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Energy-Theft Detection Issues for Advanced Metering Infrastructure
in Smart Grid
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Abstract: With the proliferation of smart grid research, the Advanced Metering Infrastructure (AMI) has become

the first ubiquitous and fixed computing platform. However, due to the unique characteristics of AMI, such as

complex network structure, resource-constrained smart meter, and privacy-sensitive data, it is an especially

challenging issue to make AMI secure. Energy theft is one of the most important concerns related to the smart

grid implementation. It is estimated that utility companies lose more than $25 billion every year due to energy theft

around the world. To address this challenge, in this paper, we discuss the background of AMI and identify major

security requirements that AMI should meet. Specifically, an attack tree based threat model is first presented to

illustrate the energy-theft behaviors in AMI. Then, we summarize the current AMI energy-theft detection schemes

into three categories, i.e., classification-based, state estimation-based, and game theory-based ones, and make

extensive comparisons and discussions on them. In order to provide a deep understanding of security vulnerabilities

and solutions in AMI and shed light on future research directions, we also explore some open challenges and

potential solutions for energy-theft detection.
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1 Introduction

The power grid has become a necessity in the modern
society. Without a stable and reliable power grid, tens
of millions of people’s daily life will be degraded
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dramatically[1]. For instance, the India blackout in July
2012 affected more than 60 million people (about
9% of the world population) and plunged 20 of
Indian 28 states into darkness[2]. Indeed, the traditional
power grid, which is surprisingly still grounded on the
design more than 100 years ago, can no longer be
suitable for today’s society[3]. With the development
of information system and communication technology,
many countries have been modernizing the aging power
system into smart grid, which is featured with two-
way transmission, high reliability, real-time demand
response, self-healing, and security.

Within smart grid, Advanced Metering Infrastructure
(AMI) plays a vital role and is associated with
people’s daily life most closely[4]. AMI modernizes
the electricity metering system by replacing old
mechanical meters with smart meters, which provide
two-way communications between utility companies
and energy customers. With the AMI, people can not
only read the meter data remotely, but also do some
customized control and implement fine-coarse demand
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response[5]. In addition, the real-time data collected
from the smart meters can improve the reliability
of the distribution grid by avoiding line congestion
and generation overloads[6]. The utility companies can
also provide faster diagnosis of outage and dynamical
electricity price thanks to the AMI. Hence, AMI
has attracted great attention from many stakeholders,
including utility companies, energy markets, regulators,
etc. AMI technologies are rapidly overtaking the
traditional meter reading technologies and millions of
smart meters are equipped in the household all over the
world. For example, there are already more than 4.7
million smart meters used for billing and other purposes
in Ontario, Canada[7]. According to the American
Institute for Electric Efficiency (IEE), approximately 36
million smart meters have been installed in the United
State by May 2012, and additional 30 million smart
meters will be deployed in the next three years[8].

However, rich information exchange and hierarchical
semi-open network structure in AMI extend the
attack surface for metering to entire public networks
and introduce many vulnerabilities for cyber
attacks[9, 10]. Among all the attacks to the AMI,
energy theft in emerging economies has been a
widespread practice, both in developing countries
and developed countries. A World Bank report finds
that up to 50% of electricity in developing countries
is acquired via theft[11]. It is reported that each year
over 6 billion dollars are lost due to the energy
theft in the United States alone[12]. In 2009, the FBI
reported a wide and organized energy-theft attempt
that may have cost up to 400 million dollars annually

to a utility following an AMI deployment[13]. In
Canada, BC Hydro reports $100 million in losses
every year[14]. Utility companies in India and Brazil
incur losses around $4.5 billion and $5 billion due
to electricity theft, respectively[15, 16]. There is even
a video which shows how to crack the meter and cut
the electricity bill in half in Youtube[17]. As a result,
energy-theft issue becomes one of the most important
concerns which prohibit the development of AMI.

Due to the nature of non-technical loss during
transmission of electrical energy, it is very difficult for
the utility companies to detect and fight the people
responsible for energy theft. The unique challenges
for energy theft in AMI call for the development of
effective detection techniques. However, so far, few
studies have elaborated what have been achieved and
what should be done for these challenges. As a result,
we are motivated to investigate energy-theft issue in
AMI, which is of critical importance to the design of
AMI information networks and has been considered as
one of the highest priorities for the smart grid design. In
this paper, we provide a state-of-the-art survey of
existing energy-theft detection schemes in AMI.

2 System Model and Security Requirements

In this section, we present the system model and
identify security requirements for AMI.

2.1 System model

The advanced metering infrastructure is a hierarchical
structure. As shown in Fig. 1, AMI is comprised of a
number of different networks communicating with each

Fig. 1 A simple AMI architecture.
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other, and these networks are described as follows:
� Home Area Network (HAN): The home area network

is a kind of local area network with smart meter as its
core. Household appliances can connect to the smart
meter through wireless channel, e.g., ZigBee, which
conveniently enables people to monitor and control
the use of household appliances and make proper and
economical usage plans.
� Neighborhood Area Network (NAN): The

neighborhood area network is a network which
is comprised of neighboring smart meters. A
collector in NAN takes charge of the aggregation of
metering data from smart meters, and the popular
WiFi technology is suggested for NAN. Certainly,
other technologies such as WiMAX and 3G/4G
cellular can also be used for NAN communication.
� Wide Area Network (WAN): The wide area network

serves as a connection of collectors in NAN and
headends in the utility control center. Since millions
of metering data are transferred in the WAN, the
requirements of both bandwidth and reliability of
the network are extremely high. As a result, the
main communication technology suggested in WAN
is optic fiber, although microwave and cellular are
also considered for WAN as optional technologies.
The metering data continuously generated by smart

meter can be used by various grid stakeholders to offer
efficient services as follows:
� Customers can know exactly how much electricity

they have consumed at any time and adjust their
electricity consumption according to the dynamic
electricity price;
� Grid operators can make smooth operation of the

power system based on the real-time metering data;
� Energy providers can estimate the mid-term power

consumption according the aggregated data;
� Billing companies need precise power consumption

data to implement flexible electricity price model;
� Third part value added services can make electricity

usage suggestion by analysing the customer’s
consumption profile;
� Governmental agencies need to access the data to

make relevant laws.

2.2 Security requirements

Obviously, different stakeholders in AMI may have
their own security requirements. For example, the
customers care about their privacy information and
regular electricity usage; while the utility companies

aim to provide stable energy supply and prevent the
customers from energy theft. In general, those sensitive
objects that need to be protected in AMI can be
classified as follows:
� Smart meter data: The data collected from the smart

meters should not be accessed by any unauthorized
entities;
� Control data: The control command should be

received and implemented by the smart meters
correctly and completely;
� Bill information: The electricity price and bill paid

for the utility company should not be manipulated by
unauthorized entities;
� Customer’s personal information: The information

includes customer’s credit card information, daily
electricity usage profile, and so on.
Based on the above sensitive objectives, security

requirements for AMI can be classified as follows:
� Confidentiality: Sensitive information should only be

accessed by authorized entities;
� Integrity: Data transmitted in the AMI must be

authentic and correctly reflect the source data without
any unauthorized manipulation;
� Availability: Data in AMI should be accessible by

authorized entities whenever they need the data;
� Non-repudiation: The entities cannot deny receiving

anything, such as renewed electricity price, that they
have received; and cannot clarify that they have
sent some data, e.g., electricity amount they have
consumed, which they actually do not send;
� Privacy: The entities cannot infer any private

information from the published metering data.

3 Threat Model

3.1 Attacker model

There are different kinds of attackers with
various purposes to violate AMI. Analysis of the
attackers provides better insights into their attack
techniques. Generally speaking, attackers in AMI can
be classified as follows:
� Curious eavesdroppers: These attackers are only

interested in the activities of their neighbors;
� Greedy customers: These attackers want to crack the

AMI in order to steal electricity;
� Malicious eavesdroppers: These attackers collect

metering data for some vicious purposes such as
house breaking;
� Swanky attackers: These attackers only want to show
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off their ability and wisdom of attack techniques;
� Active attackers: These attackers aim to launch large-

scale terrorist attacks by compromising the whole
power system;
� Intrusive data management agencies: These attackers

want to collect customers’ private information for
marketing or economic purposes.
Specifically, there are three types of attackers who are

motivated to commit energy theft[18]:
� Customers: Traditionally, customers have been the

primary adversaries aiming to steal power. The
means and motivation to tamper with analog
meters is very much individual in nature. In
developing countries, people commit energy theft
due to their poor infrastructure, poverty, and
irregularities in metering and distribution systems. In
developed countries, people, who cultivate marijuana
illegally, steal electricity to hide their overall
electricity consumption to avoid police inspection
and prosecution.
� Organized crime: The motivation in the case of

organized crime is the monetization of energy
theft. Because of the extended computing and
network capabilities of AMI, the task of creating
software and hardware tools to compromise
smart meters can be offloaded from customers
to professional hackers. Members of this group will
leverage certain design aspects of AMI systems,
such as the widespread use of the same password set
over many meters, to greatly amplify the profit from
cracking a single smart meter.
� Utility company insiders: In most work, utility

company insiders are implicitly trusted to be honest
in the case of analog meters and the same model
applies for AMI. However, in order to avoid mis-
operation or being attacked by malicious employees
in utility companies, it is preferable that utility
side systems enforce proper customer and group
management to provide properties such as separation
of duties.

3.2 Attack tree based threat model

3.2.1 Definition and structure of attack tree
The attack tree approach, which provides a formal
and methodical way to describe the security of
systems based on varying attacks, is proposed by
Schneier[19]. The attack tree enumerates all potential
actions that an attacker could utilize to gain access to
the target system and each branch in the tree represents

a set of intermediate steps which the attacker must take
prior to gaining access to the target system. The attack
behaviors against a system are represented in a tree
structure, with the final desired goal as the root node and
different ways to achieve that goal as child nodes. Each
child node of the root becomes a sub-goal, child nodes
of which are ways to achieve that sub-goal. If one of
those nodes cannot be divided further, it becomes the
leaf node. Otherwise, those nodes are treated as sub-
goals separately and will be decomposed continually
until all the events become leaf nodes.

According to the logical relationship among the
nodes, there are two kinds of logic gate, called OR-
gate and AND-gate in attack tree. The OR-gates are
used to represent alternative attack methods, while the
AND-gates are used to represent different steps toward
achieving the same goal. The nodes, which are linked
with an OR-gate, are OR nodes. Those nodes linked
an AND-gate are AND nodes. The presentation of OR
node and AND node is shown in Fig. 2, where Goal0
is an AND node and Goal1 is an OR node. In order
to achieve the Goal0, both of the sub-goal Goal01 and
Goal02 must be achieved first. While the Goal1 can be
achieved as long as either Goal11 or Goal12 is achieved.

3.2.2 Attack tree for energy theft in AMI
We perform a top-down, stepwise refinement, and
heuristic strategy to construct the attack tree for energy
theft[20]. “Energy theft” is set as the attacker’s overall
goal. The procedure of attack tree construction for
energy theft in AMI is described as follows:
� Define the attacker’s overall goal “G: Energy Theft”

in AMI.
� Decompose the goal G into sub-goals: Interrupt

Measurement, Tamper Stored Demand, and Modify
in Network. The attacker’s purpose can be achieved
if any of the three components is reached. This list
might be extensive and more sub-goals could be
added.
� Continue the step-wise decomposition until the task

cannot be divided into smaller ones. The completed
diagram of attacks and sub-attacks is called an attack
tree, as shown in Fig. 3.

Fig. 2 AND node and OR node.
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We go into the detail to illustrate the attack tree
construction. There are three ways to achieve goal
“energy theft” as shown in Fig. 3[18]:
� Interrupt measurement: This attack takes place before

the smart meter makes a demand measurement and
aims to prevent the smart meter from recording
the consumed electricity. There are two ways, i.e.,
“disconnect meter” and “meter inversion”, to commit
this attack. In order not to be retrieved by the utility
company, it is necessary to erase the logged events
which indicate outage or reverse energy flow.
� Tamper stored demand: The attacker can also tamper

the data stored in the smart meter to achieve
energy theft, since the smart meter’s behavior are
controlled by these data (such as tariffs for TOU
pricing, logs of both physical events and executed
commands, recorded network command). The other
way to tamper stored demand is erasing relevant
records which are audit logs and the recorded
total demand. These records can be accessed by
administrative interfaces that need passwords.
� Modify in network: This attack directly injects

the false data into communication between smart
meters and utility company. The attacker needs
to implement two steps to achieve this sub-goal:
intercept communication and inject traffic. After
successfully intercepting the links between smart
meter and collector, a “man in the middle attack” or
a “meter spoofing attack” can be used to send forged
data and event logs.
Note that, the attack tree shown in Fig. 3 is only

an example to capture the possible attacks launched
by the attackers in AMI. As a general framework, an
attack tree could accommodate more attack sub-tree by
considering more attack strategies of the adversaries
in practice. Recent research on the AMI security
and privacy preservation[21-24] would also benefit the
construction of the attack tree.

4 Techniques for Energy-Theft Detection

Different from other issues in smart grid, energy
theft seems more intractable. This is partly because
it involves human nature and economic considerations
which are difficult to observe and control even by
advanced measurement equipments. The detection and
identification of frauds in power systems has been
initially addressed with statistical techniques[25, 26]. A
variety of solutions to energy theft have been proposed
recently due to the fast development of AMI in smart
grid. In this section, we introduce our taxonomy of
detection technique for energy theft in AMI. According
to the detection strategies used in the literatures, we
classify the exiting AMI energy-theft detection schemes
into three categories, i.e., classification-based, state-
based, and game theory-based ones, as shown in Fig. 4.

4.1 Classification-based detection technique

Among all the detection techniques for energy
theft, classification-based detection technique, which
is defined as the load profile classification of
electricity consumption of a customer or a group
of customers over a period of time, is one of the
most widely used approaches. The basic procedure
for classification-based energy-theft detection consists
of seven parts: data acquisition, data preprocessing,
feature extraction, classifier training and parameter
optimization, classification, data postprocessing, and
suspected customer list generation, as shown in
Fig. 5. The main idea of this technique is to distinguish
abnormal energy usage patterns from all energy usage
patterns based on a testing dataset containing examples
of the normal class and the attack class.

4.1.1 Classification-based schemes
Support Vector Machines (SVM) are widely utilized
in the literatures[27-32] to classify the load profiles of
customers for detection of energy-theft suspects. SVM

Fig. 3 Attack tree for energy theft.
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Energy-theft detection technologies

Classification-based

Support Vector Machines (SVM)[27-32]

Fuzzy classification[33]

Neural network[34]

AutoRegressive Moving Average-Generalized Likelihood Ratio (ARMA-GLR) detector[35]

P2P computing[36, 37]

State-based

Sensor monitoring[38-40]

Physical monitoring[23, 41]

RFID monitoring[42]

Mutual inspection[43]

State estimation-based[44, 45]

Game theory-based[46, 47]

Fig. 4 Classification of energy-theft technique.

Fig. 5 Basic procedure for classification-based energy-theft detection.

was introduced by Vapnik in the late 1960s on the
foundation of statistical learning theory[48, 49]. The
main purpose of the (binary) SVM algorithm used
for classification is to construct an optimal decision
function f .x/ that accurately predicts unseen data into
two classes, and minimizes the classification error using

f .x/ D sgn.g.x// (1)

where g.x/ is the decision boundary between the two
classes. This is achieved by following the method of
Structural Risk Minimization (SRM) principle[49]
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where R is the classification error expectation, t is the
number of training errors, n is the number of training
samples, and � is a confidence measure.

Specifically, Ref. [27] presents a hybrid approach
towards Non-Technical Loss (NTL, most part of which
is energy theft) analysis for electric utilities using

Genetic Algorithm (GA) and SVM. The proposed
approach uses customer load profile information to
expose abnormal behavior that is known to be
highly correlated with NTL activities. GA provides an
increased convergence and globally optimized SVM
hyper-parameters using a combination of random and
prepopulated genomes.

Nagi et al. proposed an SVM-based approach[28]

which uses customer load profile information and
additional attributes to expose abnormal behavior that
is known to be highly correlated with NTL activities. In
order to improve the detection hitrate, they further
present the inclusion of human knowledge and expertise
into the SVM-based Fraud Detection Model (FDM)
with the introduction of a Fuzzy Inference System
(FIS), in the form of fuzzy IF-THEN rules[30].

Depuru et al. developed approximate energy
consumption patterns of several customers based
on customers’ geographical location, load capacity,
and their type[29]. A dataset representing the energy
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consumption patterns of several customers is developed
based on the historical data. In addition, they analyze
the influence of energy theft on the power grid
by comparing the electricity load on the grid with
and without considering NTL in the analysis of
consumption patterns. Then, the input training data
is used to train the SVM model and the electricity
consumption patterns of several customers are tested
whenever needed. At last, this classification is done
based on rules and the customers with suspicious energy
consumption profiles are grouped and prosecuted.

In Ref. [31], a data encoding technique is proposed
to reduce the complexity of the instantaneous energy
consumption data for evaluation. After the encoding
process, the data will be input to an SVM classification
model that classifies customers into three categories:
genuine customers, illegal consumers, and suspicious
customers. Due to the huge amount of customers
and high frequent data collection, how to efficiently
detect the illegal customers from mass data is a big
issue. In order to accelerate the processing speed,
Depuru et al. investigated the possibility and role
of High Performance Computing (HPC) algorithms
in detection of illegal consumers[32]. An encoding
procedure is designed and implemented to simplify
and modify customer energy consumption data for
quicker analysis without compromising the quality
or uniqueness of the data. In addition, in Ref. [50]
they implemented a Neural Network (NN) model and
suggested a hierarchical model for enhanced estimation
of the classification efficiency, if that data is classified
using SVM.

Nizar et al. also investigated the efficiency of the
SVM technique, Extreme Learning Machine (ELM)
and its online sequential ELM (OS-ELM) variant for
identification of abnormal load behavior indicating
energy theft based on a load-profile evaluation[51-53].

Besides the SVM technique, many other
classification methods, such as fuzzy classification[33]

and neural networks[34], are utilized to detect
energy theft. dos Angelos et al. proposed a fuzzy
computational technique for the classification of
electricity consumption profiles[33]. This methodology
is comprised of two steps. In the first step, a C-means-
based fuzzy clustering is performed to find customers
with similar consumption profiles. Afterwards, a fuzzy
classification is performed using a fuzzy membership
matrix and the Euclidean distance to the cluster
centers. At last, the distance measures are normalized

and ordered, yielding a unitary index score. Among
the index scores, the potential fraud or customers with
irregular patterns of consumption can be found with the
highest scores.

Muniz et al. presented an intelligent system, which
intends to increase the level of accuracy in the
identification of irregularities among low tension
customers[34]. The intelligent system is composed
of two neural network ensembles. The proposed
methodology is formed by two basic modules, one
for filtering the database and another for actual
classification of a consumer. Each module is composed
by a committee with five neural networks, where
each network has an output that classifies customers
into two categories: irregular customers and normal
customers. The evaluated model provides very good
performance for low tension customers, greatly
improving current fraud detection rate.

With the development of attack techniques, the
previous work may be evaded by an advanced
attackers. In order to derive a new general way of
evaluating classifiers in such developing adversarial
environments, Mashima and Cárdenas argued that
instead of using a set of attack samples for evaluating
classifiers, they need to find the worst possible attack for
each classifier and evaluate the classifier by considering
the costs of this worst-case attack[35]. A new metric
is introduced to evaluate the classification accuracy of
anomaly detectors. This new metric takes into some
consideration of the fundamental problems in anomaly
detection when applied to security problems: (1) the
fact that attack examples in a dataset might not be
representative of future attacks; (2) in many cases it is
hard to get attack data for academic studies. As a result,
they can avoid training and evaluating classifiers with
imbalanced and unrepresentative datasets. Based on the
threat model and metric, an ARMA-GLR detector is
developed to detect the energy-theft behaviors.

Although some schemes have been proposed for the
utility companies to detect energy theft in AMI, they
all require customers to send their private information,
e.g., load profiles or meter readings at certain times, to
the utility companies, which invades customers’ privacy
and raises serious concerns about privacy, safety, etc. In
order to investigate the energy-theft detection problem
without violating the customers’ privacy, Salinas et
al. proposed three P2P computing algorithms[36, 37],
which can identify the customers who are committing
energy theft in AMI while preserving all customers’
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privacy. In their scheme, the customers can be classified
by solving a Linear System of Equations (LSE) for
customers’ “honesty coefficients” k. The “honesty
coefficients” k can be calculated as follows:

Assume that there are n customer smart meters
and a collector smart meter in the neighborhood
area network; Define a sampling period denoted by
SP; Let energy consumption recorded by customer
j.1 6 j 6 n/ and energy consumption recorded by the
collector at time ti be pti ;j and P ti , respectively; Let
the honesty coefficient be kj for each customer j , where
kj > 0. After every sampling period, all the nC 1 smart
meters will record their energy consumption in the past
sampling period and kj � pti ;j gives the real energy
consumption of customer j from time instant ti � SP
to time instant ti . Since the sum of all customers’
real energy consumption in the past sampling period
must be equal to the total energy consumption of the
neighborhood measured at collector at time ti , we have

k1pti ;1 C k2pti ;2 C � � � C knpti ;n D P ti (3)

The objective is to obtain all the kj . Obviously, (1)
if kj D 1, then customer j is honest and did not
steal energy; (2) if kj > 1, then customer j records
less energy than what he/she consumes and hence is
an energy thief; (3) if 0 < kj < 1, then customer j
records more than what he/she consumes, which means
that his/her smart meter may be malfunctioning. In
particular, with n linear equations, there is an LSE as
follows:8̂<̂
:
k1pt1;1 C k2pt1;2 C � � � C knpt1;n D P t1 I

:::

k1ptn;1 C k2ptn;2 C � � � C knptn;n D P tn

(4)

which can also be formulated in matrix form:

Pk D P (5)

Three P2P computing based algorithms, i.e., LU
decomposition based approach, LUD with partial
pivoting (LUDP) approach, and QR decomposition

approach, are proposed to solve the linear system of
equations presented in Eq. (5) while preserving the
customers’ privacy. Each smart meter can find its own
honesty coefficient without knowing any of the other
smart meters’ recorded energy consumption data. The
customers who commit energy theft can be detected
with honesty coefficient k > 1.
4.1.2 Comparison of classification-based schemes
Table 1 shows the comparison results of classification-
based energy-theft detection schemes. From Table 1, we
can find out that the SVM technique is the most popular
method to classify the customer usage patterns. The
detection rate of most classification-based schemes is
approximately 60%-70% and is not very high. False
positive rate is an important metric which indicates how
many legal customers are classified into illegal ones by
mistake. However, only few schemes such as Ref. [35]
provide the quantitative false positive rate. In addition,
most classification-based schemes need fully access
the customers’ energy consumption data and cannot
protect the customers’ privacy, which may prohibit the
promotion of classification-based energy-theft detection
schemes.

4.2 State-based detection technique

Another common solution for energy-theft detection is
state-based detection technique, which uses monitoring
state to improve the detection rate. The monitoring state
can be derived from wireless sensor networks[38-40, 54],
RFID[42], mutual inspection[43], AMI[55], etc.

Since wireless sensor networks are cheap and
easy to implement[56], they are popular to assist
detecting energy theft. McLaughlin et al. proposed
an AMI Intrusion Detection System (AMIDS) that
uses information fusion to combine the sensors and
consumption data from a smart meter to more
accurately detect energy theft[38, 39]. AMIDS combines
meter audit logs of physical and cyber events with

Table 1 Comparison of classification-based schemes.
Scheme Technique Detection rate (%) False positive (%) Privacy preservation
Ref. [27] Genetic SVM 62 - �

Ref. [28] SVM 60 13.57 �

Ref. [29] SVM 98.4 - �

Ref. [30] SVM and fuzzy inference system 72 13.57 �

Ref. [31] Data encoding and SVM 76-92 - �

Ref. [32] SVM and high performance computing 92 - �

Ref. [33] Fuzzy clustering and classification 74.5 - �

Ref. [34] Neural networks ensembles 24.9-62 - �

Ref. [35] ARMA models 62 4.2 �

Refs. [36, 37] P2P computing 100 - X
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consumption data to more accurately model and detect
theft-related behaviors.

In Ref. [40], the authors pointed out that physical
attack to smart meters can be extended to a network
attack by means of false data injection. They proposed
a CONSUMER attack model that is formulated into
one type of coin change problem, which minimizes the
number of compromised meters without being revealed
by maintaining a cumulative load at the aggregation
point to which multiple households are connected in
today’s radial tree-like distribution network. A hybrid
detection framework is developed to detect anomalous
and malicious activities by incorporating their proposed
grid sensor placement algorithm with observability
analysis to increase the detection rate.

Depuru et al. proposed a conceptual design
for controlling energy theft based on physical
monitoring[23, 41]. The proposed approach is a paradigm
shift from the conventional method of identifying
the illegal consumer, by physical observation of the
distribution feeder or evaluation of load pattern of
all customers. If the computed non-technical losses
are more than 5% of the distributed energy, then the
external control station will send a control signal to the
Internal Control Station (ICS) of smart meter to break
the electric supply to the genuine customers. In this
process, primarily, the genuine customers are identified
and are isolated from the electric grid, leaving the
illegal consumers continue to draw energy from the
grid. Then the harmonic generator is switched on for a
few seconds to destroy the illegal electricity appliances
and is switched off after that period just before the
scheduled power cut for that neighborhood. This
approach can detect the energy-theft behaviours which
bypass the smart meter and destroy illegal electricity
appliances. However, compromised smart meters
cannot be detected and the genuine customers may be
disgruntled due to the energy break in this scheme.

Khoo and Cheng proposed a system that implements
Radio Frequency IDentification (RFID) technology
to help the electricity supply company deal with
its ammeter inventory management and prevent
energy theft[42]. There are two parts in the proposed
system: ammeter inventory management and
ammeter verification control. The ammeter inventory
management includes an RFID tag on each ammeter,
RFID readers, the middleware, and the network with
the Enterprise Resource Planning (ERP) system of the
electricity supply company. The integrity of the RFID

tag can be used to detect energy theft. In addition, the
reader acquires the information transmitted from the tag
and sends it to the company’s ERP system through the
network to determine whether it is the approved tag or
a different one placed by electricity thieves. Although
the RFID technology can be used to detect energy theft,
the utility companies have to pay extra cost to install
the system. In order to find out whether implementing
RFID technology is beneficial for the utility company,
cost-benefit theory is used to analyse different value
changes caused by the proposed system. In the case
study, the Return On Investment (ROI) of the proposed
system is 1.24 and the value of the total cost-benefit is
approximately $ 14 444.

Xiao et al. argued that meter readings may not
be trustworthy due to malicious behaviors (e.g.,
energy theft) or external attacks[43]. The root cause
is that power providers have no means to obtain the
reading value other than receiving it from the energy
customers. To solve this issue, they presented a mutual
inspection strategy, which enables non-repudiation on
meter readings for smart grid. The goal of the proposed
scheme is to discover problematic meters that report
inaccurate reading values. There are only two roles
in this scheme: smart meter MP (representing the
provider reading) and smart meter MS (representing
the subscriber reading). The power provider and the
subscriber do not trust each other because the smart
meters may be compromised or attacked. They designed
a protocol to ensure that if the actual bill difference
between two smart meters MP and MS exceeds
threshold b0, the trust relationship will break, and the
service will be terminated immediately.

Bad data injection is one of most dangerous attacks
in smart grid, as it may lead to energy theft and
cause breakdown on the power generation. In Ref. [44],
a state estimation based approach for distribution
transformer load estimation is exploited to detect
meter malfunction/tampering and provide quantitative
evidences of Non-Technical Loss (NTL). The basic
flow diagram of the proposed method is shown in
Fig. 6. Following the state estimation results, an
analysis of variance is used to create a suspect list
of customers with metering problems and estimate the
actual energy usage.

In order to detect more bad data injection and
locate the bad data within a smaller area, an Adaptive
Partitioning State Estimation (APSE) is proposed[45]. In
this method, the power system is transformed to a
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Fig. 6 Basic flow diagram of the proposed method in Ref. [44].

weighted undirected graph and divided into several
subgraphs. Chi-squares test is used to detect bad data
in each subgraphs. Since the threshold of subgraph is
expected to be lower than that of the entire system,
it will be more sensitive to detect the bad data. The
APSE method is based on the proper partitioning graphs
and can only detect the bad data on one transmission
line. The method to detect multiple bad data should be
studied.

4.3 Game theory-based detection technique

Game theory-based energy-theft detection schemes are
proposed recently and provide a new perspective to
solve the energy-theft issue[46, 47].

In Ref. [46], Amin et al. investigated incentive
problems in electricity distribution when customer
energy usage is imperfectly observable by the
distributor. From the perspective of privacy protection,
each customer has private information about the amount
of his consumed electricity, and therefore distributor
cannot observe customers’ energy usage precisely,
which results in non-technical energy losses, especially
by energy theft. Although installing AMI can reduce
such losses to a large extent, it requires substantial
cost for distributor. Therefore, the authors presented
the optimal investment and tariff strategy for distributor
with rational customers from a game theory point
of view. They also aimed to provide an effective

suggestion to regulator how to decide an explicit targets
for the allowable losses to remedy the problem of
incentive misalignment.

Specifically, Amin et al.[46] modeled the energy
theft and combat losses as a non-zero sum Stakelberg
game with unregulated distributor, where the distributor
acts as leader and the customers act as follower. The
distributor can deploy AMIs to improve the monitoring
and billing efficiency and thus reduce the total quantity
non-technical losses due to theft. The efficiency
of detecting stolen electricity increases with the
corresponding investment of AMIs e. In addition,
the electricity offers a non-linear tariff schedule T

and selects output level Q. Customers, given the
strategy of the distributor and the fine schedule for
detected unbilled electricity, choose their consumption
levels of billed and unbilled quantities to maximize
their individual utility. The distributor, given the
consumers’ rational strategy, must select optimal e�,
T �, and Q� to maximize his profit. Based on these
results, they further analyze a form of price cap
regulation in which distributor faces an average revenue
constraint. They conclude that such regulation can
stimulate the total output level Q and AMI investment
level e while maintaining the same marginal price
schedule corresponding to the optimal tariff T .

Even through the optimal quantity of stolen
electricity can be estimated by distributor, smart
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customers are also possible to avoid detection using
sophisticated strategies. Cárdenas et al.[47] formulated
the problem of electricity theft detection as a game
between the distributor and the electricity thief. For the
electricity thief, they want to minimize the likehood
of being detected to steal a predefined quantity of
electricity. They can achieve it by changing their
probability density function of electricity usage during
the measurement period. On the other hand, the
distributor wants to maximize the probability of energy-
theft detection and determine the optimal investment
incurred by AMIs installation. The Nash equilibrium of
the game is found as a probability density function that
attackers and defenders must choose in order to send
AMI measurements.

In a word, although game theory-based detection
technique is not mature yet, it provides a new
perspective to recognize and address the energy theft.

4.4 Comparison

Thanks to the development of AMI, more and more
technologies can be used to detect the energy theft. In
this section, we present the comparison of the three
categories of energy-theft detection schemes. The
comparison result is shown in Table 2 from the point
of view of methodology, detection rate, false positive,
and cost.

Specifically, these energy-theft detection techniques
have their own unique features:
� The classification-based detection schemes take

advantage of the energy consumption data frequently
collected from the AMI. Machine learning and
data mining technologies are used to generate a
good classifier based on some sample datasets. If
the classifier and sample datasets are selected
appropriately, most of the energy-theft behaviours
can be detected with moderate cost. However, due
to the zero-day attacks, there are many practical
situations where we cannot obtain example of the
attack class in advance. In addition, most schemes
assume that the attackers are not adaptive and will not
try to evade the detection mechanism, which results
in missing some intelligent energy-theft. As a result,
the detection rate can be affected dramatically in
this case. To address this issue with the automated

techniques, more frequent manual inspections by the
power system engineers are needed to ensure that the
learned profiles reflect the reality precisely.
� With the help of specific devices, the state-based

detection schemes can improve the detection
rate and reduce the false positive. The price
which these schemes have to pay is that the
monitoring devices need extra investment by the
utility companies. The major cost of implementing
the monitoring system includes device cost,
software cost, system implementation cost, and
increased operating/training cost. In addition,
accurate detection of energy-theft efforts requires
precise construction of the monitoring system and
estimation of the involved parameter value. The
system construction and parameter selection can be
done either manually by the expert or automatically
by the machine learning solutions. The drawbacks
and advantages of both of those solutions should be
considered.
� The game theory-based detection schemes provide

a new perspective to solve the energy-theft. The
problem of electricity theft detection is formulated
as a game between the electric utility and the
electricity thief. In the game, the goal of the
electricity thief is to steal a predefined amount
of electricity while minimizing the likelihood of
being detected, while the utility companies want to
maximize the probability of detection and the degree
of operational cost it will incur for managing this
anomaly detection mechanism. The game theory-
based detection schemes may present a stable
and reasonable (even if not optimal) solution to
reduce the electricity losses as a result of energy
theft. However, how to formulate all players’
(regulator, distributor, and thieves) utility function
and potential strategies is still a challenging work.

5 Challenges and Future Directions

5.1 Challenges

5.1.1 Privacy issue
In most current works, the utility companies have to
obtain some of customers’ private information such as

Table 2 Comparison of energy detection schemes.
Scheme Methodology Detection rate False positive Cost

Classification-based Machine learning/Artificial intelligence Medium Medium Medium
State-based State monitoring by specific equipment High Low High

Game theory-based Game theory Medium Medium Low
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customers’ load profiles or meter readings periodically
in order to find the energy thieves. However, the
disclosure of such information would violate
customers’ privacy and raise concerns about
privacy. Customers worry about their private
information to be referred from the frequently
collected monitoring information. In particular,
customers’ private information may be sold to the
interested third-parties, such as insurance companies
and marketing companies. Even worse, criminals
may utilize such private information to commit
crimes. For instance, robbers may analyze the energy
consumption pattern of potential victims to deduce
their daily behavior. They can even know whether
there is anyone in the house or if a robbery alarm has
been set at their target location. Many researchers have
realized how high resolution electricity consumption
information can be used to reconstruct many intimate
details of a customer’s daily life and invade his/her
privacy, and thus call for state legislators and public
utility commissions to address this new privacy
threat. Therefore, energy-theft detection and customers’
privacy seem to be two conflicting problems. How to
detect energy theft while preserving customers’ privacy
is a challenging issue. Unfortunately, there is a lack of
research on privacy-preserving energy-theft detection
in AMI currently.

5.1.2 Secure data collection
Current energy network hardware in un-controlled
environments relies on physical security for protections.
However, such mechanisms are not sufficient if
smart meters are connected to open communication
networks. Therefore, additional protection mechanisms
are necessary. As software solutions are in principle
vulnerable to active attacks, worms, viruses, etc.,
hardware security mechanisms in AMI should be
considered[57].

5.1.3 Data storage and processing cost
Due to the frequent collection and the huge amount
of customers, the scale of metering data becomes
bigger and bigger. The metering data in smart grid are
surging from 10 780 TB in 2010 to over 75 200 TB in
2015[58], which is far beyond the control center’s data
management capability. How to efficiently storage and
process the massive metering data is also a challenging
issue.

5.2 Future directions

5.2.1 Privacy preservation
Privacy issue is one of the most important concerns
which prohibit the development of AMI. Failure to
address privacy issue in the AMI will cause the AMI
not be accepted by regulators and customers. Designing
an energy-theft detection scheme without violating the
privacy of customers is very meaningful. Privacy
issue in AMI may be addressed by adopting
newly anonymous communication technologies
and cryptographic algorithm such as homomorphic
encryption. Current approaches to anonymize traffic
in general networks will cause overhead problems
or delay issues. How to improve the efficiency of
anonymous communication is a research direction.

5.2.2 Trusted computing
Trusted Computing (TC)[59] can offer a hardware root
of trust providing certain security functionalities for
smart meters. Trusted computing is defined by Trusted
Computing Group (TCG) which aims to provide
trust to the computing environment. Trust means that
components of the system always work as implemented.
Any mismatch of the configuration can be detected
promptly by the Trusted Platform Module (TPM),
which is mostly realized as a hardware chip hard-
wired to the computer platform. The TCG defines
three different roots of trust: The Core Root of
Trust for Measurement (CRTM), the Root of Trust for
Reporting (RTR), and the Root of Trust for Storage
(RTS). The AMI development can benefit a lot from
trusted computing technologies in various ways. The
most obvious application of trusted computing in the
AMI is to protect smart meters installed in physically
insecure environments from manipulation.

5.2.3 Cloud computing and big data
Outsourcing data to cloud servers is a promising
approach to relieve the control center in AMI from
the burden of a large amount of data storage and
maintenance. In this approach, energy customers
can store their energy consumption data on cloud
servers and execute computation and queries using the
servers’ computational capabilities[60]. Nevertheless,
cloud servers might be untrustworthy, and may
intentionally share sensitive data with the third
parties for commercial purposes. Therefore, data
confidentiality is important in financial audit for AMI
in smart grid in cloud computing environment[61].
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In general, utility companies can gather more data
from many devices and they can leverage big data
analytics by cloud computing to obtain better situational
awareness of the health of their system. How to
effectively leverage the cloud computing techniques to
assist the energy-theft detection is a research direction.

6 Conclusions

Energy-theft detection is a classic and difficult problem
in power grid. With the development of advanced
metering infrastructure in smart grid, more complicated
situation in energy theft has emerged and many new
technologies are adopted to try to solve this problem. In
this paper, we have investigated the system model and
security requirements of AMI in smart grid and present
an attack tree based threat model for AMI. We further
categorize the energy-theft detection schemes in AMI
and introduce the main idea of each individual scheme.
Finally, we discuss the challenging issues in energy-
theft detection and provide some research directions. In
the future, the smart grid requires more accurate and
efficient energy-theft detection designed specifically for
advanced metering infrastructure, making energy-theft
detection a very fruitful and challenging research area.
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