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Abstract—Mobile social network (MSN) emerges as a promising
social network paradigm that enables mobile users’ information
sharing in the proximity and facilitates their cyber–physical–social
interactions. As the advertisements, rumors, and spams spread
in MSNs, it is necessary to filter spams before they arrive at
the recipients to make the MSN energy efficient. To this end, we
propose a personalized fine-grained filtering scheme (PIF) with
privacy preservation in MSNs. Specifically, we first develop a
social-assisted filter distribution scheme, where the filter creators
send filters to their social friends (i.e., filter holders). These fil-
ter holders store filters and decide to block spams or relay the
desired packets through coarse-grained and fine-grained keyword
filtering schemes. Meanwhile, the developed cryptographic filter-
ing schemes protect creator’s private information (i.e., keyword)
embedded in the filters from directly disclosing to other users. In
addition, we establish a Merkle Hash tree to store filters as leaf
nodes where filter creators can check if the distributed filters need
to be updated by retrieving the value of root node. It is demon-
strated that the PIF can protect users’ private keywords included
in the filter from disclosure to others and detect forged filters. We
also conduct the trace-driven simulations to show that the PIF can
not only filter spams efficiently but also achieve high delivery ratio
and low latency with acceptable resource consumption.

Index Terms—Fine-grained, mobile social network (MSN),
personalized, privacy preservation, spam filter.

I. INTRODUCTION

M OBILE social network (MSN) has become a promising
social networking platform that enables group chat,

social gaming, media sharing, and ubiquitous interaction
among nearby users [1]. An MSN can easily be established by
smartphone users in a local area. These users connect to each
other through Bluetooth, WiFi, and device-to-device commu-
nications, and form an opportunistic network for a long span
of years or a temporary period (e.g., several hours). For exam-
ple, MSNs create rich interaction opportunities for residents in
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an urban neighborhood, students in a campus area, business-
men in a conference, tourists visiting a museum or scenic site,
and customers in a shopping mall. In MSNs, users’ interactions
are enabled anytime and anywhere without any concern of the
Internet access and wireless data charge. According to a recent
report from comScore, Instagram users in the United States
spend 98% of time with their mobile devices instead of desktop,
while this percentage for Twitter users is over 86%. As we can
imagine, users will have rich and quality service experiences
from MSN [2], since it helps users to obtain the desired infor-
mation from others (e.g., crowdsourcing) [3] rapidly, efficiently,
and pervasively.

MSN users receive various types of information, such as
newsletters, personal posts, rumors, and advertisements, most
of which are of great value to users. For example, in Fig. 1,
local stores or restaurants repeatedly disseminate their service
information, flyers, and advertisements to the nearby users. A
saving mom may like to have coupons, baby stuffs, and grocery
sale information, while a tourist is interested in tour instructions
and handicrafts. On the other hand, user’s interests may change
over time. Although users could quickly exchange useful infor-
mation in MSNs, they may still receive a portion of the useless
information, which is considered as spams [4]. However, the
communications among MSN users mainly relies on users’
smartphones, and happens with their opportunistic contacts.
The communication overhead is much expensive due to the lim-
ited battery of smartphones and opportunistic contacts among
users. Therefore, it is crucial to make the communication mean-
ingful in MSNs, i.e., transmit desired information to users and
filter spams as early as possible.

According to an investigation by Nexgate, spams over social
media have increased about 355% during only the first half of
2013, while they are rapidly spreading in social networks such
that every 1 of 200 social media posts is recognized as spam.
Extensive research and industry efforts have been put on spam
filtering in various applications. Several schemes rely on black-
list [5] or whitelist to either block spammers or admit legitimate
senders. An alternative way of filtering is to check the content
by matching the keyword associated with the packet [6], [7] or
using machine learning techniques [8] to detect spams. Social
graph and relevant characteristics are also investigated for spam
filtering [9], [10]. Most of these schemes are performed by a
centralized server or trusted authority, and require historical
information to detect spams. When spammers are shifting to
MSNs, they have more chances of going undetected [11], since
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Fig. 1. Information dissemination in MSNs.

MSNs have no centralized and trusted servers and lack histori-
cal information. To this end, we propose a distributed filtering
scheme where MSN users (i.e., filter creators) to personalize
their spam filters, send them to others (i.e., filter holders), and
allow filter holders to filter spams as early as possible. However,
there are still many challenging issues for this type of filtering
scheme in MSNs. The first challenge is how to distribute filters
with the consideration of both distribution costs and filtering
accuracy. Second, security and privacy concerns are raised,
since the distributed filters may contain some sensitive informa-
tion of filter creators. If the sensitive information within filters is
directly exposed to others, it may violate the filter creator’s pri-
vacy, such as health condition, lifestyles, and preferences [12].
The third one is how to resist malicious attackers, since the orig-
inal filters may be forged to block some useful information.
In addition, if a user greedily distributes his filters to all the
other users in the network, it may also consume many network
bandwidth and resources of others although it can benefit this
individual user. These challenging issues motivate us to further
improve the filtering accuracy and preserve users’ privacy at the
same time.

In this paper, we extend our previous conference version on
spam filtering [7] and propose a personalized fine-grained spam
filtering scheme (PIF) with privacy preservation in MSNs. The
PIF exploits personalized filters with social-assisted filter dis-
tribution, privacy-preserving coarse-grained and fine-grained
filtering, and efficient filter update. Specifically, the new con-
tributions of this paper are threefold.

1) We develop a personalized filtering scheme with privacy
preservation. The filter creator defines his filters in both
coarse-grained and fine-grained manners. The keyword
embedded in the coarse-grained filter enables filter hold-
ers to forward the packets including the same keyword
to the filter creator. The PIF also leverages a variant of
hidden vector encryption to achieve efficient fine-grained
filtering. Both schemes prevent keywords in the filters
from directly disclosing to others.

2) We investigate MSN users’ social relationship and
mobility in MSNs. Then, we exploit the opportunistic
contacts among users to analyze the packet delivery pro-
cess in MSNs. Based on the analysis, we propose a

social-assisted filter distribution scheme that enables the
filter creator to send filters to his social friends who have
high probability to meet him. By doing so, the PIF can
reduce the filter distribution overhead and maintain the
filtering accuracy.

3) We conduct extensive simulations to show that the PIF
can significantly reduce the storage and communication
costs and deliver the useful packets in a low delay.
Meanwhile, the security property analysis demonstrates
that the PIF protect user’s private keyword from directly
disclosing to inside curious attackers and detect forged
filters.

The remainder of this paper is organized as follows. In
Section II, we review the related works on spam filtering.
Then, we present the network and security models with design
goals in Section III. We propose the detailed PIF scheme in
Section IV, followed by the security property analysis and the
simulations in Sections V and VI, respectively. Finally, we
conclude this paper in Section VII.

II. RELATED WORK

Spam filtering has attracted numerous attentions and been
widely investigated recently [13]–[15]. Intuitively, some tradi-
tional filtering schemes exploit blacklist [5], whitelist, or graph
[16] to block illegal senders or bypass legitimate ones. To
achieve blacklist-based spam filtering, Soldo et al. [5] focus
on predictive blacklisting to forecast attack sources according
to shared historical attack logs. With a multilevel prediction,
an implicit recommendation system is formulated to resist
spam. Focusing on spam filtering by using keyword, Lu et al.
[6] propose a decentralized keyword-based filtering scheme
(PReFilter) to match and detect spam packets via keyword
list in delay tolerant networks (DTNs). The PReFilter allows
relays to have some filters generated by others. It can detect
and block spams before they are transmitted to the receivers.
Meanwhile, the filters with sensitive keywords are encrypted
to protect user’s privacy leakage. However, the PReFilter
misses to consider the problems of filter distribution and
update.

Social network, i.e., the social graph formed by users in the
network, is another helpful methodology to detect and filter
spams. Lahmadi et al. [17] utilize social network to collabo-
ratively filter the short message services-based spam via the
Bloom filters and content hashing filters. This collaborative
filtering scheme also relies on a centralized server to build
the social network among users. Hameed et al. [18] study the
e-mail recipient’s social network and mitigate spam outside
of the social circle, which can also reduce the Internet band-
width consumption by spams. To resist spam, malware and
phishing via URLs, Thomas et al. [19] develop a real-time
system, including URL aggregation, feature collection, fea-
ture extraction, and classification. The proposed system visits
every URL and collects its features that are stored a centralized
server for extraction in the training phase and real-time deci-
sion making. Meanwhile, some social features, such as social
interests, closeness, personal preferences, and trust, are also
adopted to facilitate the spam filtering. Li et al. [9] develop a
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social network-based spam filtering framework. It can detect
junk e-mails with the consideration of social features of users
and network [20], so that the regular and junk e-mails can
be differentiated. In [10], social trust is exploited to collab-
oratively filter spams. The spam reporter’s trustworthiness is
used to collect the correct spam reports and detect Sybil attacks
at the same time. Li et al. [21] also exploit collaborative and
privacy-preserving anti-spam system to resist a wide range of
camouflage attacks. The proposed ALPACAS framework con-
trols the amount of shared information among the collaborated
entities to achieve the confidentiality of e-mails.

In addition, Fan et al. [22] investigate the least cost rumor
blocking problem to limit the negative rumor diffusion in
social network. The community feature is utilized to min-
imize the total number of so-called rumor protectors and
protect bridge ends, as known as the boundary individuals
within the neighbor communities of rumor source. Based on
a susceptible-infectious model, Shah et al. [23] propose a sys-
tematic framework to estimate and detect the rumor source. It
is formulated as a maximum-likelihood estimator for a class of
graphs. Similarly, Wang et al. [24] detect the source of rumors
with multiple observations based on the susceptible-infectious
model. The multiple observations in a tree network is exploited
to improve the rumor source detection probability. Different
from most of the existing filtering schemes, Stringhini et al.
[25] propose a new approach to detect spams by looking at the
way how e-mails are sent instead of content and origin of e-
mails. For example, it can detect the IP address from which
the message is sent, and the geographical distance between the
sender and the receiver. They investigate the SMTP commu-
nication between the e-mail sender and receiving mail server.
The introduced concept of SMTP dialects captures small vari-
ations in the ways to carry out the SMTP protocol, so that
they can distinguish the between normal e-mail senders and
spam bots.

However, there are still many challenging issues for spam fil-
tering in MSNs. First, most of the social network-based filtering
schemes are based on centralized trusted authority to perform
the detection, which leaves a gap of filtering schemes between
online social network and MSN. Second, the decentralized
schemes, e.g., PreFilter [6] and SAFE [7], are limited due to
the lack of knowledge about the packet recipients (i.e., filter
creator). The SAFE offers spam filtering based on keyword
matching, which is a coarse-grained approach. Filter creators
only select the keyword from the keyword space of the network.
The coarse-grained keyword filter may not reflect the sufficient
features of the delivered packets. To this end, we propose a
personalized fine-grained spam filtering scheme to allow the
filter creators to generate filters with different features in mul-
tiple dimensions. The proposed PIF scheme can allow creators
to personalize his filters. Both coarse-grained and fine-grained
filtering are integrated in the PIF.

III. PROBLEM DEFINITION

In this section, we present the network model and design
goals including the efficiency of spam filtering and privacy
preservation.

Fig. 2. Network model.

A. Network Model

We consider an MSN including a trust authority (TA) and
N users (including mobile users and local stores), as shown in
Fig. 2.

1) TA is trusted by users, and bootstraps the whole system
during the initialization phase. TA can generate secret
master keys used for legitimate users to generate the ses-
sion keys. TA also issues certificates to legitimate users
when they register. TA does not participate in the com-
munication and filtering. However, the TA can revoke the
reported malicious users.

2) Users include mobile users and local stores having
smartphones or wearable devices to communicate with
each other in the local area. They are denoted by U =
{u1, u2, . . . , uN}. The power and storage occupancies of
each user’s smartphone are limited. Each legitimate user
first registers to the TA to build user’s profiles and obtain
key materials, e.g., unique identity, certificate, and secret
keys, which should be securely kept for session key gener-
ation. In packet delivery and spam filtering phases, users
can authenticate their identities and filters, and verify
other user’s information.

B. Security Model

Malicious users may participate in MSNs and launch attacks
in the phases of packet delivery and spam filtering. We define
two types of attacks: 1) inside curious attack (ICA) and 2) out-
side forgery attack (OFA). First, some of the filter holders may
be curious about other user’s preferences and personal pro-
files. ICA aims to violate and disclose other user’s sensitive
and private information. The privacy (i.e., keyword within the
filters) may be leaked during filter distribution, storage, packet
delivery, and filtering phases. Second, some outside adversaries
cannot directly obtain other user’s private information included
in the filters. However, it is possible to forge other user’s fil-
ters such that the useful packets may be blocked or spams can
be delivered in MSNs. It would consume a large number of
communication and storage overheads.

C. Design Goals

In this paper, our design goal is to develop a personalized
fine-grained filtering scheme with user’s privacy preservation.
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Fig. 3. PIF scheme (In filter distribution phase, filter creator sends his filters to his social friends. In filtering phase, filter holders block spams to the filter creator
with his filters.). (a) Filter distribution. (b) Filtering.

1) Efficiency Goals: Due to the opportunistic contact (i.e.,
intermitted end-to-end connectivity) and limited smartphone
battery, our goal is to develop an efficient spam filtering scheme
to detect and block the spams in MSNs as early as possible. The
proposed scheme should efficiently filter the spams and cost
few extra storage, communication, and computational over-
heads. Meanwhile, it should be able to bypass useful packets
without any delayed delivery of them. In addition, the dis-
tributed filters should be personalized by filter creators and
updated timely.

2) Security Goals: Our security goal is to preserve the
user’s privacy against ICA and detect the forged filters from
OFA. First, the proposed spam filtering scheme should be able
to preserve the filter creator’s privacy from directly disclosing.
The keyword included in the distributed filters cannot appear
in plaintext to others. During the filtering, the keyword should
also be invisible to others and kept in the ciphertext. Second,
the OFA should not be able to forge legitimate user’s filters. If
any filter is forged, the filter creator and other users are able to
detect it efficiently.

IV. PROPOSED PIF SCHEME

In this section, we propose the PIF scheme as shown in
Fig. 3. First, the users (i.e., filter creators) build their personal-
ized filters embedding the keywords and degree. Then, the filter
creator sends his filters to his social friends (i.e., filter holders).
When meeting a sender who wants to send a packet to the filter
creator, filter holders use these filters to check if this packet is
desired by the filter creator, and block spams in the early stage
of the packet delivery. The PIF consists of social-assisted filter
distribution, coarse-grained and fine-grained filters, and Merkle
Hash tree-based filter authentication and update.

A. Social-Assisted Filtering Distribution

To find a proper approach to distribute filters, we first for-
mulate the packet delivery process to understand the effective
way (or relay selection) to deliver the packet in MSNs. Some
frequent used notations are listed in Table I.

The packet delivery in MSNs relies on users’ opportunis-
tic contacts. Suppose the contact between two users ui and

TABLE I
FREQUENTLY USED NOTATIONS

uj follows a Poisson distribution [26], [27] with the pairwise
contact rate λi,j . A binary random variable Ci,j is defined as

Ci,j =

{
1, if ui and uj meet within time period T

0, otherwise.

Let λi be the average contact rate that ui meets any other
user. We have

Ci,j = 1 ·
∫ T

0

λie
−λitdt+ 0 ·

∫ ∞

T

λie
−λitdt. (1)

Therefore, Ci,j follows the Bernoulli distribution. As the
contacts between each two users are independent [27], the
probability that ui meets another user in T is

Pi(t ≤ T ) = 1−
∏
uj∈U

j �=i

(1− Ci,j)

= 1− e

− ∑

uj∈U

j �=i

λi,jT

. (2)

Let

λi =
∑
uj∈U

j �=i

λi,j ,
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then Pi(t ≤ T ) = 1− e−λiT . Thus, t follows power-law dis-
tribution. The probability distribution function (pdf) is fi(t) =
λie

−λit (t ≥ 0). We have the average contact interval of ui as

Ei(t) =

∫ ∞

0

tfi(t)dt =

∫ ∞

0

tλie
−λitdt =

1

λi
. (3)

According to [28]–[30], users in the same social commu-
nity may have a higher probability to meet each other, since
social community indicates users’ personal interests. Consider
the packet delivery within one community (us, ur, and ud are
in the same community), if the sender us meets a relay ur at t1
and ur meets the destination ud at t2, the forwarding probability
P r
s,d(t = t1 + t2 ≤ T ) is

P r
s,d(t ≤ T ) =

∫ t1

0

λs,re
−λs,rtdt ·

∫ T

t1

λr,de
−λr,dtdt

=

∫ T

0

fs,r(t)⊗ fr,d(t)dt

=

∫ T

t=0

(∫ t

τ=0

fs,r(τ) · fr,d(t− τ)dτ

)
dt. (4)

Note that ⊗ is the convolution. Because ur knows ts,r

P r
s,d(t = t1 + t2 ≤ T ) ≥ Pr(t1 ≤ ts,r) · Pr(t2 ≤ ts,r). (5)

Thus, we have

P r
s,d(t ≤ T ) =

∫ T

t=0

(∫ t

τ=0

fs,r(τ) · fr,d(t− τ)dτ

)
dt

≥
∫ ts,r

τ1=0

fs,r(τ1)dτ1 ·
∫ T−ts,r

τ2=0

fr,d(τ2)dτ2

=
(
1− e−λs,rts,r

) · (1− e−λr,d(T−ts,r)
)
. (6)

With the consideration of both direct and indirect contacts
between us and ud, the probability of forwarding a packet from
us to ud is

ps,d(t ≤ T ) = 1− (1− Ps,d(t ≤ T ))
∏
ur∈U

r �=s,d

(
1− P r

s,d(t ≤ T )
)
.

(7)

Then, we have

ps,d(t ≤ T ) ≥ 1− e−λs,dT ·
∏
ur∈U

r �=s,d

(
1− prs,d

)
(8)

where prs,d =
(
1− e−λs,rts,r

) · (1− e−λr,d(T−ts,r)
)
. Since

0 ≤ 1− prs,d ≤ 1, where ur ∈ U and r �= s, d, ps,d become
smaller when multiplied by more items, such as 1− prs,d.

If multiple relay users are selected for the packet forwarding,
the probability of multihop packet delivery in time period T
can be

P r...r′
s,d (t ≤ T ) =

∫ T

0

fs,r(t)⊗ . . .⊗ fr′,d(t)dt. (9)

With multiple communities, the probability that us forward
the packet to ud can be calculated as

Ps,d(t ≤ T ) = 1−
∏

i∈CCs,d

(1− ps,d(t ≤ T, i))

≥ maxi∈CCs,d
{ps,d(t ≤ T, i)}. (10)

It is larger than the probability that us forward the pack-
ets within only one community. Therefore, the PIF selects the
filter holders as the users who have large number of common
communities with the filter creator.

B. Coarse-Grained Filtering

To achieve the security goals, the coarse-grained filtering for
PIF consists of initialization, filter generation, filter distribution,
and filtering as follows.

1) Initialization: TA bootstraps the system and assigns secret
keys to individual users. Let G and GT be two addi-
tive cyclic groups. They have the same order q, and G’s
generator is P . Note that q a large prime. A bilinear pair-
ing [31] exists between G and GT is e: G×G → GT .
We have e(xP, yP ) = e(P, P )xy , where x and y are ran-
domly selected from Z

∗
q . A key generation algorithm G

takes as input a security parameter k, and outputs (q,
G, GT , P , e, H1), where H1 is a trapdoor hash function
H1 : {0, 1}∗ −→ Z

∗
q .

2) Filter generation: The filter creator ui selects his key-
words Wi,1, . . . ,Wi,K, where 1 ≤ k ≤ K, and estab-
lishes a keyword list Wi. Note that K ⊆ K which is
the keyword space of the whole MSN. Every keyword is
semantically defined by the TA. Then, ui randomly picks
xi ∈ Z

∗
q , and computes PKi =

1
xi
P as his public key. xi

is his secret key SKi. For a specific keyword Wi,k (e.g.,
“Health”), the filter Fi,k =< ϕ0,Wi,k >. Here, ϕ0 =

e(P,PKi) and Wi =
H1(Wi,k)

xi+H1(Wi,k)
P . The keyword filter

set for ui is Fi = (Fi,1, . . . ,Fi,k).
3) Filter Distribution: If ui meets another user uj , they

first authenticate each other and privately compare with
their profiles to determine the number of their common
communities (as discussed in Section IV-A). We adopt
privacy-preserving profile matching scheme in [32] to
enable users to learn their common communities. If the
number of their common communities is larger than a
threshold TH, ui can send his filter Fi to uj as the filter
holder.

4) Filtering: A packet sender us wants to delivers a packet
including keywords (Ws,1, . . . ,Ws,x) to ui. When us
meets uj , uj helps ui to determine if the packet from us
can be delivered or not.
For the keywordWs,x, us sends uj ϕs = PKi + ϕ1. Note
that ϕ1 = 1

H1(Ws,x)
P . Then, uj checks if ϕ0 = e(ϕs,Wi)

holds. If it holds, the keyword Ws,x matches ui’s filter
such that this packet should be forwarded. When there are
multiple keywords in the packet from us to ui, uj discards
us’s packet if none of the keywords associated with us
matches ui’s filter.

Note that these steps can help the filter holders to check
the packet’s keyword matching in a coarse-grained manner
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Algorithm 1. Social-assisted Coarse-grained Filtering

1: Procedure: Social-assisted Filtering
2: us wants to send a packet including keyword Ws,x via uj

to ui
3: if uj has ui’s filters then
4: uj checks if the keyword in the packet is valid or not
5: us sends ϕs = PKi + ϕ1 to uj
6: uj computes e(ϕs,Wi)
7: if e(ϕs,Wi) = ϕ0 then
8: us forwards the packet to uj
9: else

10: uj discards us’s the packet, and informs us
11: end if
12: else
13: us forwards this packet to uj
14: end if
15: end procedure

(i.e., coarse-grained filtering). The details of the coarse-grained
filtering scheme are illustrated in Algorithm 1.

Since e(P,PKi) = e(P, 1
xi
P ) = e(P, P )

1
xi , and

e(ϕ̃s,Wi)

= e

(
PKi + ϕ1,

H1(Wi,k)

xi + H1(Wi,k)
P

)
= e

(
1

xi
P +

1

H1(Ws,x)
P,

H1(Wi,k)

xi + H1(Wi,k)
P

)
= e

(
xi + H1(Ws,x)

xiH1(Ws,x)
P,

H1(Wi,k)

xi + H1(Wi,k)
P

)
=

{
e(P, P )

1
xi , if Wi,k =Ws,x

random, otherwise

when two keywords match, ϕ0 = e(ϕ̃s,Wi). If the keywords
are not the same, e(ϕ̃s,Wi) is random.

C. Fine-Grained Filtering

Although the coarse-grained keyword-based filter can block
a portion of packets when matching keywords, users may want
to personalize their filters due to their own preferences. It is
necessary to provide a fine-grained filtering solution. The filter
creator can define various levels of his interests corresponding
to the specific keyword, and allow the filter holders to fine-
grained filter the packets. To this end, we develop a variant of
hidden vector encryption technique [33], [34] in the PIF scheme
to achieve the fine-grained [35] spam filtering.

The filter creator ui generates his fine-grained keyword fil-
ter as a vector w = (w1, . . . , wl) ∈ {1, . . . , n}l to indicate his
interest degree in specific keyword. A high wl means that ui
is likely interested in the lth keyword. Denote σ∗(w) = σ∗

a,b ∈
{1, ∗}nl by

σ∗
a,b =

{
1, if wa = b
∗, otherwise.

Let f(σ∗(w)) be the set of all index k such that σ∗
k �= ∗,

where k ∈ {1, . . . , nl}.

When the sender us wants to send a packet with key-
word information W ′, us builds the encryption vector σ(w′) =
σa,b ∈ {0, 1}nl for w′ = (w′

1, . . . , w
′
l) ∈ {1, . . . , n}l as

σa,b =

{
1, if w′

a ≥ b,

0, otherwise.

Here, a ∈ {1, . . . , l} and b ∈ {1, . . . , n}.
For example, let l = 3, n = 4, and w = (1, 3, 1). The vector

σ∗(w) = (1 ∗ ∗∗, ∗ ∗ 1∗, 1 ∗ ∗∗), indicating that the matching
condition with another vector w′ is P = (w′

1 ≥ 1)
∧
(w′

2 ≥
3)
∧
(w′

3 ≥ 1). When the encryption vector w′ = (2, 3, 1).
σ(w′) = (1100, 1110, 1000). Therefore, the two vectors are
matched.

Define P (σ∗(w), σ(w′)) as the predicate function as

P (σ∗(w), σ(w′)) =

⎧⎪⎨⎪⎩
1, if for all i ∈ f(σ∗(v))

σ∗(wa) = σ(w′
a)

0, otherwise.

If P (σ∗(w), σ(w′)) = 1, uj can forward the packet to us.
We consider “≥” predicate in this paper. The proposed scheme
can be easily extended to “≤” and some other predicates. It is
also possible to combine different predicates.

Based on the above predicate, we propose a fine-grained
filtering scheme to preserve the sender’s keyword vector.

1) Initialization: Define G1 and G2 as the two multiplica-
tive cyclic groups having the same order q, which is also a large
prime. G1’s generator is g. Let e: G1 ×G1 → G2 be a bilinear
pairing such that e(ga, gb) = e(g, g)ab for any random numbers
a, b ∈ Z

∗
q . A bilinear key generation algorithm G takes as input

the security parameter k, and outputs (q, G1, G2, g, e).
TA selects random elements g1, g2, (h1, u1, ψ1), . . . ,

(hnl, unl, ψnl) ∈ G1, and some random numbers
y1, y2, v1, . . . , vnl, t1, . . . , tnl ∈ Z

∗
q . Let Y1 = gy1 , Y2 = gy2 ,

Vk = gvk ∈ G1, and Tk = gtk ∈ G1 for t, k ∈ (1, . . . , nl).
Γ = e(g1, Y1)e(g2, Y2) ∈ G2.

The public and secret keys are (PK, SK) as

PK = (g, Y1, Y2, (h1, u1, ψ1, V1, T1), . . . ,

(hnl, unl, ψnl, Vnl, Tnl))

SK = (g1, g2, y1, y2, v1, . . . , vnl, t1, . . . , tnl).

2) Filter Generation: ui builds his fine-grained filter w =
(w1, . . . , wl) ∈ {1, . . . , n}l, and maps it to vector σ∗(w).
Then, σ∗(w) is sent to uj with the encryption of AES, when
they are encountered.
uj decrypts σ∗(w) from ui and secretly keeps it. Then,

uj selects two random numbers α, β ∈ Z
∗
q , and picks random

tuples< μa, φa, θa, δa >∈ Z
∗
q , such that μay1 + φay2 = α and

θay1 + δay2 = β for all a ∈ f(σ∗(w)).
Then, uj computes the filter F(σ∗(w)) as

F1 = g1
∏

a∈f(σ∗(w))

(
hiu

σ∗(wa)
i

)μa

ψθa

F2 = g2
∏

a∈f(σ∗(w))

(
hiu

σ∗(wa)
i

)φa

ψδa

F3 = gα, F4 = gβ , F5 = g
− ∑

a∈f(σ∗(w))

(viα+tiβ)

.
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3) Filtering: us first generates ciphertext with the key-
word related vector σ(w′

s). Then, us encrypts σ(w′
s)

by using uj’s public key PK. us also picks two ran-
dom numbers ρ1 and ρ2 ∈ Z

∗
q , and sends the ciphertext

CT=(C1, C2, C3,1, . . . , C3,nl, C4,1, C4,nl, C5, C6), where

C1 = Y ρ1

1 , C2 = Y ρ1

2

C3,1 =
(
h1u

w′
a

1

)ρ1

V ρ2

1

· · ·
C3,nl =

(
hnlu

w′
a

nl

)ρ1

V ρ2

nl

C4,1 = ψρ1

1 T
ρ2

1

· · ·
C4,nl = ψρ1

nlT
ρ2

nl

C5 = gρ2 , C6 = Γρ1 .

Having CT from us, uj aggregates C ′
3 =

∏
a∈f(σ∗(w))

C3,a

and C ′
4 =

∏
a∈f(σ∗(w))

C4,a. uj collects the indexes of keyword

passed the coarse-grained keyword filtering, and checks

e(F1, C1)e(F2, C2)

C6

?
= e(F3, C

′
3)e(F4, C

′
4)e(F5, C5). (11)

If (11) holds, uj forward the packet to ui; otherwise, uj
discards it.

The correctness of fine-grained filtering is as follows:

e(K1, C1)e(K2, C2)

= e

⎛⎝g1 ∏
a∈f(σ∗(w))

(hau
wa
a )μaψθa , gy1ρ1

⎞⎠
· e
⎛⎝g2 ∏

a∈f(σ∗(w))

(hau
wa
a )φaψδa , gy2ρ1

⎞⎠
= Γρ1

∏
a∈f(σ∗(w))

[
e((hau

wa
a )μa , gy1ρ1)e((hau

wa
a )φa , gy2ρ1)

]
∏

a∈f(σ∗(w))

[
e((ψθa , gy1ρ1)e(ψδa , gy2ρ1)

]
= Γρ1

∏
a∈f(σ∗(w))

e((hau
wa
a )ρ1 , gμay1+φay2)

∏
a∈f(σ∗(w))

e(ψρ1 , gθay1+δay2)

= Γρ1e

⎛⎝ ∏
a∈f(σ∗(w))

(hau
wa
a )ρ1 , gα

⎞⎠ e

⎛⎝ ∏
a∈f(σ∗(w))

ψρ1 , gβ

⎞⎠
· e(K3, C

′
3)e(K4, C

′
4)e(K5, C5)

= e

⎛⎝gα, ∏
a∈f(σ∗(w))

(hau
w′

a
a )ρ1gvaρ2

⎞⎠
· e
⎛⎝gβ , ∏

a∈f(σ∗(w))

ψρ1gtaρ2

⎞⎠

Fig. 4. Merkle Hash tree-based filter authentication.

e

(
g
− ∑

a∈f(σ∗(w))

(vaα+taβ)

, gρ2

)

= e

⎛⎝gα, ∏
a∈f(σ∗(w))

(hau
w′

a
a )ρ1

⎞⎠ e

⎛⎝gβ , ∏
a∈f(σ∗(w))

ψρ1

⎞⎠
e(gρ2 ,

∏
a∈f(σ∗(w))

gvaα+taβ)e

(
g
− ∑

a∈f(σ∗(w))

(vaα+taβ)

, gρ2

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

e

(
gα,

∏
a∈f(σ∗(w))

(hau
w′

a
a )ρ1

)
e

(
gβ ,

∏
a∈f(σ∗(w))

ψρ1

)
if w matches w′, i.e., wi = w′

i for all a ∈ f(σ ∗ (w))

⊥
Otherwise.

Note that C6 = Γρ1 . If w matches w′, it passes the fine-
grained filter check, so that the packet from us can be forwarded
to ui.

D. Filter Authentication and Update Scheme

In this section, we exploit Merkle Hash tree [36] (i.e., a tree
structure of cryptographic Hash functions) to authenticate each
filter. We propose the construction of Hash tree for filters with
the filter authentication.

Merkle Hash tree has a typical binary tree structure including
2N−1 leaf nodes. The depth of Merkle tree is N [37]. A par-
ent node pi−j = H(chi||chj) is computed by a one-way Hash
function taking as input its children nodes. In Fig. 4, given the
leaf nodes ch1 and ch2, the parent node p1−2 = H(ch1||ch2)
as shown. Similarly, p1−4 is computed by concatenating p1−2

and p3−4. The root node r1−8 = H(p1−4||p5−8). Let PH1 =
{ch2, p3−4, p5−8} be the path from the leaf node ch1 to the
root r1−8. PH1 can be used to authenticate the leaf node ch1.

In the PIF, the filter creator ui builds his keyword list Wi =
{Wi,1, . . . ,Wi,K}, 1 ≤ k ≤ K. Each keyword is located in the
leaf of Merkle Hash tree FRui

. In the authentication, the path
PHk of Wi,k is the certificate of the keyword Wi,k. The ver-
ifier checks if the concatenated hash value of PHk equals the
root Ri or not. If not, the keyword is forged. Suppose there are
2N leaf nodes in a Merkle Hash tree, users perform N Hash
operations to verify each keyword (leaf node). The size of fil-
ter’s signature isN × L. Note that L denotes the length of each
Hash value. For example, in SHA-256, L is 256 bits.
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Algorithm 2. Filter Update Check

1: Procedure: Filter Update Check
2: ui changes his keyword Wi,k, and constructs a new filter

tree FR′
ui

with the root node R′
ui

.
3: ui meets his filter holder uj .
4: if uj has ui’s keyword Wi,k then
5: uj sends Rui

to ui for the authentication.
6: if Rui

is valid then
7: if Rui

�= R′
ui

8: uj searches the changed leaf nodes.
9: ui sends the updated FR′

ui
to uj .

10: uj updates ui’s filter as FR′
ui

.
11: end if
12: else
13: ui reports uj to the TA since uj forges ui’s filter.
14: end if
15: end if
16: end procedure

The properties of Merkle Hash tree can also be used to check
the filter’s version. We propose a filter update scheme based
on this property. As we presented above, the root of Merkle
Hash tree changes if any leaf node varies. We do not need to
check every leaf node (i.e., keyword) of the distributed filter.
The filter creator ui checks the root value Rui

from his filter
holder uj for filter tree FRui

. If the root is an existing root
value, ui sends the updated filter tree FR′

ui
to uj as illus-

trated in Algorithm 2. The PIF improves the efficiency of filter
search during the filter update. The Merkle Hash tree can also
be extended to fine-grained filter where each value in the vector
is assigned as leaf node.

V. SECURITY PROPERTY ANALYSIS

In this section, we discuss security properties of the PIF. We
analyze the resistance to the presented attacks in Section III.

A. Resistance to Inside Curious Attack

To resist ICA, each keyword cannot be sent to others in
plaintext. The PIF encrypts the creator’s filters. The security
of encryption is based on the collision resistant hash func-
tion and the assumption that Bilinear Diffie–Hellman Problem
is computational difficult in (G, GT , e). Specifically, given
(P, xP, yP, zP ) with x, y, and z randomly selected from Z

∗
q ,

it is computationally infeasible to compute e(P, P )xyz ∈ GT

[31]. Due to the security properties of trapdoor hash function,
it is infeasible to compute Wi,k from H1(Wi,k). Under the
honest-but-curious model, the keyword is securely stored, so
that the creator ui’s sensitive and private information is pre-
served. Wi =

H1(Wi,k)
xi+H1(Wi,k)

P . Furthermore, the filter holder uj
can efficiently check if the keyword in the packet matches any
keyword in ui’s filter without disclosing Wi,k. uj only forward
the packet with appropriate keywords to ui. In addition, the
keyword index is defined by each filter creator. Different cre-
ators randomly sort the filters. If the keyword space is not large

enough, uj can take much time to exhaustively search every
keyword in the keyword space. In addition, an expired time can
be added into the filter, and the filter creator can update his fil-
ters timely. uj can only guess the keyword before this expired
time. After this expired time, the filter is not valid. The guess
on an invalid filter cannot match any keyword within the filter,
since the time stamp inside the hash function would change the
output of hash value. The long guess-time can limit the ICA’s
attacking capability. Furthermore, the filters for different hold-
ers are set with different expired time and keyword index. Thus,
multiple holders cannot collude to guess the keyword within the
valid period of each filter.

In the fine-grained filtering, the keyword vector from sender
is invisible to the filter holders uj . Assume that the augmented
decision linear problem [33] is computationally infeasible, us’s
private vector w′ cannot be guessed by uj under the selective
security model. The fine-grained vector from the filter holder ui
is visible to uj . It is a tradeoff between the fine-grained privacy
of the creator and the filtering capability of holder. Fortunately,
ui can personalize his vector w = (w1, . . . , wl) ∈ {1, . . . , n}l.
Take n = 5, e.g., ui has interests in “health” with the fine-
grained degree (1, 3, 2) in different dimensions. In the vector,
ui can change his original fine-grained degree to build a blurred
searching vector and distribute this blurred vector to a specific
filter holder. Since the keyword is invisible to the filter holders,
they cannot link the blurred fine-grained degree with a specific
keyword. Furthermore, the packet is also encrypted by using the
filter creator’s public key (i.e., the destination of the packet).
The filter holder cannot infer the keyword from the forwarded
packet. Therefore, the filter creator’s fine-grained information
cannot be guessed by ICA.

B. Outside Forgery Attack

The PIF can detect the forged filters from OFA. With Merkle
Hash tree, the root value is concatenated from its children
nodes. Having the path information from the leaf nodes to the
root, each leaf node (i.e., keyword) has a unique certificate gen-
erated by the filter creator ui. The path information is verifiable
by others. If the existing filters are changed by ui, the new
certificate is updated. However, before the filter update at uj ,
the former certificate is still valid. The resilience of OFA is
based on the security level of hash function used to construct
the Merkle tree.

According to the above analysis, the PIF can preserve user’s
privacy from directly disclosing to ICA and resist the forgery
attack from OFA. Note that the encountered users need to match
their profiles to determine the common communities. We follow
the security solution from [32] to guarantee the security and
privacy requirements during profile matching. In addition, TA
can receive the forgery reports from users and revoke the OFA,
but does not participate in the communications. Therefore, the
PIF operates in a decentralized manner from the perspective of
spam filtering and security protections.

VI. PERFORMANCE EVALUATION

To evaluate the performance of the PIF scheme, we conduct
the extensive simulation through Infocom06 trace [38].
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Fig. 5. Packet delivery comparison among different schemes. (a) Delivery ratio. (b) Average delay.

Fig. 6. Filtering comparison among different schemes. (a) Number of the blocked spams. (b) Number of copies.

A. Simulation Setup

The Infocom06 trace [38] consists of 78 mobile users dur-
ing a four-day conference. Every mobile user takes a dedicated
portable device to discover the nearby Bluetooth devices every
120 s. The system log records the mobile users’ mobility and
contact information. Totally, there are 128 979 contacts avail-
able for the simulation. We then divide the data set into two
parts: the training set including one-third of the data to produce
users’ social relations (e.g., communities), and the simulation
set including the other two-third of the data. We also leverages
maximal clique to assign each user’s communities. Finally, 100
communities are selected. Every community consists of a suffi-
cient number of users, while the sum of all the edges within the
community is large. In every community, there are at least 28
users. On average, every mobile users’ participates in 38 com-
munities. In the simulation, the time is divided into time slots,
and each time slot represents 90 s. At the beginning of simula-
tion, we define 100 keywords according to communities, where
each user selects keywords that are associated with fine-grained
interest values from [1, 100] defined by users. Then, each user
generates 78 packets with random keywords and interest values
to different destination users every 10 time slots.

B. Simulation Results

We compare the PIF with SAFE [7], PReFilter [6], and
Epidemic schemes. The PIF and SAFE have the same deliv-
ery ratio and delay, since they do not block any useful packets.
Compared with PReFilter, the PIF achieves higher delivery
ratio with a reasonable delay, as shown in Fig. 5(a) and (b).
Epidemic scheme allows each user to send his packets to any
encountered user, so that it achieves the highest delivery ratio
with lowest delay. However, it costs many network resources,
such as communication and storage. Note that the PIF achieves
the same delivery ratio and delay with different THs (i.e., the
number of common communities that both encountered users
have). It is because the PIF forward packets based on the com-
mon communities with the destination. Only the number of
distributed filters is impacted by TH. Therefore, the useful
packets can pass the filter check and be forwarded.

In Fig. 6, we compare the PIF with SAFE and PreFilter in
terms of filtering performance. From Fig. 6(a), the PIF blocks
more spams compared with SAFE and PreFilter schemes, since
the PIF employs find-grained filtering to effectively block the
useless packets according to filter creator’s defined keyword
and fine-grained interests. Meanwhile, the PIF (TH = 20) filters
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Fig. 7. Performance comparison of PIF with different THs. (a) Number of filters versus TH. (b) Number of copies versus TH. (c) Number of blocked packets
versus TH.

Fig. 8. Update comparison among different schemes. (a) Checking comparison. (b) Searching comparison.

more spams compared with the PIF (TH = 10). In Fig. 6(b),
the PIF (TH = 10) significantly reduces the communication
overheads. Although the PIF (TH = 20) blocks more spams as
shown in Fig. 6(a), it still produces many copies. It is because
the fewer filters are distributed in the network when TH = 20,
and more users without filters may help to carry-and-forward
spams. The PIF (TH = 10) can balance the tradeoff between
the number of copies and the number of blocked spam packets
compared with other schemes and settings.

In Fig. 7(a), when TH increases, the number of distributed fil-
ters decreases. During the filter distribution, a smaller TH leads
to a larger number qualified users to hold filters. The PReFilter
and Epidemic filtering schemes [i.e., PF and Ep in Fig. 7(a)]
distribute too many filters to users. In the PIF, the filter creators
purposely distribute their filters to the users who have more than
TH common communities with the filter creators. In Fig. 7(b),
a higher TH causes more copies during the packet delivery.
Since the higher threshold decrease the number of distributed
filters in the network, the smaller number of filters cannot fil-
ter spams well. From Fig. 7(c), we can see that the PIF with an
increased TH can block more spams. When TH is small (e.g.,
10 or 15), a sufficient number of users hold filters such that they
do not duplicate spams. Under this circumstance, spams are fil-
tered at sender’s side. When TH increases, fewer users hold
filters. The number of produced spams increases, but the num-
ber of blocked spams is also increased. With a larger TH (e.g.,
45), fewer users hold filters. The spams keep increasing, but

the filtering capability is degraded. In other words, the further
increased TH leads to a decreasing number of blocked spams
when TH > 40. In summary, the PIF (TH = 10) achieves the
better performance to balance the number of distributed fil-
ters and copies (i.e., communication overhead), and efficiently
blocks spam packets.

C. Computational Overhead

In this section, we evaluate the PIF in terms of computational
complexity. Denote CH as a Hash operation ({0, 1} −→ Z

∗
q),

CM as a multiplication operation in G1 and Cp as a pair-
ing operation. In the coarse-grained filtering scheme, the filter
generation has 1 · CH + 1 · CM + 1 · Cp operations; the filter
holder checks packet sender’s keyword with one pairing opera-
tion and packet sender only has one multiplication operation to
protect his keyword from direct disclosing to the filter holder.
For the fine-grained filtering scheme, we do not calculate the
time of multiplication operations, since exponential operations
take much more time than multiplication operations. Denote
Ce by an exponential operation in G1, and Ce′ as an exponen-
tial operation in G2. The filter generation has (6nl + 3) · Ce

operations. The packet sender has (5nl + 1) · Ce and 1 · Ce′

operations. Finally, the filter holder has five paring operations to
check if the sender’s keyword matches the filter creator’s filters.

We compare the filter update complexity, as shown in Fig. 8.
Filter update includes two steps: 1) check if the filters need to
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be updated and 2) search the out-of-date filter. We compare the
PIF with a binary search scheme and a Hash chain scheme (i.e.,
computing every leaf node’s Hash value and checking the con-
catenation of all these Hash values). From Fig. 8(a), both the
PIF and Hash chain schemes achieve O(1) checking complex-
ity to find if any filter should be updated. The reason is that
the Merkle Hash tree-based update check only needs to check
the root of the distributed filters. The binary search scheme
requires an increasing number of operations when more filters
are distributed, i.e., O(log(N)), where N is the total num-
ber of filters. During the searching step, Hash chain scheme
requires O(N) searching operations, while both the PIF and
binary search schemes only have O(log(N)) searching com-
plexity, as shown in Fig. 8(b). Therefore, the PIF can efficiently
update the distributed filters.

VII. CONCLUSION

In this paper, we have proposed a personalized fine-grained
spam filtering scheme with privacy preservation in MSNs.
First, we have developed a filter distribution scheme based on
users’ common communities to efficiently distribute filters and
block spams. Then, we have proposed coarse-grained and fine-
grained filtering schemes with privacy preservation to enable
filter creator to personalize his filters. We have also proposed
a Merkle Hash tree-based filter structure, which can not only
authenticate the validity of filters but also update the filters to
satisfy user’s various demands. The security property analysis
demonstrates that filter creator’s private information included
in his filters can be protected from direct disclosing. In addi-
tion, we have conducted the extensive simulations to show that
the PIF cannot only reduce the delay as well as the commu-
nication and storage overhead but also achieve a high filtering
accuracy and efficiency. For our future work, we will investigate
the self-adaptive filtering with collaboration of filter creator’s
social friends in MSNs.
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