi,t(c)(q) is only updated to a different value at any time
slot t when the global queue state Q̃t is the representative
state Q̃

(q)
i,c according to (33). This implies that at most one

per-queue value function shall be updated to a different value
with computational complexity O(NQ + 1) at any time slot,
while all the other per-node value functions remain the same.
Therefore, the overall computational complexity of Algorithm
2 is at most O((NQ+1)+(|Uu|+|Ud|)×NF) at each time slot,
which grows linearly with buffer capacity, the number of RRGs
and subchannels. The memory requirement and computational
complexity of Algorithm 2 are greatly reduced compared to
those of the offline value iteration algorithm. Moreover, the
structure of Algorithm 2 enables distributed implementation,
where the per-queue value functions are distributively main-
tained at nodes that maintain the corresponding queues. The
optimal action in Algorithm 1 can be derived using an auction
mechanism in which each src. DUE and uplink CUE sends bid
values to the BS for the queues that it maintains. In this way,
the computation task can be offloaded to the UEs from the
BS. However, larger signaling overhead need to be involved
compared to the centralized implementation.

2) Convergence Analysis: In this section, we shall establish
technical conditions for the almost-sure convergence of the
online stochastic learning algorithm (Algorithm 2). Recall
that the purpose of Algorithm 2 is to iteratively derive the
per-queue value function vector Ṽ in subproblem 1-1(b) and
LMs η in subproblem 1-2, so that Problem 1 can be solved.
Given η∗, subproblem 1-1 is an unconstraint MDP problem,
so learning algorithms in [14] apply to update Ṽ, which
is done in Algorithm 2. However, the correct η∗ needs to
be derived. We do this by a gradient ascent in the dual
(i.e., Lagrange multiplier) space in view of subproblem 1-
2. Since we have two different step size sequences {ϵvt } ,
{ϵηt }, and {ϵηt } = o({ϵvt }), the LM’s update is carried out
simultaneously with the per-queue value function’s update but
over a slower timescale. Here we are using the formalism
of two timescale stochastic approximation from [15]. During
the per-queue value functions’ update (timescale I), we have
ηc,t+1−ηc,t = O({ϵηt }) = o({ϵvt }), ∀c ∈ C and hence the LMs
appear to be quasi-static during the per-node value functions’
update in (31) and (32). On the other hand, since the per-
queue value functions will be updated much faster than the
LMs due to ϵηt

ϵvt
→ 0, during the LMs’ update in (33) and

(34) (timescale II), the ‘primal’ minimization carried out by
the learning algorithm for MDPs in (31) and (32) is seen as
having essentially equilibrated. Therefore, we will give the
convergence of per-queue value function over timescale I and
LMs over timescale II in Lemma 2 and Lemma 3, respectively.

Before Lemma 2 is given, we first give the relationship
between the global value function vector V and per-queue
value function vector Ṽ in matrix form for ease of notation:

V = MṼ and Ṽ = M†V,

where M ∈ R|Q|×(NQ+1)|Θ| with the z̀th row (z̀ = 1, . . . , |Q|)
equals to FT (Q(z̀)). Therefore, the first equation above fol-
lows directly from (20). The second equation, on the other
hand, uses the matrix M† ∈ R(NQ+1)|Θ|×|Q| to select NQ|Θ|
elements from V which correspond to the representative states.
Specifically, M† has only one element of 1 in each row
while all the other elements equal 0, and the position of 1
in the (q + (id(i, c)− 1)(NQ + 1))th row (q ∈ {1, . . . , NQ}
and id(i, c) ∈ {1, . . . , |Θ|} is the index of queue q

(c)
i within

set Θ) corresponds to the position of the representative state
V (Q

(q)
i,c ) in the global queue state vector V. Moreover, the

position of 1 in the (1 +NQ × id(i, c))th row corresponds to
the position of global queue state with all queues being empty
V ({Q(c)

i = 0|q(c)i ∈ Θ}) in the global queue state vector V.
Now the vector form of the equivalent Bellman equation

(30) under all the representative states can be written as

θe+ Ṽ∞(η) = M†T
(
η,MṼ∞(η)

)
, (35)

where e is a (NQ + 1)|Θ| × 1 vector with all elements equal
to 1. The mapping T is defined as

T(η,V) = min
Ω

[g(η,Ω) +P(Ω)V] ,

where g(η,Ω) is the vector form of function g(Q,Ω(Q))
defined in (16), and P(Ω) is the matrix form of transition
probability Pr.[Q(ỳ)|Q(z̀),Ω(Q(z̀))] defined in (16).
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Lemma 1 (convergence of per-queue value function learning
over timescale I). Denote

At−1 = (1− ϵvt−1)I+M†P(Ωt)Mϵt−1,

Bt−1 = (1− ϵvt−1)I+M†P(Ωt−1)Mϵt−1,

where Ωt is the unichain control policy at slot t, P(Ωt) is the
transition matrix under the unichain system control policy, and
I is the identity matrix. If for the entire sequence of control
policies {Ωt} there exists δβ > 0 and some positive integer β
such that

[Aβ · · ·A1](k,Ì) ≥ δβ ,

[Bβ · · ·B1](k,Ì) ≥ δβ , ∀k, (36)

where [·](k,Ì) denotes the element in the k-th row and the Ì-

th column(where Ì corresponds to the queue state Q(Ì) that
all queues are empty), and δt = O(ϵvt ). Then the following
statements are true.

1) The update of the per-queue value function vector will
converge almost surely for any given initial parameter
vector Ṽ0 and LM vector η, i.e.,

lim
t→∞

Ṽt(η) = Ṽ∞(η).

2) The steady-state per-queue value function vector Ṽ∞
satisfies (35).

Proof: Refer to Appendix A.

Remark 8 (interpretation of the conditions in Lemma 2). Note
that At and Bt are related to an equivalent transition matrix
of the underlying Markov chain. Equation (36) simply means
that the system state SI representing any system state where
all the queue length are zero is accessible from all the system
states after some finite number of transition steps. This is a
very mild condition and is satisfied in most of the cases we
are interested.

Lemma 2 (convergence of LMs update over timescale II).
The iteration on the vector of LMs η converges almost surely
to the set of maxima of G(η). Suppose the LMs converge to
η∗, then η∗ satisfies the dropping probability constraints in
Problem 1.

Proof: Refer to Appendix B.

IV. SIMULATION RESULTS

In this section, we compare our proposed approximate MDP
solution with online stochastic learning (Algorithm 2) to the
approximate MDP solution with offline value iteration based
on the Bellman’s equation (30) and two other reference sub-
channel allocation algorithms. One is the CSI-only algorithm,
in which the RRG selection is only adaptive to CSI and a
subchannel is allocated to the RRG with the maximum sum
over all its link transmission rates at every time slot. The
other is the MaxWeight algorithm which is adaptive to both
CSI and QSI as discussed in Remark 4. The offline value
iteration algorithm can find the per-queue value functions and
optimal policy that satisfy the Bellman’s equation (30), and
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Fig. 2. The average weighted sum delay and the maximum dropping
probability over all connections versus the mean arrive rate λ with C =
3(D = Cu = Cd = 1) and dmax = 0.1.

therefore provide the performance upper bound. However, the
CSI probability distribution Pr.[H] needs to be derived, which
is very hard when there are more than two links in an RRG
as discussed in Part I. The simulation parameter setting is the
same with that in the Part I of the paper [1] except that the
buffer size is set to be NQ = 10 packets and there are NF = 10
independent subchannels.

Fig.2 shows the average weighted sum delay and the max-
imum dropping probability over all connections versus the
mean arrive rate λ for the simple network in Fig.1 of Part
I [1] where the number of connections C = 3 (one D2D
connection, one cellular uplink connection and one cellular
downlink connection). The dropping probability constraint is
set to dmax = 0.1. It can be observed that the performance of
the proposed approximate MDP solution with online learning
is close to that of the approximate MDP solution using value
iteration algorithm, where both solutions have lower average
delay than the two reference subchannel allocation algorithms.
Although the dropping probability of the MaxWeight algorith-
m is almost the same with both approximate MDP solutions
in light traffic load regime, it grows significantly higher than
the approximate MDP solutions when λ increases beyond 4
packets/slot. This is because the approximate MDP solutions
will guarantee that the dropping probability is no larger than
the constraint dmax if this can be achieved by any policy
under the given mean arrival rate λ. As a consequence, the
proposed approximate MDP approach with online learning is
an effective method to reduce the complexity and achieve an
optimal performance (with regard to the offline value itera-
tion algorithm) while guaranteeing the dropping probability
constraint.

Fig.3 shows the average weighted sum delay and the
maximum dropping probability over all connections versus
the number of connections C with λ = 1 packets/slot. The
dropping probability constraint is set to dmax = 0.3. Note
that the performance of the approximate MDP solution with
value iteration algorithm is not shown in Fig.3. This is because
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Fig. 3. The average weighted sum delay and the maximum dropping
probability over all connections versus the number of connections C with
λ = 1 packets/slot and dmax = 0.3. The number of connections is
C = 3(D = Cu = Cd = 1), C = 12(D = Cu = Cd = 4),
C = 21(D = Cu = Cd = 7), C = 30(D = Cu = Cd = 10), respectively.

the above policy can not be derived when the number of
connections becomes large, since there are some RRGs with
more than two links whose CSI probability distributions are
hard to obtain. It’s obvious that our proposed approximate
MDP solution with online learning algorithm performs better
in average weighted sum delay and the maximum dropping
probability than the two other reference algorithms. Among the
three algorithms, the CSI-only algorithm performs the worst
since it does not take the QSI into account. The dropping
probability of the MaxWeight algorithm exceeds dmax = 0.3
with the increasing number of connections, while our proposed
algorithm can always keep it under the constraint. When the
connection number C = 30, our simulation results show that
compared to the MaxWeight algorithm, the average weighted
sum delay and the maximum dropping probability achieved
by our proposed approximate MDP-online learning algorithm
are decreased by 10% and 38%, respectively.

Fig.4 shows the convergence property of the proposed
online stochastic learning algorithm and brute-force offline
value iteration algorithm. We plot a portion of per-queue value
functions of the 3 connections versus the scheduling slot index
at a mean arrive rate λ = 5 packets/slot. It can be seen that the
online stochastic learning algorithm converges fast and after
1000 iterations the values are close to the final converged
results. The average weighted sum delay corresponding to
the average per-queue value function at the 750-th iteration
is smaller than the other two reference algorithms. Moreover,
it is clear that the value functions calculated online quickly
approach the value functions calculated offline when the
number of iteration grows.

V. CONCLUSION

In this pair of papers, we considered a delay-optimal
dynamic mode selection and resource allocation algorithm
under dropping probability constraint for network assisted
D2D communications with bursty traffic arrival, which is cast
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Fig. 4. Illustration of the convergence property of the proposed online
stochastic learning algorithm and brute-force offline value iteration algorithm
with C = 3(D = Cu = Cd = 1) and λ = 5 packets/slot.

into an infinite horizon average reward CMDP in the first part
of this work. In the second part of this work, we addressed the
issue of exponential memory requirement and computational
complexity by using linear value approximation techniques to
reduce the state space. Moreover, online stochastic learning
algorithm with two time scales was adopted to update the
value functions and LMs based on the real-time observations
of CSI and QSI. The obtained solution has a simple structure
with a computational complexity of O((NQ + 1) + (|Uu| +
|Ud|) × NF), which grows linearly with the buffer capacity,
number of RRGs and subchannels. We proved that under some
mild conditions, the proposed approximate MDP and online
stochastic learning solution converges almost surely (with
probability 1) to a global optimal solution. Simulation results
show that the proposed approach outperforms the conventional
CSI-only scheme and throughput-optimal scheme (MaxWeight
algorithm).

APPENDIX

A. Proof of Lemma 2

Since each representative state is updated comparably often
in the asynchronous learning algorithm, quoting the conclusion
in [17], the convergence property of the asynchronous update
and the synchronous update is the same. Therefore, we con-
sider the convergence of the related synchronous version for
simplicity in this proof. It is easy to see that the per-queue
value function vector Ṽt is bounded almost surely during the
iterations of the algorithm. In the following, we first introduce
and prove the following lemma on the convergence of learning
noise.

Lemma 3. Define

qt = M†[g(Ωt) +P(Ωt)MṼt −MṼt −T0(MṼt)e],

where T0(V) = minΩ
[
gÌ(Ω) +PÌ(Ω)V

]
denotes the map-

ping on the queue state Q(Ì), where gÌ(Ω) is the vector
form of function g(Q(Ì),Ω(Q(Ì))), PÌ(Ω) is the matrix form
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of transition probability Pr.[Q(ỳ)|Q(Ì),Ω(Q(Ì))]. When the
number of iterations t ≥ j → ∞, the procedure of update can
be written as follows with probability 1:

Ṽt+1 = Ṽj +
t∑

i=j

ϵvi qi.

Proof: The synchronous update of per-queue value func-
tion vector can be written in the following vector form:

Ṽt+1 = Ṽt+ ϵviM
†[g(Ωt)+JtMṼt−MṼt−T0(MṼt)e],

where the matrix Jt is the matrix form of queue state transition
probability Pr.[Q(ỳ)|Ht(z̀),Q

(z̀),Ω(Ht(z̀),Q
(z̀))] with given

Ht(z̀) in each row, which is the real-time observation of
channel state at time slot t(z̀) with queue state Qt(z̀) = Q(z̀).
Define

Yt = M†[g(Ωt) + JtMṼt −MṼt −T0(MṼt)e],

and δZt = qt −Yt and Zt =
∑t

i=j ϵ
v
i δZi. The online value

function estimation can be rewritten as

Ṽt+1 = Ṽt+ϵviYt = Ṽt+ϵvi qt−ϵvi δZt = Ṽj+
t∑

i=j

ϵvi qi−Zt.

(37)
Our proof of Lemma 4 can be divided into the following steps:

1) Step 1: Letting Ft = σ(Vm,m ≤ t), its easy to see that
E[δZt|Ft−1] = 0. Thus, {δZt|∀t} is a Martingale dif-
ference sequence and {Zt|∀t} is a Martingale sequence.
Moreover, Yt is an unbiased estimation of qt and the
estimation noise is uncorrelated.

2) Step 2: According to the uncorrelated estimation error
from step 1, when j → ∞ we have

E[|Zt|2
∣∣Fj−1] = E[|

t∑
i=j

ϵvi δZi|2
∣∣Fj−1]

=
t∑

i=j

E[|ϵvi δZi|2
∣∣Fj−1] = Z̃

t∑
i=j

(ϵvi )
2 → 0,

where Z̃ ≥ maxj≤i≤t E[|δZi|2
∣∣Fj−1] is a bounded

constant vector and the convergence of Z̃
∑t

i=j(ϵ
v
i )

2 is
from the definition of sequence {ϵvi }.

3) Step 3: From step 1, {δZt|∀t} is a Martingale sequence.
Hence, according to the inequality of Martingale se-
quence, we have

Pr[ sup
j≤i≤t

|Zi| ≥ λ
∣∣Fj−1] ≤

E[|Zt|2
∣∣Fj−1]

λ2
, ∀λ > 0.

From the conclusion of step 2, we have

lim
j→∞

Pr[ sup
j≤i≤t

|Zi| ≥ λ
∣∣Fj−1] = 0, ∀λ > 0.

Hence, from (37), we almost surely have Ṽt+1 = Ṽj +∑t
i=j ϵ

v
i qi when j → ∞.

Moreover, the following lemma is about the limit of se-
quence {qt}.

Lemma 4. Suppose the following two inequalities are true for
t = m,m+ 1, ...,m+ n:

g(Ωt) +P(Ωt)MṼt ≤ g(Ωt−1) +P(Ωt−1)MṼt, (38)

g(Ωt−1)+P(Ωt−1)MṼt−1 ≤ g(Ωt)+P(Ωt)MṼt−1, (39)

then we have
lim

t→+∞
qt = 0.

Proof: From (38) and (39), we have

qt = M†[g(Ωt) +P(Ωt)MṼt −MṼt − ωte]

≤ M†[g(Ωt−1) +P(Ωt−1)MṼt −MṼt − ωte],

qt−1 = M†[g(Ωt−1) +P(Ωt−1)MṼt−1 −MṼt−1 − ωt−1e]

≤ M†[g(Ωt) +P(Ωt)MṼt−1 −MṼt−1 − ωt−1e],

where ωt = T0(MṼt). According to Lemma 4, we have

Ṽt = Ṽt−1 + ϵvt−1qt−1.

Therefore

qt ≥ [(1− ϵvt−1)I+M†P(Ωt)Mϵt−1]qt−1 + ωt−1e− ωte

= At−1qt−1 + ωt−1e− ωte,

qt ≤ [(1− ϵvt−1)I+M†P(Ωt−1)Mϵt−1]qt−1 + ωt−1e− ωte

= Bt−1qt−1 + ωt−1e− ωte.

Thus, we have

At−1 · · ·At−βqt−β −C1e ≤ qt ≤ Bt−1 · · ·Bt−βqt−β −C1e

⇒ (1− δβ)(minqt−β)e ≤ qt +C1e ≤ (1− δβ)(maxqt−β)e

⇒
{

minqt + C1 ≥ (1− δβ)minqt−β

maxqt + C1 ≤ (1− δβ)maxqt−β

⇒ maxqt −minqt ≤ (1− δβ)(maxqt−β −minqt−β)

⇒ |qk
t | ≤ maxqt −minqt ≤ C2(1− δβ), ∀k.

Then we have

0 ≤ |qk
m+n| ≤ C3

⌊n/β⌋−1∏
i=0

(1− δm+iβ) = 0, ∀k, (40)

where the first step is due to conditions on matrix sequence
At and Bt, minqt and maxqt denote the minimum and
maximum elements in qt, respectively, qk

t denotes the kth
element of the vector qt, |qk

t | ≤ maxqt − minqt is due to
minqt ≤ 0, and C1,C2 and C3 are constants. According to
the property of sequence {ϵvt }, we have

lim
t→+∞

⌊t/β⌋−1∏
i=0

(1− ϵiβ) = 0.

And note that δt = O(ϵvt ), from (40), we have

lim
t→+∞

qk
t = 0, ∀k.

Summarize the conclusions above, we have

lim
t→+∞

qt = 0.

Therefore, (35) is straightforward when qt → 0. This com-
pletes the proof.
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B. Proof of Lemma 3

Due to the separation of time scale, the primal update of the
per-node value function converges to Ṽ∞(η) with respect to
current LM η [15]. By Lemma 4.2 in [18], G(η) is a concave
and continuously differentiable except at finitely many points
where both right and left derivatives exist. Since subchannel
allocation policy is discrete, we have Ω∗(η) = Ω∗(η +△η),
that is, ▽η =

Ω∗(η+△η)−Ω∗(η)
△η

= 0, therefore

∂G(ηt)

∂ηt

=

EΩ∗(ηt)[(1− dmax)(λc(1− dmax)− T(c+D)0)],
if c ∈ CCu,

EΩ∗(ηt)[(1− dmax)(λc(1− dmax)− T0(c+D))],
if c ∈ CCd,

EΩ∗(ηt)[(1− dmax)(λc(1− dmax)− T(2c−1)(2c) − T0(2c))],
if c ∈ CD,

where Ω∗(ηt) = argminΩ G(ηt). Using standard stochastic
approximation theorem [14], the dynamics of the LM update
equation in (33) can be represented by the following ordinary
differential equation (ODE):

η
′

t =

EΩ∗(ηt)[(1− dmax)(λc(1− dmax)− T(c+D)0)],
if c ∈ CCu,

EΩ∗(ηt)[(1− dmax)(λc(1− dmax)− T0(c+D))],
if c ∈ CCd,

EΩ∗(ηt)[(1− dmax)(λc(1− dmax)− T(2c−1)(2c) − T0(2c))],
if c ∈ CD.

Therefore, we show that the above ODE can be expressed as
η

′

t = ▽G(ηt). As a result, the above ODE will converge to
▽G(ηt) = 0, which corresponds to (33). This completes the
proof.
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