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Abstract—In two-way relay channels, two terminal nodes
exchange information with the help of a relay node. Design-
ing practical coding schemes for such channels is challenging,
especially when messages are encoded into multiple streams and
a destination node receives signals from multiple nodes. In this
paper, we prove an achievable region for half-duplex three-phase
two-way relay channels. Furthermore, we propose low-density
parity-check (LDPC) codes for such channels where two source
codewords are encoded by systematic LDPC codes at the relay
node. To analyze the performance of the codes, discretized density
evolution is derived for the joint decoder at terminal nodes.
Based on the discretized density evolution, degree distributions
are optimized by iterative linear programming in 3 steps. The
length of the obtained optimized codes is 26% longer than the
theoretic one.

Index Terms—Low-density parity-check (LDPC) codes, two-
way relay channel, density evolution.

I. INTRODUCTION

IN wireless networks, it has always been a challenge to sat-
isfy high traffic throughput demand. Besides limited power

and spectrum resources, interference is also a factor that limits
the throughput due to shared medium. In the past decades,
various techniques, such as cooperative communications [1],
have been developed to achieve higher communication rates.

A typical example of cooperative communications is the
communication through relay channels [2] where the source
node transmits information to the destination node with the
help of a relay node. Although the exact capacity of the
relay channel is still unknown, two different relay schemes,
known as decode-and-forward and compress-and-forward [2],
have been developed. In general, when the source-relay link
is reliable, the decode-and-forward scheme is a better choice
since noise can be fully eliminated.

A natural extension of the one-way relay channel is the two-
way case where two terminal nodes exchange information with
the help of a relay node. Some fundamental bounds [3], [4],
[5] for two-way relay channels have been proposed by several
research groups. In [3], an achievable region of the decode-
and-forward scheme based on block Markov superposition
coding and an achievable region of the compress-and-forward
scheme based on Wyner-Ziv coding for full-duplex two-way
relay channels were proposed. In [4], another achievable
region for full-duplex two-way relay channels was proved by
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random binning. In [5], the capacity region of the broadcast
phase of the two-way relay channels was determined when
destination nodes use side information for decoding.

Besides the research on fundamental bounds, various prac-
tical coding schemes have also been proposed for relay
channels. Constructing codes for such channels is challenging,
especially when messages are encoded into multiple streams
and a destination node receives signals from multiple node.
Low-density parity-check (LDPC) codes were proposed for
one-way relay channels in [6], [7], [8]. In [6], LDPC codes
were proposed for one-way relay channels where codes within
1.2 dB of the theoretical limit were found. Furthermore, LDPC
codes employing random puncturing were applied to fading
relay channels in [7]. In order to improve the performance of
one-way relay channels, bilayer LDPC codes were designed
based on the bilayer density evolution in [8].

In half-duplex two-phase two-way relay channels, the relay
node receives superimposed signals from the two source
nodes. Considering this unique property, various coding
schemes, such as physical-layer network coding [9], repeat-
accumulate codes [10], lattice codes [11] and LDPC codes
[12], [13], have been proposed recently.

In this paper, we focus on half-duplex three-phase two-way
relay channels. Half-duplex is a practical assumption since
it is generally difficult for a node to detect weak received
signals when they are mingled with its own strong transmitting
signals. Compared with two-phase two-way relay channels,
signals from the source node can be utilized for decoding at
the destination node. In addition, decoding at the relay node is
simpler since no superimposed signals are involved. However,
to the best of our knowledge, only a few practical coding
schemes [14], [15] have been proposed for three-phase two-
way relay channels.

In this paper, we propose LDPC codes for half-duplex three-
phase two-way relay channels, first appeared in [16]. LDPC
codes are good candidates since they can approach the channel
capacities of point-to-point channels. More importantly, they
have a comprehensive set of design tools along with their
flexible code constructions.

The main contributions of this paper are four-fold. First, we
prove an achievable region for half-duplex three-phase two-
way relay channels. Second, inspired by the random coding,
we propose a code construction which is composed of two
irregular LDPC codes at terminal nodes and a systematic
LDPC code at the relay node. Note that the relay codeword
can be generated by simply adding the two source codewords
in GF(2). However, simple addition is not optimal if links
between the source node and the relay node are asymmetric
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since equal amount of information from the two codewords is
included in the relay codeword. Encoding by systematic LDPC
codes at the relay node can be thought as parity forwarding or
random binning on multiple sources. This code construction is
similar to that of non-systematic low-density generator matrix
(LDGM) codes [17], or Luby transform (LT) codes (a class
of rateless code) [18], which were originally proposed for
point-to-point channels. Third, to analyze the performance
of the codes, we employ discretized density evolution for
the proposed decoder, where the relationships between the
constituent codes are derived. Last, based on the discretized
density evolution, we propose a 3-step degree distribution
optimization based on iterative linear programming. We show
that the length of the obtained optimized codes is only 26%
longer than the theoretic one.

This paper is organized as follows. We begin with an
introduction of the system model and a proof of an achievable
rate region for half-duplex three-phase two-way relay channels
in Section II. In Section III, LDPC code constructions and
the corresponding message-passing decoding algorithms are
proposed. In Section IV, discretized density evolution is
derived to analyze the codes. We introduce an iterative linear
programming algorithm for code optimization in Section V.
An optimized degree distribution is reported and decoding
simulation results are included in Section VI. Finally, we
conclude this paper in Section VII.

II. SYSTEM MODEL AND AN ACHIEVABLE RATE REGION

A. System Model

In two-way relay channels, two terminal nodes communi-
cate with each other with the help of a relay node. We consider
the case when signals from the source node can be utilized for
decoding at the destination node. In this case, the transmission
over half-duplex two-way relay channels can be modeled as a
three-phase transmission. We label the two terminal nodes as
node 1 and node 2, respectively, and label the relay node as
node 3. In phase 1, node 1 encodes its message and broadcasts
the codeword. Both node 2 and node 3 can receive signals.
In phase 2, node 2 encodes its message and broadcasts the
codeword. Both node 1 and node 3 can receive signals. The
relay node can decode the messages of node 1 and node 2
at the end of phase 1 and phase 2, respectively. In phase 3,
node 3 encodes the two source codewords to a relay codeword
and broadcasts the relay codeword. Both node 1 and node 2
can receive signals. At the end of phase 3, node 1 can jointly
decode the message of node 2 from signals received from
node 2 in phase 2, signals received from node 3 in phase 3
and its own codeword. Similarly, node 2 can jointly decode
the message of node 1. The three phase model is shown in
Figure 1.

B. An achievable rate region of half-duplex three-phase two-
way relay channels

In this section, we prove an achievable rate region of
half-duplex three-phase two-way relay channels. Note that an
achievable rate region for full-duplex two-way relay channels
was given in [4].

Fig. 1. Three phases in half-duplex two-way relay channels.

The two-way relay channel consists of source input alphabet
sets X1, X2, X3, channel output alphabet sets Y1, Y2, Y3 and
a set of distributions p(y1, y2, y3|x1, x2, x3). Considering time
division, distributions during phase 1, phase 2 and phase 3 are
p(y2, y3|x1), p(y1, y3|x2) and p(y1, y2|x3), respectively.

Assume the lengths of codewords in the three phases are
n1, n2 and n3, respectively, and n =

∑3
i=1 ni. Set α = n1

n ,
β = n2

n and γ = n3

n .
A ((2nR1 , 2nR2), n1, n2) code for the half duplex three-

phase two-way relay channel consists of two sets of integers
W1 = {1, 2, · · · , 2nR1} and W2 = {1, 2, · · · , 2nR2}, three
encoding functions X1 : W1 → Xn1

1 , X2 : W2 → Xn2
2 and

X3 : W1 ×W2 → Xn3
3 , and four decoding functions Yn1

3 →
W1, Yn2

3 → W2, Yn1
2 × Yn3

2 → W1, and Yn2
1 × Yn3

1 → W2.

Theorem 1. For discrete memoryless half-duplex three-phase
two-way relay channels, all rate pairs (R1, R2) satisfying

R1 < min {αI(X1;Y3), γI(X3;Y2) + αI(X1;Y2)} (1)

and

R2 < min {βI(X2;Y3), γI(X3;Y1) + βI(X2;Y1)} (2)

are achievable for some p(x1)p(x2)p(x3) where α+β+γ = 1.

Proof: Codebook generation: Generate 2nR1 codewords
x1 = xn1

1 according to
∏n1

i=1 p(x1) and index them as x1(w1),
w1 ∈ {1, 2, · · · , 2nR1}. Generate 2nR2 codewords x2 = xn2

2

according to
∏n2

i=1 p(x2) and index them as x2(w2), w2 ∈
{1, 2, · · · , 2nR2}. Generate 2n(R1+R2) codewords x3 = xn3

3

according to
∏n3

i=1 p(x3) and index them as x3(w1, w2), w1 ∈
{1, 2, · · · , 2nR1}, w2 ∈ {1, 2, · · · , 2nR2}.

Encoding: In phase 1, to send index w1, node 1 sends
x1(w1). In phase 2, to send w2, node 2 sends x2(w2). In
phase 3, node 3 sends x3(ŵ1, ŵ2) after decoding w1 and w2

(See the decoding part).
Decoding: Denote yi,j as the channel output at node i

in phase j. At the end of phase 1, node 3 decodes w1 by
finding the unique ŵ1 that satisfies the joint typicality check
(x1(ŵ1), y3,1) ∈ A

(n1)
ε (X1, Y3) where A

(n1)
ε (X1, Y3) is the

set of joint typical sequences of X1 and Y3. If there is no
such or more than one such ŵ1, an error is declared. Similarly,
at the end of phase 2, node 3 decodes w2 by finding the
unique ŵ2 that satisfies (x2(ŵ2), y3,2) ∈ A

(n2)
ε (X2, Y3). If

there is no such or more than one such ŵ2, an error is
declared. At the end of phase 3, node 1 decodes w2 by finding
the unique ŵ2 that satisfies (x2(ŵ2), y1,2) ∈ A

(n2)
ε (X2, Y1)

and (x3(w1, ŵ2), y1,3) ∈ A
(n3)
ε (X3, Y1). Node 2 decodes

w1 by finding the unique ŵ1 that satisfies (x1(ŵ1), y2,1) ∈
A

(n1)
ε (X1, Y2) and (x3(ŵ1, w2), y2,3) ∈ A

(n3)
ε (X3, Y2).

Analysis of the probability of error: When node 1 sends
x1(w1), the probability that independent x1 and y3,1 are
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jointly typical is upper bounded by 2−n1(I(X1;Y3)−3ε). There
are totally 2nR1 − 1 such x1. With the union bound, the
probability of error at node 3 is upper bounded by (2nR1 −
1)2−n1(I(X1;Y3)−3ε), which approaches zero when n1 → ∞
and R1 < αI(X1;Y3) (from nR1 − n1I(X1;Y3) < 0 and
α = n1

n ). Similarly, we need R2 < βI(X2;Y3) for node 3 to
decode x2.

When node 2 sends x2(w2), the probability that inde-
pendent x2 and y1,2 are jointly typical is upper bounded
by 2−n2(I(X2;Y1)−3ε). When node 3 sends x3(ŵ1, ŵ2), the
probability that independent x3 and y1,3 are jointly typical
is upper bounded by 2−n3(I(X3;Y1)−3ε). There are totally
2nR2 − 1 such w2 when node 1 knows w1. With the union
bound, the probability of the event that any independent x2
and y1,2 are jointly typical and any independent x3 and y1,3

are jointly typical at node 1 is upper bounded by (2nR2 −
1)2−n2(I(X2;Y1)−3ε)2−n3(I(X3;Y1)−3ε), which approaches zero
when n2 → ∞, n3 → ∞ and R2 < βI(X2;Y1)+γI(X3;Y1)
(from nR2 − n2I(X2;Y1) − n3I(X3;Y1) < 0, β = n2

n and
γ = n3

n ). Similarly, R1 < αI(X1;Y2)+γI(X3;Y2) is required
for node 2 to decode w1.

For Gaussian half-duplex three-phase two-way relay chan-
nels, they can be modeled as follows. In phase 1, Y3,1 =
X1+Z3,1 and Y2,1 = X1+Z2,1. In phase 2, Y3,2 = X2+Z3,2

and Y1,2 = X2 + Z1,2. In phase 3, Y1,3 = X3 + Z1,3 and
Y2,3 = X3 + Z2,3. Zi,j is a Gaussian distributed random
variable with mean zero and variance σ2

i,j . When binary phase-
shift keying (BPSK) is considered, the codeword bit is mapped
from {0, 1} to {1,−1}. The signal X1 = (X1,1, · · · , X1,n1)
has a power constraint 1

n1

∑n1

i=1 X
2
1,i ≤ P1. Similarly, X2

and X3 have power constraints 1
n2

∑n2

i=1 X
2
2,i ≤ P2 and

1
n3

∑n3

i=1 X
2
3,i ≤ P3.

For Gaussian half-duplex three-phase two-way relay chan-
nels, all rate pairs (R1, R2) satisfying

R1 < min

(
1

2
α log2

(
1 +

P1

N3,1

)
,

1

2
α log2

(
1 +

P1

N2,1

)
+

1

2
γ log2

(
1 +

P3

N2,3

))
(3)

and

R2 < min

(
1

2
β log2

(
1 +

P2

N3,2

)
,

1

2
β log2

(
1 +

P2

N1,2

)
+

1

2
γ log2

(
1 +

P3

N1,3

))
(4)

are achievable where Ni,j = σ2
i,j and α + β + γ = 1. Note

that (3) and (4) can be easily derived from (1) and (2).
In Figure 2, the achievable rate R1 is plotted when α =

β = γ = 1
3 and P1

N3,1
= 1. The x-axis and y-axis are signal-to-

noise ratios (SNRs) P1

N2,1
and P3

N2,3
, respectively. The z-axis is

the achievable rate R1. The flat area is the area where R1 is
limited by the SNR of the source-relay link, while the slope
area is the area where R1 is limited by SNRs of the source-
destination link and the relay-destination link.

In Figure 3, the achievable rate R1 is plotted when α =
β = γ = 1

3 and P1

N2,1
= P3

N2,3
. The x-axis and y-axis are SNRs

P1

N3,1
and P1

N2,1

(
P3

N2,3

)
. The z-axis is the achievable rate R1.

The left slope area is the area where R1 is limited by the SNR
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of the source-relay link, while the right slope area is the area
where R1 is limited by SNRs of the source-destination link
and the relay-destination link.

III. CODE CONSTRUCTIONS AND MESSAGE-PASSING

DECODING ALGORITHMS

A. LDPC code constructions and their graph representations

In this section, we propose LDPC code constructions for
half-duplex three-phase two-way relay channels and show
their graph representations.

At terminal node i for i = 1, 2, the node encodes a ki-bit
message into an ni-bit codeword. The codeword is broadcast
to the relay node and the other terminal node. Under the
decode-and-forward scheme, the relay node can decode the
message while the other terminal node cannot decode without
the help of the relay node. Intuitively, with additional bits from
the relay node, the effective code rate is reduced.

At the relay node, two codewords c1 and c2 from terminal
nodes are concatenated as a source message c = [c1c2]. The
lengths of c1, c2 and c are n1, n2 and n1+n2, respectively. An
n3-bit relay codeword r is generated by a systematic LDPC
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Fig. 4. The graph of the systematic LDPC code at the relay node.

Fig. 5. The equivalent graph of the systematic LDPC code at the relay node.

code where r = cG and G is a generator matrix with the
size (n1 + n2) × n3. These bits are also called relay bits,
which are broadcast to both terminal nodes while c is not sent.
Here, 2n1+n2 codeword pairs are mapped to 2n3 codewords.
Since n3 is in general less than n1 + n2, multiple codeword
pairs are mapped to a relay codeword. This code construction
is similar to those of non-systematic LDGM codes [17] and
LT codes [18]. LDGM codes were initially proposed as an
alternative to LDPC codes. In these codes, check bits c are
generated from source bits s by c = sG. For systematic LDGM
codes, both source bits and check bits are sent to a destination
node. For non-systematic LDGM codes, only check bits are
sent. LDGM codes were proposed for channels with known
channel parameters and their code rates are fixed. LT codes
are the first practical rateless codes, whose idea was originally
from Fountain codes [19]. They can be considered as non-
systematic LDGM codes, though check bits are continuously
generated until a receiver can recover the source message.

In general, any linear code can be represented by a Tanner
graph [20]. The graph of the systematic LDPC code at the
relay node is shown in Figure 4. Circles are variable nodes and
squares are check nodes. The n3 upper layer variable nodes
(in black) represent the relay bits. The lower layer n1variable
nodes (in white) and n2 variable nodes (in grey) represent two
source codewords from terminal nodes. Check nodes represent
parity check constraints among these bits.

Note that the above graph is a bipartite graph. The n3 upper-
layer variable nodes can be moved to the lower layer, as shown
in Figure 5. The total number of variable nodes is n1+n2+n3.
The first two groups of variable nodes represent codewords of
two terminal nodes, which are called Group 1 variable nodes
and Group 2 variable nodes, respectively. The n3 right-most
variable nodes represent relay bits, which are called Group 3
variable nodes.

At the terminal node, messages are decoded based on
three pieces of information: received signals from the source
terminal node, received signals from the relay node, and the
codeword of the destination node. The graph for decoding
is shown in Figure 6. Compared to Figure 5, two groups
of check nodes are added to the lower layer. These check

Fig. 6. The graph for decoding at terminal nodes.

nodes represent parity check constraints of LDPC codes at
the terminal node, which are called Group 1 check nodes
and Group 2 check nodes, respectively. The upper layer check
nodes are called Group 3 check nodes.

Group 3 check nodes in Figure 6 can also be moved to
the lower layer. In this sense, the decoding algorithm at the
terminal node could be similar to those for point-to-point
channels.

B. Message-passing algorithms

In this section, we propose message-passing algorithms for
decoders in half-duplex three-phase two-way relay channels.
In such channels, decoding happens at all three nodes. Since
any existing decoding algorithms for point-to-point channels
can be used at the relay node, the details are omitted here. In
the sequel, we only focus on the message-passing algorithm at
destination nodes. Especially, only decoding functions at node
1 are derived since decoding functions at node 2 are similar.

With the help of the graph in Figure 6, the message-passing
algorithm can be easily described. The received bit can be
represented in an LLR form

log
p(xj = 1|yi,j)
p(xj = −1|yi,j) =

2yi,j
σ2
i,j

(5)

for i, j = 1, 2, 3. Variable nodes and check nodes are associ-
ated with decoding functions. Messages flow between variable
nodes and check nodes via edges, serving as inputs or outputs
of the functions. The algorithm adopts an iterative decoding
method by passing messages multiple times between variable
nodes and check nodes. In variable nodes, functions are in
the form of summation. In check nodes, functions are in the
form of 2 tanh−1(

∏
tanh). In general, a message passing

schedule is required during the iterative decoding. In this work,
a flooding schedule is used. In this schedule, all messages
from variable nodes are passed to check nodes along all edges,
and all output messages from check nodes are passed back to
variables nodes thereafter to complete one decoding iteration.

Let vli be a message from a Group i variable node to a Group
i check node in the l-th decoding iteration for i = 1, 2. Let ul

i

be a message from a Group i check node to a Group i variable
node in the l-th decoding iteration for i = 1, 2. Let vli,3 be
a message from a Group i variable node to a Group 3 check
node in the l-th decoding iteration for i = 1, 2, 3. Let ul

3,i be a
message from a Group 3 check node to a Group i variable node
in the l-th decoding iteration for i = 1, 2, 3. For a variable
node, a lower/upper variable node degree is defined as the
total number of edges connected to a lower/upper layer check
node. An upper/lower-degree-i variable node is a variable node
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with i upper/lower edges. An upper/lower-degree-i variable
node edge is an edge connected to an upper/lower-degree-i
variable node. Let di be a lower degree of a Group i variable
node for i = 1, 2. Let d3,i be an upper degree of a Group i
variable node for i = 1, 2, 3. Let gi be a degree of a Group
i check node for i = 1, 2. For a Group 3 check node, it has
three degrees. Let g3,i be a degree of a Group 3 check node
which is the total number of edges connecting to a Group i
variable node for i = 1, 2, 3. Let u0,i be a channel output LLR
associated with a Group i variable node for i = 1, 2, 3.

The functions used for decoding messages of terminal node
2 at terminal node 1 are

vl2 =

d2−1∑
i=1

ul−1
2,i +

d3,2∑
j=1

ul−1
3,2,j + u0,2, (6)

vl1,3 = u0,1, (7)

vl2,3 =

d2∑
i=1

ul−1
2,i +

d3,2−1∑
j=1

ul−1
3,2,j + u0,2, (8)

vl3,3 = u0,3, (9)

ul
3,2 = 2 tanh−1

[g3,1∏
i=1

tanh

(
vl1,3,i
2

)

g3,2−1∏
j=1

tanh

(
vl2,3,j
2

)
tanh

(
vl3,3
2

)⎤⎦ , (10)

ul
2 = 2 tanh−1

[
g2−1∏
i=1

tanh

(
vl2,i
2

)]
. (11)

The function in Group 1 variable nodes is shown in (7).
Since terminal node 1 knows its own codeword, intrinsic
values of Group 1 variable nodes are +∞ or −∞. Hence, no
matter what messages are received from check nodes, Group 1
variable nodes always send u0,1 (+∞ or −∞) to upper check
nodes. The function in Group 3 variable nodes is shown in
(9). Group 3 variable nodes only send u0,3 since the degree
of Group 3 variable nodes is 1. Functions in Group 2 variable
nodes are shown in (6) and (8). Group 2 variable nodes receive
messages ul−1

3,2,j and ul−1
2,i from upper layer check nodes and

lower layer check nodes, respectively. These messages are
added together with the channel output LLR u0,2 =

2y1,2

σ2
1,2

.

The output vl2,3 is sent to a Group 3 check node in the upper
layer. The output vl2 is sent to a Group 2 check node in the
lower layer. The function in Group 3 check nodes at the upper
layer is shown in (10). For upper layer check nodes, they only
send the output message ul

3,2 to a Group 2 variable node. The
function in Group 2 check nodes at the lower layer is shown
in (11). The output ul

2 is sent to a Group 2 variable node.

IV. DISCRETIZED DENSITY EVOLUTION

In this section, density evolution [21] is used as a tool to
analyze codes in message-passing algorithms for half-duplex
three-phase two-way relay channels.

First, we formally define an ensemble of codes via graph in
half-duplex three-phase two-way relay channels. The ensemble
is a sequence of codes with the same variable node degree
distributions and check node degree distributions.

For systematic LDPC codes at the relay node, we define
one variable node degree distribution and two check node
degree distributions. These degree distributions are defined
from node perspective. Since the relay node only forwards
partial information of the source codeword, we allow degree
0 as an upper degree of a variable node. The upper-degree-0
variable node does not connect to any upper layer check nodes.
Denote λ3 as the variable node degree distribution. λ3,i,j is the
fraction of the total number of upper-degree-j variable nodes
in Group i variable nodes to the total number of all 3 groups
of variable nodes.

∑
i,j λ3,i,j = 1. Denote ρ3,1 and ρ3,2 as

the two check node degree distributions. ρ3,i,j is the fraction
of the total number of upper layer check nodes with degree
d3,i = j to the total number of all upper layer check nodes.∑

j ρ3,i,j = 1 for i = 1, 2.
The ensemble of codes is defined based on four permuta-

tions. πi is a permutation for codes at terminal node i for
i = 1, 2. π3 and π4 are permutations for the code at the relay
node. The definitions of π1 and π2 are the same as those
in point-to-point channels. Here, we only define π3 and π4.
Assign some sockets to every Group i variable node according
to the degree distribution λ3,i for i = 1, 2. The sockets on
Group i variable nodes are called Group i variable node
sockets. Assign two groups of sockets to every upper layer
check node according to degree distributions ρ3,1 and ρ3,2.
We call them Group i check node sockets for i = 1, 2. Edges
connecting to Group i check node sockets are connected to
Group i variable nodes. Two groups of variable node sockets
and two groups of check node sockets are labeled separately
with positive integers starting from 1. Group 1 and Group 2
check node socket labels are permuted by π3 and π4. Edges
are identified by pairs of sockets, which are denoted as (i,
π3(i)) and (j, π4(j)), where i or j is a Group 1 or Group 2
variable node socket, π3(i) or π4(j) is a check node socket in
the two groups of check node sockets, respectively. A code is
an element in the permutation space π1 × π2 × π3 × π4. All
codes in the permutation space are equiprobable.

Density evolution tracks the probability density function of
LLR messages. Messages on each edge can be represented
by a random variable. The output messages of a check node
function and a variable node function can be represented by
functions of random variables. If threshold decoding (A bit is
decoded as 0 if the message is greater than or equal to zero
and decoded as 1 if the message is less than 0) is used, the
probability of error is simply the integral of the probability
density function from −∞ to 0.

In discretized density evolution, probability density func-
tions are approximated by probability mass functions. Recall
that the function of the variable node is a sum of independent
random variables, e.g. (6) and (8). The probability mass
function of the sum of two independent discrete random
variables can be calculated by convolving the probability mass
functions of the two random variables by circular discrete
convolution. Furthermore, in order to speed up the calculation,
the circular discrete convolution can be calculated by discrete
Fourier transform and the inverse discrete Fourier transform.

For a variable node with an upper degree i and a lower
degree j, denote the probability mass function of input mes-
sages on the upper edge and the lower edge as Pi and
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Pj , respectively. The probability mass function of the output
messages on upper edges is

P l
v = P0 ∗ {⊗i−1P

l−1
i } ∗ {⊗jP

l−1
j } (12)

where l is the decoding iteration number, ∗ is discrete convo-
lution, ⊗i is discrete convolution on i random variables and
P0 is the probability mass function of the channel output LLR
message. Similarly, the probability mass function of the output
messages on lower edges is

P l
v = P0 ∗ {⊗iP

l−1
i } ∗ {⊗j−1P

l−1
j }. (13)

In general, if discrete random variables X1 and X2 are
independent, the probability mass function of Z = p(X1, X2)
is

P (Z = z) =
∑

z=p(x1,x2)

P (X1 = x1)P (X2 = x2). (14)

The probability mass function of check node output messages
in (10) and (11) can be calculated by this way. For the
function Z = 2 tanh−1

(
tanh X1

2 tanh X2

2

)
, the probability

mass function of Z is

P (Z = z) =∑
z=2 tanh−1(tanh x1

2 tanh
x2
2 )

P (X1 = x1)P (X2 = x2).(15)

If the function is in the form of Z = 2 tanh−1
(∏

i tanh
Xi

2

)
,

we can calculate PZ by recursively calculating the probability
mass function of the function of two input random variables
with (15).

Denote P2,i as the probability mass function of output
messages from upper-degree-i Group 2 variable nodes. The
probability mass function of input messages at Group 2 check
node sockets is ∑

i

λ3,2,iP2,i. (16)

Denote Q2,i as the probability mass function of output
messages from upper layer check nodes with degree d3,2 = i.
The probability mass function of input messages at Group 2
variable node sockets is∑

i

ρ3,2,iQ2,i. (17)

V. CODE OPTIMIZATION

In this section, we propose a three-step code optimization
to find good codes for half-duplex three-phase two-way relay
channels.

In the first two code optimization steps, two irregular LDPC
codes for the two source-relay links are designed. Since the
underlying channels are point-to-point channels, any existing
optimization methods [21], [22], [23], [24] for such channels
can be used.

In this work, iterative linear programming [8] is used as the
optimization solver. In this solver, the code rate is maximized
when σ2

3,i is given for i = 1, 2. A feasible region is a space
on λi and ρi where λi is a variable node degree distribution
of irregular LDPC codes at terminal node i and ρi is a check
node degree distribution of irregular LDPC codes at terminal
node i. When the degree of ρi is concentrated [23], the

optimization problem becomes a sequence of sub-problems:
finding an optimal λi with a fixed ρi. The details of iterative
linear programming for point-to-point channels can be found
in Appendix II of [8].

In the third code optimization step, systematic LDPC codes
at the relay node are optimized. The optimized irregular LDPC
codes obtained in the first two steps are used in the third
step. The optimization objective is to find the optimal degree
distributions that minimize the ratio of the length of the relay
codeword to the sum of the lengths of two source codewords

λ3,3,1∑
i λ3,1,i +

∑
j λ3,2,j

. (18)

In this optimization problem, the feasible region is a space
on λ3,1, λ3,2, λ3,3, ρ3,1 and ρ3,2. To simplify the optimization
problem, the original problem is divided into a sequence of
optimization problems on λ31, λ32, λ33 with fixed ρ31, ρ32.

The global optimization problem in the third optimization
step is

min
λ3,1,λ3,2,λ3,3

λ3,3,1 (19)

s.t.
∑
i

λ3,1,i +
∑
j

λ3,2,j + λ3,3,1 = 1 (20)

0 ≤ λ3,1,i, λ3,2,j , λ3,3,1 ≤ 1 (21)

∑
i

iλ3,1,i −
⎛
⎝∑

j

jρ3,1,j

⎞
⎠λ3,3,1 = 0 (22)

∑
i

iλ3,2,i −
⎛
⎝∑

j

jρ3,2,j

⎞
⎠λ3,3,1 = 0 (23)

∑
j

j(el+1
3,1,j − el3,1)λ3,1,j < 0, l = 1, · · · , L1 (24)

∑
j

j(el+1
3,2,j − el3,2)λ3,2,j < 0, l = 1, · · · , L2, (25)

where L1 and L2 are the total numbers of decoding iterations,
el3,i,j is the mixture probability of error on upper-degree-j
edges of Group i variable nodes in the l-th decoding iteration,
and el3,i is the probability of error mixture on Group i check
node sockets in the l-th decoding iteration. Note that the
probability of error is calculated during discretized density
evolution by P (X ≤ 0) =

∑
a≤0 P (X = a) where P (X) is

the probability mass function of messages. The probability of
error mixture el3,i can be calculated from the probability mass
function of the message mixture at inputs of check nodes.

With constraint (20), (18) becomes (19). Constraint (20) is
the condition that the sum of the probability is 1. Constraint
(21) is the condition that a probability is upper bounded by 1
and lower bounded by 0.

Constraint (22) comes from∑
i

niλ3,1,i =
∑
j

n3jρ3,1,j . (26)

The left hand side of (26) is the total number of upper edges
connected to Group 1 variable nodes where n is the total
number of all 3 groups of variable nodes. In addition, from
the upper layer check node perspective, the total number of
upper edges connected to Group 1 variable nodes is the right
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hand side of (26) where n3 is the total number of upper layer
check nodes. The left hand side and the right hand side should
be equal and this condition becomes constraint (22) due to
λ3,3,1 = n3

n . Constraint (23) is similar to (22), but it applies
to Group 2 variable nodes.

Constraint (24) comes from∑
i

el+1
3,1,i

niλ3,1,i∑
j njλ3,1,j

< el3,1. (27)

The left hand side and the right hand side of (27) are mixtures
of probabilities of error of input messages at upper layer check
nodes in the (l+1)-th and l-th decoding iteration, respectively.
(24) is a sequence of constraints on the decoding rule, that
is, the probability of error is monotonically decreased during
iterative decoding. Constraint (25) is similar to (24) , but it
applies to Group 2 variable nodes.

Since the probability of error is a non-linear function of
the degree distribution, constraints (24) and (25) are non-
linear. However, if the probabilities of error are treated as
constants, the non-linear optimization problem becomes a
linear optimization problem.

Since the probabilities of error are treated as constants,
codes from linear programming might not be decoded. In
this case, discretized density evolution can be used to verify
whether codes can be decoded. If codes can be decoded, their
degree distribution becomes the current best degree distribu-
tion. During the discretized density evolution, the probability
of error in each decoding iteration can be calculated, which
are used in the next optimization iteration. If codes cannot be
decoded, the feasible region needs to be shrinked by reducing
the value of the right hand side of (24) and (25), denoted as μ,
towards −∞. When the feasible region is shrinked, the ratio
(18) becomes larger. Hence codes could be easier to decode.
As the value μ is reduced, the problem could be infeasible
at some point. In other words, no degree distribution satisfies
all constraints from (20) to (25). In such a case, we modify
the iterative linear programming algorithm proposed in [8]
by reducing L1 and L2. Since less constraints are applied,
the feasible region is enlarged. Note that the probabilities of
error in (24) and (25) come from the preceding optimization
iteration, which are provided as hints on the boundary of the
feasible region in the next optimization iteration. The optimal
degree distribution could be inside of the feasible region or
outside of the feasible region.

VI. SIMULATION RESULTS

In this section, two optimized degree distributions for
irregular LDPC codes at terminal nodes and an optimized
degree distribution for systematic LDPC codes at the relay
node are obtained when a half-duplex three-phase two-way
relay channel is given. Codes sampled from the optimized
degree distributions are simulated. We show that good codes
can be found by our proposed three-step optimization. The
length of the obtained optimized codes is 26% longer than
the theoretic one. In addition, it is shown that the required
SNR for a finite-length code converges fast to that for cycle-
free infinite-length codes by simulations.

In the first optimization step, irregular LDPC codes for
terminal node 1 are optimized, where a k1-bit source message

TABLE I
THE VARIABLE NODE DEGREE DISTRIBUTION FOR CODES WITH RATE

0.3277

i λ1,i i λ1,i

2 0.5277 3 0.2903
6 0.0022 7 0.1392

21 0.0199 22 0.0003
100 0.0204

TABLE II
THE VARIABLE NODE DEGREE DISTRIBUTION FOR CODES WITH RATE

0.4852

i λ2,i i λ2,i

2 0.4928 3 0.2889
5 0.0011 6 0.0517
7 0.1050 8 0.0010
9 0.0007 10 0.0091

11 0.0005 12 0.0004
13 0.0003 14 0.0002
15 0.0001 16 0.0001
22 0.0183 23 0.0275
24 0.0001 25 0.0021

is encoded into an n1-bit codeword. The code rate is k1

n1
. The

code optimization problem is to maximize the code rate when
channel parameter σ3,1 is given. Codes with rate 0.3277 are
found when σ3,1 is 1.295 and the check node degree is 8.
Note that the capacity rate is 1

3 which can be determined by
the equation of the capacity of binary-input additive white
Gaussian noise (BIAWGN) channels

CBIAWGN (σ) = −
∫

φσ(y) log2 φσ(y)dy

−1

2
log2(2πeσ

2) (28)

where

φσ(y) =
1√
8πσ2

(
e−

(y+1)2

2σ2 + e−
(y−1)2

2σ2

)
(29)

is the probability density function of received signal Y . The
optimized variable node degree distribution is shown in Table
I.

In the second optimization step, for the link between
terminal node 2 and the relay node, codes with rate 0.4852
are found when σ3,2 is 0.979 and the check node degree is 8.
The corresponding capacity rate is 1

2 . The optimized variable
node degree distribution is shown in Table II.

Two codes, Code A and Code B, with the length of 105 bits
are randomly sampled from the above two degree distributions.
Code A (B) is sampled from the degree distribution for
irregular LDPC codes at node 1 (node 2). Simulation results
are shown in Figure 7 and Figure 8, labeled as Code A,
no relay, n=105 and Code B, no relay, n=105, respectively.
The waterfall curve given in the figure can be considered
as the case when no relay node exists. For each code, it
is simulated with multiple SNRs. The maximum number of
decoding iterations is 200. The corresponding bit error rate
(BER) is presented in the logarithmic Y-axis. The equivalent
SNRs for σ3,1 = 1.295 and σ3,2 = 0.979 are represented by
the vertical lines.

In the third optimization step, in order to optimize the
degree distribution of systematic LDPC codes at the relay
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Fig. 7. Simulation results when decoding code A at terminal node 2.
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Fig. 8. Simulation results when decoding code B at terminal node 1.

node, channel parameters σ1,2, σ1,3, σ2,1, σ2,3 are given.
We consider the case when σ2,1 = σ2,3 = 1.9483 and
σ1,2 = σ1,3 = 1.5490. The degree of upper layer check
nodes is g3,1 = g3,2 = 3. By iterative linear programming,
the optimized λ3,3,1 is 0.3867 and the optimized λ3,1, λ3,2

are shown in Table III and IV. Note that for the given σ1,2,
σ1,3, σ2,1, σ2,3, the lower bound of λ3,3,1 is 1

3 .
Irregular LDPC codes with the lengths of 103, 104 and

105 bits and systematic LDPC codes with the relay codeword
lengths of 1.26 × 103, 1.26 × 104 and 1.26 × 105 bits are
randomly sampled from the above degree distributions. Simu-
lation results for decoding Code A and Code B at destination
nodes are shown in Figure 7 and Figure 8, respectively. The
maximum number of decoding iterations is 500. In the figure,
the SNRs are defined as 1

σ2
1,3

and 1
σ2
2,3

for the two decoders at
two destination nodes. The BER is defined as the ratio of the
total number of erroneous bits to the total number of bits in
Group i variable nodes for i = 1, 2. In this sense, BERs are

TABLE III
THE VARIABLE NODE DEGREE DISTRIBUTION λ3,1

i λ3,1,i i λ3,1,i

0 0.2238 14 0.0829

TABLE IV
THE VARIABLE NODE DEGREE DISTRIBUTION λ3,2

i λ3,2,i i λ3,2,i

0 0.1482 1 0.0148
2 0.0131 3 0.0121
4 0.0113 5 0.0109
6 0.0107 7 0.0106
8 0.0107 9 0.0108

10 0.0106 11 0.0094
12 0.0059 13 0.0036
14 0.0239

evaluated at two destination nodes separately. The equivalent
SNRs of σ2,1 = σ2,3 = 1.9483 and σ1,2 = σ1,3 = 1.5490 are
represented by vertical dashed lines. As we can see, with the
help of the relay node, the required SNRs are reduced from
0.2 dB to -3.8 dB and from -2.2 dB to -5.7 dB, respectively. In
Figure 7 and Figure 8, we also provide the simulation results
for the case where two source codewords are added in GF(2)
at the relay node. At the BER of 10−4, the required SNR of
the GF(2) addition case is around 1.5 dB higher than that of
our proposed LDPC code construction.

In density evolution, it is assumed that incoming messages
of variable nodes and check nodes are independent. This
assumption implies that the bipartite graph has no cycles.
However, cycles almost always exist. A natural question is
whether the actual density is close to the density in density
evolution, especially when deviation is accumulated during the
iterative decoding. This question can be empirically answered
by Figure 7 and Figure 8. As we can see, when the length
of codewords grows from 103 to 105, the waterfall curve
moves closer to the vertical dashed lines, which shows that
the required SNR for a finite-length code converges fast to
that for cycle-free infinite-length codes.

For the given optimized degree distributions, the evolution
of the BER under discretized density evolution is shown in
Figure 9. P1 = P2 = P3 = 1, σ1,2 = σ1,3 = 1.5490
and σ2,1 = σ2,3 = 1.9483 are used. The two BER curves
are monotonically decreasing during iterative decoding. The
required decoding iterations at two destination nodes are close
to 100 and 300, respectively. The decrease of the BER as a
function of the current BER is shown in Figure 10. The critical
point [22] is the point where the decrease of the BER is a local
minimum. As shown in Figure 10, the critical points of two
codes at two destination nodes are close to 0.12 and 0.19,
respectively.

VII. CONCLUSION

In half-duplex three-phase two-way relay channels, code-
words are broadcast and signals are received from the source
node and the relay node. In this work, we constructed sys-
tematic LDPC codes at the relay node to encode two source
codewords. At the destination node, signals from the source
node and the relay node are used for joint decoding. We
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Fig. 9. Evolution of the bit error rate during iterative decoding.
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designed the codes with discretized density evolution and
iterative linear programing, and demonstrated that good codes
can be found within our framework. For future work, we
will extend our work to fading channels and wireless relay
networks.
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1999-2000 and with the Coordinated Science Labo-
ratory, University of Illinois at Urbana-Champaign,
during 2000-2002. He is currently a Professor at the
Department of Electrical and Computer Engineer-

ing, University of Waterloo, Waterloo, ON, Canada. His research interests
include wireless networks, information theory, adaptive control, and system
identification.



ZHOU et al.: DESIGN OF LOW-DENSITY PARITY-CHECK CODES FOR HALF-DUPLEX THREE-PHASE TWO-WAY RELAY CHANNELS 1677

Xuemin (Sherman) Shen (IEEE M’97-SM’02-
F09) received the B.Sc.(1982) degree from Dalian
Maritime University (China) and the M.Sc. (1987)
and Ph.D. degrees (1990) from Rutgers University,
New Jersey (USA), all in electrical engineering.
He is a Professor and University Research Chair,
Department of Electrical and Computer Engineering,
University of Waterloo, Canada. He was the Asso-
ciate Chair for Graduate Studies from 2004 to 2008.
Dr. Shen’s research focuses on resource management
in interconnected wireless/wired networks, wireless

network security, social networks, smart grid, and vehicular ad hoc and sensor
networks. He is a co-author/editor of six books, and has published more
than 600 papers and book chapters in wireless communications and networks,
control and filtering.

Dr. Shen served as the Technical Program Committee Chair/Co-Chair for
IEEE Infocom’14, IEEE VTC’10 Fall, the Symposia Chair for IEEE ICC’10,
the Tutorial Chair for IEEE VTC’11 Spring and IEEE ICC’08, the Technical
Program Committee Chair for IEEE Globecom’07, the General Co-Chair for

Chinacom’07 and QShine’06, the Chair for IEEE Communications Society
Technical Committee on Wireless Communications, and P2P Communications
and Networking. He also serves/served as the Editor-in-Chief for IEEE
Network, Peer-to-Peer Networking and Application, and IET Communications;
a Founding Area Editor for IEEE TRANSACTIONS ON WIRELESS COMMU-
NICATIONS; an Associate Editor for IEEE TRANSACTIONS ON VEHICULAR

TECHNOLOGY, Computer Networks, and ACM/Wireless Networks, etc.; and
the Guest Editor for IEEE JSAC, IEEE Wireless Communications, IEEE
Communications Magazine, and ACM Mobile Networks and Applications, etc.
Dr. Shen received the Excellent Graduate Supervision Award in 2006, and the
Outstanding Performance Award in 2004, 2007 and 2010 from the University
of Waterloo, the Premier’s Research Excellence Award (PREA) in 2003 from
the Province of Ontario, Canada, and the Distinguished Performance Award
in 2002 and 2007 from the Faculty of Engineering, University of Waterloo.
Dr. Shen is a registered Professional Engineer of Ontario, Canada, an IEEE
Fellow, an Engineering Institute of Canada Fellow, a Canadian Academy
of Engineering Fellow, and a Distinguished Lecturer of IEEE Vehicular
Technology Society and Communications Society.


