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ABSTRACT

The packet loss burstiness over wireless channels is commonly acknowledged as a key impacting factor on the perfor-
mance of networking protocols. An accurate evaluation of the packet loss burstiness, which reveals the characteristics and
performance of the wireless channels, is crucial to the design of wireless systems and the quality-of-service provisioning
to end users. In this paper, a simple yet accurate analytical framework is developed to dimension the packet loss burstiness
over generic wireless channels. In specific, we first propose a novel and effective metric to characterize the packet loss
burstiness, which is shown to be more compact, effective, and accurate than the metrics proposed in existing literature
for the same purpose. With this metric, we then develop an analytical framework and derive the closed-form solutions of
the packet loss performance, including the packet loss rate and the loss-burst/loss-gap length distributions. Lastly, as an
example to show how the derived results can be applied to the design of wireless systems, we apply the analytical results
to devise an adaptive packetization scheme. The proposed packetization scheme adaptively adjusts the packet length of
transmissions based on the prediction of the packet loss rate and loss-burst/loss-gap lengths of the wireless channel. Via
extensive simulations, we show that with the proposed packetization scheme, the channel throughput can be enhanced by
more than 10% than the traditional scheme. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Packet losses over wireless channels typically have strong
correlations and occur in a bursty fashion. As the packet
loss performance directly affects the effectiveness and effi-
ciency of communications, the packet loss burstiness has
a significant impact on the performance of on-top proto-
cols in wireless networks [1–3]. For example, as reported
in [4], the automatic repeat-request (ARQ) protocol per-
forms much worse over links with burst packet losses than
it does over links of independent packet losses. Because
of its importance, an extensive body of research has been
developed in the past decades to evaluate the packet loss
burstiness in wireless channels.

To dimension the packet loss burstiness, the foremost
issue is to devise the appropriate metrics, which can
accurately characterize the burstiness. In [5], the Allan
deviation [6] of packet reception rate (PRR) is used to
measure the burstiness of packet losses in 802.11b mesh
networks. With this metric, the packet-loss-burst length can

be evaluated to improve the design of retransmission algo-
rithms in wireless networks. In [7], a metric ˇ is proposed
based on the concept of conditional probability delivery
function (CPDF) for measuring the burstiness in 802.15.4
wireless sensor networks. Such a metric is then used
to devise an opportune transmission algorithm to boost
the PRR.

In this work, we propose a new metric to character-
ize PRR, which distinguishes from the existing metrics in
the following two aspects. First, the existing metrics are
typically derived empirically through experiments using
network datasets. As such, their effectiveness and efficien-
cies need to be validated before they can be applied in
real-world scenarios. Our proposed metric is a theoretical
and generic metric, which is applicable to general set-
tings. Therefore, it is suitable for theoretical analysis to
provide comprehensive insights on the features of wire-
less channels. Second, our proposed metric can be easily
used to design and optimize the communication proto-
cols. In this paper, we show an example by developing an
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analytical framework based on the proposed metric to
accurately evaluate and predict the packet loss perfor-
mance, such as the packet loss rate and the distributions
of the loss-burst/loss-gap lengths (defined as a maximum-
length sequence of consecutive corrupted/correct packets).
With the accurate evaluation of packet loss performance,
we show that the optimal communication protocols can be
devised according to the timely changing characteristics of
wireless channels. To summarize, our major contributions
are threefold.

First, we develop a new approach, namely packet trans-
mission segmentation, to investigate on the correlations of
packet losses mathematically, and propose a new and effi-
cient metric to measure the packet loss burstiness. We show
that this metric is more effective and accurate to gauge
the burstiness of wireless channels than previous metrics
when the channel is with intensive transmission errors or
low packet loss burstiness.

Second, we show how to utilize the newly proposed met-
ric to derive the packet loss performance. The closed-form
solutions for the packet loss rate and loss-burst/loss-gap
length distributions are developed accordingly. Via exten-
sive simulations, we show the accuracy of the developed
analysis in different scenarios of wireless channels. To
the best of our knowledge, this work represents the first
research to derive the closed-form solutions for the packet
loss performance in bursty wireless channels. Notably, the
analytical results bridge the channel conditions to the resul-
tant packet loss performance using a simple yet accurate
expression, which paves the way for the evaluation, design,
and optimization of communication protocols.

Third, we demonstrate the performance gain brought by
applying the derived analytical results in protocol designs.
Using the bit error performance as the input to the proposed
analytical framework, we predict the packet loss rate and
loss-burst/loss-gap lengths. We then apply the prediction
method to devise an enhanced packetization scheme. Using
simulations, we show that the proposed analytical frame-
work can work much faster than existing approaches to
characterize the packet loss performance and the proposed
packetization scheme can boost the channel throughput by
more than 10% with guaranteed transmission delay and
failure probability than the traditional scheme.

The remainder of this paper is organized as follows:
Section 2 investigates on the correlations of packet losses
and develops the metric. Section 3 derives the packet loss
performance, including the average packet loss rate and the
loss-burst/loss-gap length distributions. Section 4 designs
a prediction mechanism and applies it to a packetization
scheme. Section 5 reviews the metrics proposed in previ-
ous work to measure the packet loss burstiness. Finally,
Section 6 concludes this paper.

2. MEASURING PACKET
LOSS BURSTINESS

In this section, We first analyze the correlations of packet
losses. With this analysis, we then introduce a new metric
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Figure 1. Transition diagram for the GE model.

called the average correlation length of packet loss rate to
characterize the packet loss burstiness in wireless channels.

2.1. Correlation analysis of packet losses

It has been shown that the Gilbert–Elliott (GE) model can
capture the bit error statistics† with sufficient accuracy in
Rayleigh fading channels [8,9], and the GE channel, refer-
ring to the wireless channel where the bit errors can be
described by the GE model, is the most popular bursty
channel used in existing literature. In this paper, we also
focus on the GE channel. As shown in Figure 1, the GE
channel has two states: good and bad . The state changes
from bad to good with probability p and from good

to bad with probability q. hg and hb are the bit error
probabilities in state good and state bad , respectively.‡

Previous works evaluate the packet losses typically by
enumerating the combinations of the bit states (bit is in
good or bad channel conditions) in a packet. As a packet
typically consists of hundreds or thousands of bits, it
is difficult to evaluate the packet losses efficiently and
accurately using such a method. In what follows, we intro-
duce a novel and much more efficient method, namely
packet transmission segmentation, to analyze the packet
loss performance.

(1) B-run and G-run: Considering a communication
session where multiple packets are transmitted in
the unit of bits over the wireless channel, we define
a B-run as a maximum-length run (or sequence)
of consecutive bits in the bad state and a G-run
as a maximum-length run of consecutive bits in

†Although the GE model can capture the bit error statistics with suf-

ficient accuracy in Rayleigh fading channels, its effectiveness and

accuracy in evaluating the packet error performance still remain an

open problem.
‡In [10], we have derived the packet loss rate in the simplified Gilbert

channel (i.e., hg D 0 and hb D 1) and on the assumption of p > q.

In this paper, our analysis is over the general GE channel and without

the assumption. Moreover, we extend the work to study the correlation

length of packet losses and the loss-burst/loss-gap lengths.
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Figure 2. Transmission segments over a wireless channel.

Table I. Notations used in the paper.

p Transition probability from the bad state to the good state in the GE model.
q Transition probability from the good state to the bad state in the GE model.
hg Bit error probability in the good state of the GE model.
hb Bit error probability in the bad state of the GE model.
L The packet length in terms of bits.
Xn (or X) The B-run length in segment n.
Yn (or Y ) The G-run length in segment n.
Rn (or R) The nth residual length.
Zn (or Z) The sum of a G-run length and a adjacent B-run length in segment n.
An (or A) The remainder of Yn minus Rn�1.
CL The correlation length of the packet loss rate.
PLR The average packet loss rate of the communication session.
En (or E) The length of the nth loss gap.
Fn (or F) The length of the nth loss burst.
Mn (or M) An mod L (or A mod L).

the good state.§ The communication session is
hence composed of the iterative B-runs andG-runs,
as shown in Figure 2. Let X and Y denote the
lengths of a randomly selected B-run and G-run,
respectively. As indicated in [11], in the GE model,
both X and Y are independent and identically
distributed (IID) random variables and geometri-
cally distributed with the probability mass functions
(PMFs) Pr.X D k/ D p.1 � p/k�1 and Pr.Y D
k/D q.1�q/k�1, respectively. Table I summarizes
the primary notations used in this paper.

(2) Residual length: We divide the whole transmission
session into multiple segments for analysis on the
basis of the residual length of packets. The residual
length of a packet is defined as the length (in the
unit of bits) from the bit immediately after the last
B-run in a packet to the end of the packet. Let Rn,
where n D 1; 2; : : :, denote the nth residual length
during the communication session, as shown in
Figure 2. Rn varies within Œ0; L�1�, where L is the
packet length.¶

§The adjacent bits ahead of and after a B-run (resp. G-run) are in the

good state (resp. the bad state).
¶Rn equals to 0 when the last bit of the packet is in the bad state and

the following bit is in the good state.

(3) Packet transmission segmentation: We define seg-
ment n (nD 1; 2; : : :) as the length from the bit right
after Rn�1 to the last bit of Rn (R0 is the start of
the communication session), as shown in Figure 2.
Apparently, the segmentation does not break any
single packet, and each segment can be divided into
two parts: in Part I, all the bits in the packet are
in the good state; whereas in Part II, the packet
must contain at least 1 bit in the bad state. We first
present the properties of segmentations to reveal the
correlations of packet losses.

Lemma 1. Rn�1 and Rn are independent, and Rn has
the following probability distribution.

Pr.Rn D k/

D
p.1� q/kC1 � q.1� p/kC1

p.1�q/.1�.1�q/L/
q � q.1�p/.1�.1�p/L/

p

; k2 Œ0; L/

(1)

Proof . Denote the sum of a G-run length and an adjacent
B-run length in segment n by a new random variable Zn,
that is, Zn D Yn C Xn. Zn is memoryless as Xn and Yn
are both memoryless. Intuitively, Rn�1 and Rn are inde-
pendent according to the memoryless property of Zn. See
Appendix A for the detailed proof. �
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LetAn denote the portion that Yn minusRn�1, as shown
in Figure 2. From Lemma 1, we have Lemma 2 as follows.

Lemma 2. Xn�1, Yn�1, and An�1 are independent of
An, and An has the probability distribution as

Pr.An D k/D8̂̂
<
ˆ̂:

1
p.1�q/.1�.1�q/L/

q � q.1�p/.1�.1�p/
L/

p

.1�q/k�1
�
q2.1�p/.1�..1�p/.1�q//L/

pq�p�q Cp.1�q/.1�.1�q/
2L/

2�q

�
; k 2 Œ1;1/;

1
p.1�q/.1�.1�q/L/

q � q.1�p/.1�.1�p/
L/

p

�
q2.1�p/2�k.1�..1�p/.1�q//LCk�1/

pq�p�q Cp.1�q/
2�k.1�.1�q/2.LCk�1//

2�q

�
; k2Œ2�L; 0�

(2)

Proof . Intuitively, Xn�1 is independent of Rn�1 as Xn
and Yn are both memoryless. Xn�1 and An are then inde-
pendent becauseXn�1 is also independent of Yn andAn D
Yn � Rn�1. More strictly, we can derive Pr.An D a/ D

Pr.An D ajXn�1 D x/ similarly as in Appendix A to
prove that Xn�1 is independent of An (the derivation is
omitted here because of the space limit). Likewise, we can
also prove that Yn�1 and An�1 are independent of An.
The PMF of An can be derived from the PMFs of Yn and
Rn�1. �

For simplicity, in this paper, we do not consider the
error-recovery (e.g, ARQ) or error-resilient (e.g, for-
ward error correction (FEC) codes) mechanisms. In other
words, once a bit error occurs in a packet, the packet
will be corrupted. Then, from Lemma 2, we obtain the
following theorem.

Theorem 1. The average packet loss rate in segment
.n� 1/ is independent of that in segment n.

Proof . Let Nn and Ne;n denote the total number of pack-
ets and the number of error packets in segment n, respec-
tively. The average packet loss rate in segment n thus

equals to Ne;n
Nn

. According to the definitions of Rn and
segment n, the length of segment n minus .An C Xn/ is
no longer than L, so Nn can be derived as

Nn D

1X
xD1

1X
aD2�L

Pr.Xn D x/Pr.An D a/

�
xC a

L

�
(3)

As shown in Figure 2, Ne;n can be derived as

Ne;n D

1X
xD1

1X
aD2�L

Pr.Xn D x/ Pr.An D a/f .a; x/ (4)

where f .a; x/ is the number of error packets in seg-
ment n when An D a and Xn D x.

As bothAn�1 andXn�1 are independent ofAn andXn,
Nn is independent of Nn�1. Similarly, Ne;n is also inde-
pendent of Ne;n�1 because f .a; x/ is only related to An,

Xn, and Yn. Then, the length of a segment and the number
of error packets in a segment are both independent. As a
result, Theorem 1 holds. �

From Theorem 1, we know that the correlations of
packet losses only last for a segment.

2.2. Average correlation length of packet
loss rate

The correlation length of packet loss rate, denoted as CL,
is defined as the minimum interval to guarantee that the
average packet loss rates are independent in different inter-
vals. From Theorem 1, we know that the average packet
loss rates in different segments are independent. Thus, the
correlation length of packet loss rate (in the unit of pack-
ets) equals to the number of packets in a segment. From
here onwards, for simplicity we remove the subscript n of
notations in Table I. The PMF of CL is then derived as
Pr.CL D k/ D Pr

�l
ACX
L

m
D k

�
. From the PMFs of X

and A, we can derive that

Pr.CLD k/D

0
@.kC1/�L�2X

xDk�L

k�L�xX
aD2�L

C

k�L�1X
xD1

k�L�xX
aD.k�1/�LC1�x

1
A Pr.AD a/Pr.X D x/; k � 1 (5)

From Equation (5), we can obtain the average correlation
length of packet loss rate, that is, EŒCL� (the closed-form
solutions for Pr.CL D k/ and EŒCL� are represented in
[12]). EŒCL� is the metric that we propose to measure the
packet loss burstiness. The larger EŒCL� is, the longer the
correlations of packet losses stay, indicating that the wire-
less channel is more bursty. If EŒCL� D 1, the packet
losses are memoryless.

2.3. Comparisons to other metrics

In previous literature, a variety of metrics have been
proposed to measure the packet loss burstiness, including
the metric � [13], the Allan deviation of PRR [5], and the

Wirel. Commun. Mob. Comput. (2012) © 2012 John Wiley & Sons, Ltd.
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metric ˇ [7]. This section compares our proposed metric
with the existing metrics.

If the packet errors can be described by the GE model in
wireless networks, the metric � [13] is calculated as

�D 1� p.p/ � q.p/ (6)

where p.p/ and q.p/ are the probabilities of the state tran-
siting from good to bad and from bad to good in the GE
model, respectively. The superscript .p/ denotes that it is
the packet-level quantity. The larger � is, the more bursty
the channel is.

The formula of the Allan deviation of PRR [5], denoted
as D, is

D D

vuut 1

2n

nX
2

.ri � ri�1/2 (7)

where ri is the PRR in interval i . In the cases of different
time scales, we can obtain different Allan deviations. For
the case that the interval lengths are approximately equal
to the packet-loss-burst length, the PRRs of different inter-
vals deviate a lot, and accordingly, the Allan deviation is
large. For the case of smaller intervals, the PRRs of adja-
cent intervals change slowly, making the Allan deviation
small. In the case of large intervals, the PRRs of different
intervals tend to be the long-term average, and the Allan
deviation is small.

The metric ˇ [7] is calculated from CPDFs. The CPDF,
denoted as C.n/, is the probability that the next packet will
succeed given n consecutive packet successes (for n > 0)
or failures (for n < 0). The formula of ˇ is

ˇ D
KW .I/�KW .E/

KW .I /
(8)

where KW .�/ is the Kantorovich–Wasserstein (KW) dis-
tance [14] from the CPDF of the ideal bursty link.|| E is
the CPDF of the link in question, and I is the CPDF of
an independent link with the same average PRR. An ideal
bursty link has a ˇ D 1, and a link with independent packet
losses has a ˇ D 0. Negative ˇ values are permitted, and
this happens when there is a negative correlation in packet
losses; that is, the next packet is more likely to be corrupted
when more packets are received, and the next packet is
more likely to be delivered successfully when more packets
are corrupted.

Figure 3 compares the inverse of our metric 1
EŒCL�

to
previous metrics � and ˇ in different wireless channels.
We set hg D 0, hb D 1, and the other parameters in
Figure 3(a)–(c) respectively as follows: p D 10�4; q D

5 � 10�4; L 2 Œ2000; 20000�; p 2 Œ10�4; 10�3�; q D 5 �

10�4; L D 8000; and p D 10�4; q 2 Œ10�4; 10�3�; L D

8000. We use the GE model to model the packet errors

||In the ideal bursty link, C.n/D 0 if n < 0 and C.n/D 1 if n > 0.

and calculate p.p/ and q.p/ to obtain �**. In Figure 3(a),
we see that the packet loss burstiness decreases when L
increases, and the burstiness is vanished when L is long
enough. This matches with our intuitive understanding.
Figure 3(b) shows that the burstiness also decreases when
p or q increases. This is because in the GE model, the
memory will fade away with p or q increasing (i.e., pC q
approaches to 1) because the memory will disappear when
p D 1 � q. In Figure 3(b), the values of � are close to
0 almost all the time, whereas the variation of 1

EŒCL�
is

more obvious, implying that our metric EŒCL� can reveal
the burstiness more effectively than � when the packet loss
burstiness is low.

In Figure 3(a), ˇ decreases monotonically with L

increasing when L is small. However, when L is large,
we have ˇ < 0 and we cannot observe any patterns that
ˇ follows. This is because more transmission errors would
be encountered when increasing the packet length L, and
intensive transmissions errors would cause the negative
correlations in packet losses. In addition, the metric ˇ can-
not reveal the packet loss burstiness when ˇ < 0 as that
when ˇ � 0 (we can get that from the calculation of ˇ).
In Figure 3(b) and (c), we also show the negative ˇ values
in different p and q, and we cannot find the pattern of ˇ
values either. Therefore, our metric EŒCL� can character-
ize the packet loss burstiness more effectively than ˇ when
the transmission errors are severe.

Figure 4 shows the Allan deviation of PRR (D) in dif-
ferent time scales (in the unit of packets) and with different
average correlation lengths of packet loss rate (EŒCL�) and
different average loss-burst lengths (EŒF �). The four com-
binations of EŒCL� and EŒF � values are obtained with
the settings of p,q, and L, respectively: p D 10�6; q D

10�5; L D 8000; p D 10�5; q D 10�5; L D 8000;
p D 10�5; q D 10�4; L D 8000; and p D 10�6; q D

10�4; L D 8000. We can see that the Allan deviation of
PRR is maximized when the time scale is near the average
loss-burst length, indicating that we can obtain the aver-
age loss-burst length approximately by analyzing the Allan
deviations of PRR in different time scales. However, the
average loss-burst length is not a good metric to measure
the packet loss burstiness because it cannot tell whether the
wireless channel is of burst losses or independent losses. In
addition, we cannot obtain EŒCL� or other clues to charac-
terize the packet loss burstiness from the Allan deviations.
Therefore, the Allan deviation of PRR is not suitable to
measure the packet loss burstiness.

3. CLOSED-FORM SOLUTIONS FOR
PACKET LOSS PERFORMANCE

This section derives the packet loss performance, includ-
ing the average packet loss rate and the loss-burst/loss-gap

**In Section 3.2.2, we demonstrate that the packet errors also follow

the GE model if the bit errors can be captured by the GE model, and

derive the closed-form solutions for p.p/ and q.p/.
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Figure 3. Comparisons of 1
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length distributions based on our correlation analysis and
the metric CL proposed earlier.

3.1. Average packet loss rate

Let PLR denote the average packet loss rate in the com-
munication session. It equals to the average packet loss rate
in a single segment because the length of a segment is just
the correlation length of packet loss rate CL.

As shown in Figure 2, each segment can be divided
into two parts. f1.a; x/ and f2.a; x/ are denoted as the
numbers of error packets in Part I and Part II, respec-
tively. Then, f .a; x/ in Equation (4) equals to f1.a; x/C
f2.a; x/.

For a packet, nb is denoted as the number of bits
in the bad state, then the packet loss probability is
1 � .1 � hg /

L�nb .1 � hb/
nb . Therefore, f1.a; x/ D

b a
L
c � .1� .1� hg /

L/. In the last packet of Part II, denote
the length of the bits after the first B-run as s, as shown in

Figure 2. The number of bits in the bad state in s cannot
be derived easily because the number of B-runs cannot be
determined. In the calculation of f2.a; x/, we use the aver-
age number of bits in the bad state, that is, s � q

pCq , as an

approximation.†† Then by denoting that a D qa � LC ra
and x D qx � L C rx .0łeqqx ; qaI 0 � rx ; ra < L/,‡‡

we obtain

f2.a; x/DH

�
d
ra C x

L
e�2

�
�
�
1�.1�hg /

ra .1�hb/
L�ra

�

Cmax

�
0; d

ra C x

L
e � 2

�
� .1� .1� hb/

L/

C
�
1� .1� hg /

L�nb .1� hb/
nb
�

(9)

where H.n/D

�
0; n < 0;

1; n� 0;
and nb can be derived as

nb D

8̂̂<
ˆ̂:
rx C

q
pCq .L� ra � rx/; rx C ra � L; qx D 0;

L� p
pCq .ra C rx/; rx C ra � L; qx � 1;

L� p
pCq .2L� ra � rx/; rx C ra >L; qx � 0

The three components in Equation (9) are the number
of packets that contain the bits of the first G-run in a seg-
ment, the number of packets that are totally located in the
B-run, and the number of packets that contain the bits of
s, respectively.

Then, we derive the closed-form expression of PLR.
The expression is omitted here as it is lengthy. See [12]
for the details.

When the wireless channel is not in a very bad condi-
tion, the period of good channel state is usually longer than
the period of bad channel state; that is, p is larger than q.

††This approximation will not affect the accuracy of PLR too much

because it only exists in the last packet of a segment and s is usually

not long. The simulation results in Section 3.3.1 also validate that.
‡‡qa (resp. qx ) is the quotient of a (resp. x) divided by L and ra
(resp. rx ) is the remainder.
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Then, we have .1�p/L

.1�q/L
� 0 and can obtain a simplified

expression for PLR accordingly as

PLRD 1�

�
1� .1�

q

t2
/ �
1�PLR0

.1� q/L

�

� p � t1 �

�
1� .1�

p

t2
/ �
q.1� hb/

t3

�

� .1� hg /
L � .1�PLR0/

(10)

where PLR0 is the packet loss rate when hg D 0 and
hb D 1, and

PLR0 D 1�
.p � q/.1� q/L

.p � q/� q.1� q/L.1� p/

t1 D
.1� hb/

qL
pCq .1� hg /

pL
pCq

p � 1C .
1�hg
1�hb

/
p
pCq

t2 D 1C .q � 1/ � .
1� hg

1� hb
/
q

pCq

t3 D .1� q/hg � .1� p/hb C q � p

(11)

3.2. Loss-burst/loss-gap length
distributions

We first study the loss-burst/loss-gap length distributions
in the simplified Gilbert channel, which is a special case of
the GE channel when hg D 0 and hb D 1.

3.2.1. In the simplified Gilbert channel.

From Lemma 2, we have Theorem 2 as follows.

Theorem 2. In the simplified Gilbert channel, both the
loss-gap length and the loss-burst length are IID, and the
loss-gap length is independent of the loss-burst length.

Proof . In the simplified Gilbert channel, the bits are error-
free in the good state and are always error in the bad
state. Therefore, as shown in Figure 2, for a segment, in

Part I,
j
An
L

k
packets are transmitted correctly, whereas

in Part II,
l
MnCXn

L

m
packets are corrupted, where Mn

equals to An mod L, that is, the remainder of An divided
by L. According to the definition of a segment, apparently,
a loss gap never crosses multiple segments because a seg-
ment always ends with an error packet, and a loss burst
may cross different segments when all the packets in a seg-
ment are corrupted. For example, as shown in Figure 2, the
packets in segment .n C 1/ are all corrupted. With these
observations, we derive the proof as follows.

Let Ei and Fi denote the lengths of the i th loss gap
and the i th loss burst, respectively. Assuming that Ei is
in segment n, the PMF of Ei is thus

Pr.Ei D k/D Pr

�	
An

L



D k

�
k � 1 (12)

As different loss gaps are within separate segments and
An is IID, the loss-gap length is IID.

Assume that Fi crosses m .m � 1/ segments (starting
from segment n to segment nCm � 1); denote the num-
ber of error packets in segment n as Ne;n .Ne;n � 1/, and
denote by

C D
˚
Ne;nCNe;nC1C : : :CNe;nCm�1 D k W

Ne;nCj � 1.0� j < m/
�
;

W D

8<
:
0
@m�1[
jD0

�
MnCj CXnCj

L

�

DNe;nCj

1
A[

0
@m�1[
jD1

AnCj < L

1
A[ .AnCm � L/

9=
;

The probability that Fi D k equals to the probability that
there are k packets in the m segments. The PMF of Fi can
then be derived by

Pr.Fi D k/D
kX

mD1

X
C

Pr .W / k � 1 (13)

where

0
@m�1[
jD1

AnCj < L

1
A in W indicates that the error

packets span to m consecutive segments, and .AnCm �
L/ in W indicates that the loss burst terminates after m
segments.

Apparently, different loss bursts will appear in separate
segments, and An, Xn, and Mn are all IID. Therefore, the
loss-burst length is also IID.

Let W 0 D W �
nl
MnCXn

L

m
DNe;n

o
� fAnCm � Lg.

From (12), we have

Pr.W jEi D k0/DPr

��
MnCXn

L

�
DNe;njEi D k0

�
Pr.W 0/Pr.AnCm � L/

(14)
It can be easily proved that Pr.Mn D mjEi D k0/ D

Pr.Mn Dm/. As a result, Pr
�l
MnCXn

L

m
DNe;njEi D k0

�
D

Pr
�l
MnCXn

L

m
DNe;n

�
, which implies that Ei is inde-

pendent of Fi .
As Fi spans from segment n to segment .n C m � 1/,

EiC1 would appear in segment .n C m/. Consequently,

Pr.EiC1 D k/ D Pr
�j
AnCm
L

k
D k

�
. Similarly, we can

prove that Fi is independent of EiC1.
Therefore, Theorem 2 holds: both the loss-gap length

and the loss-burst length are IID, and the loss-gap length
is independent of the loss-burst length. �

For simplicity of notation, we remove the subscript i in
the remaining analysis of this section. From Equations (12)
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and (13), we have the PMFs of the loss-gap length and the
loss-burst length approximately as

Pr.E D k/D .1� .1� q/L/..1� q/L/k�1; k � 1;

Pr.F D k/D .1�q/L�1.1�.1�q/L/.1�.1�p/L/
qL

�
1� .1�q/L�1.1�.1�q/L/.1�.1�p/L/

qL

�k�1
; k � 1

(15)

The detailed derivation is given in Appendix B.
Therefore, in the simplified Gilbert channel, the loss-
gap length and the loss-burst length follow geomet-
ric distributions with parameters 1 � .1 � q/L and
.1�q/L�1.1�.1�q/L/.1�.1�p/L/

qL
, respectively.

With the loss-burst/loss-gap length distributions, we can
develop a model to characterize the packet losses in the
simplified Gilbert channel. Let �n denote the status of the
nth packet transmitted, where �n D 0 if the nth packet
is corrupted and �n D 1 if the packet is correctly trans-
mitted. From Theorem 2, we know that in the simplified
Gilbert channel, both the loss-gap length and the loss-burst
length are IID, and the loss-gap length is independent of
the loss-burst length. Therefore, we have that

Pr.�nC1 D 1j�n D 1/D
Pr.E � i C 1/

Pr.E � i/
;

Pr.�nC1 D 0j�n D 1/D
Pr.E D i/

Pr.E � i/

(16)

where i refers to that there are i consecutive correct packets
before the .nC 1/th packet, and

Pr.�nC1 D 1j�n D 0/D
Pr.F D j /

Pr.F � j /
;

Pr.�nC1 D 0j�n D 0/D
Pr.F � j C 1/

Pr.F � j /

(17)

where j refers to that there are j consecutive corrupted
packets before the .nC 1/th packet.

By substituting Equation (15) into Equations (16) and
(17), we have

Pr.�nC1 D 1j�n D 1/D .1� q/
L;

Pr.�nC1 D 0j�n D 1/D 1� .1� q/
L;

Pr.�nC1 D 1j�n D 0/

D
.1� q/L�1.1� .1� q/L/.1� .1� p/L/

qL
;

Pr.�nC1 D 0j�n D 0/

D 1�
.1� q/L�1.1� .1� q/L/.1� .1� p/L/

qL
(18)

Therefore, we develop a simplified Gilbert model for
packet losses in the simplified Gilbert channel with the
transition probability matrix between the good .p/ state
and the bad .p/ state as 

1� q.p/ q.p/

p.p/ 1� p.p/

!
(19)

where

p.p/ D Pr.�nC1 D 1j�n D 0/;

q.p/ D Pr.�nC1 D 0j�n D 1/
(20)

The packet loss probability in the good .p/ state, denoted

by h.p/g , is 0, and the packet loss probability in the bad .p/

state, denoted by h.p/
b

, is 1.

3.2.2. In the GE channel.

The loss-burst/loss-gap length distributions in the gen-
eral GE channel cannot be derived so easily as in the sim-
plified Gilbert channel. In this section, we first develop a
model to characterize the packet losses in the GE channel
based on the model in the simplified Gilbert channel, and
then derive the loss-burst/loss-gap length distributions.

We now extend the aforementioned packet-level simpli-
fied Gilbert model to the GE channel. In the GE channel,
the transition probability matrix between the good .p/ state
and the bad .p/ state remains the same as that in the sim-
plified Gilbert channel, whereas the packet loss probabil-

ity in the good .p/ state (h.p/g ) is nonzero and equals to

.1 � .1 � hg /
L/. The packet losses in the bad .p/ state

is no longer independent, and the packet loss probability
depends on the number of error bits in a packet. In that
case, to develop a precise model for packet losses accord-
ing to these different loss probabilities, we need to add a
multitude of new states, and the correlations between these
states are strong because of the big number of bits in a
packet and the correlation between the states of two adja-
cent bits in the GE channel. Here, in the bad .p/ state, we
use the average packet loss rate as the packet loss probabil-

ity (h.p/
b

) and construct a first-order Markov model (i.e., a
GE model) in the GE channel approximately.

According to the GE model, the average packet loss rate

equals to
h
.p/
g p.p/Ch

.p/

b
q.p/

p.p/Cq.p/
. Recall that in Section 3.1,

we have derived the average packet loss rate (PLR) in the

communication session, then PLR D
h
.p/
g p.p/Ch

.p/

b
q.p/

p.p/Cq.p/
.

Given the knowledge of PLR, h.p/g , p.p/, and q.p/, we

can derive h.p/
b

by
PLR�.p.p/Cq.p//�h

.p/
g p.p/

q.p/
.

The simplified Gilbert model is a special case of the GE
model. As indicated in [15], the simplified Gilbert model
is of renewal nature; that is, both the loss-burst length
and the loss-gap length are independently distributed. The
loss-burst length and the loss-gap length are then derived
to be geometric distributions with parameters q.p/ and
p.p/, respectively. Yet, the GE model is non-renewable,
and the loss-burst/loss-gap length distributions are difficult
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to derive. In [15], Pimentel and Blake gave a recursive solu-
tion for them using the enumeration theory. In the GE chan-
nel, we then can use such recursive solution to calculate the
loss-burst/loss-gap length distributions.

In what follows, we discuss on the values of h.p/g and

h
.p/
b

on the basis of the typical values of p, q, hg , and hb .
As indicated in [16], with vehicle speeds to be 50 km/h,
modulation frequency f D 900MHz, and Rayleigh fading
envelope � D �10 dB, we have p

q D 9:3. With pedes-
trian speeds to be 2 km/h, the same modulation frequency,
and � D �20 dB, we have p

q D 99:4. hg is usually set

to 1 � 10�5, and hb is set to 0:1. In Figure 5, h.p/
b

is plot-

ted with hg D 1 � 10�5, hb D 0:1, and different q and L
as (1) q D 10�3 and L D 5000, and (2) q D 10�5 and

L D 10 000, respectively. We see that if p is small, h.p/
b

equals to 1. Meanwhile, hg � 1makes h.p/g approach to 0,
which implies that the GE model for packet losses degrades
to the simplified Gilbert model when p is small. p being
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Figure 5. The packet loss probability in the bad.p/ state (h.p/b )
with the increase of p.

small means that the channel is in bad condition as 1
p is

the average period length of bad channel state. In addition
to that, the GE model will be memoryless if p approaches
to 1 as we have p.p/ � 1 � q.p/ in Equation (19). This
matches the analysis in Section 2.3: using the average cor-
relation length of the packet loss rate, we demonstrate
that the correlation between packet losses decreases when
increasing p.

In summary, the GE model for the packet losses will
regress to the simplified Gilbert model when the GE
channel regresses to the simplified Gilbert channel or the
channel is in bad condition, and the GE model will be
memoryless when the channel is in good condition.

3.3. Simulation results

This section demonstrates the accuracy of the derived
closed-form models for the average packet loss rate and
the loss-burst/loss-gap length distributions in different
settings.

3.3.1. Average packet loss rate.

Figure 6 shows the effects of L, p, and q on the packet
loss rate when hg D 5 � 10�6 and hb D 0:9. The
parameters p, q, and L, in Figure 6(a)–(c) are, respec-
tively, p D 5 � 10�6; q D 10�6; L 2 Œ2000; 70 000�;
p 2 Œ10�7; 10�5�; q D 10�6; L D 8000; and p D

5 � 10�6, q 2 Œ10�7; 10�5�, L D 8000. We observe that
the average packet loss rate increases with L increasing,
indicating that increasing the packet length would incur
more transmission errors; and the average packet loss rate
increases monotonically with p decreasing or q increas-
ing as the channel condition becomes worse in this case.
Our result 1 and Our result 2 refer to the derived anal-
ysis without simplification and with the simplification in
Equation (10), respectively. It can be seen that our results
without simplification are accurate for different L, p, and
q. In Figure 6(b) and 6(c), the results with the simplifica-
tion in Equation (10) are inaccurate when p is close to or
smaller than q, and they match the simulations well when
p > q. This indicates that Equation (10) is accurate enough
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Figure 6. Packet loss rate (PLR) with the increases of L, p, and q.
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to predict the packet loss rate of the wireless channel in
good channel condition.

3.3.2. Loss-burst/loss-gap lengths.

In this experiment, we evaluate the loss-burst/loss-gap
length distributions and the average loss-burst/loss-gap
lengths by changing p in the range of Œ10�4; 0:9� and set-
ting other parameters as q D 7 � 10�4; L D 1000; hg D

10�5; hb D 0:5.
Figure 7 shows the PMFs of the loss-burst length with

different p. From Figure 7(a)–(d), we can see that our
results are slightly inaccurate when p D 10�4 and with
acceptable accuracy when p D 10�3. The results accu-
rately match the simulations when p D 5�10�3. However,
the accuracy slightly decreases when p D 0:9. The gap
between the simulations and analysis mainly attributes to
the approximation we have made to calculate Pr.E D 1/

in the analysis of the loss-burst length distribution (see
Appendix B for details). Figure 8 shows the PMFs of
the loss-gap length. The accuracy of the loss-gap length
is not sensitive to p, and our results are accurate for all

p. Figure 9 shows the effects of p on the average loss-
burst/loss-gap lengths. The results for both the average
loss-burst and the average loss-gap length are accurate for
all p.

In summary, our results matches the simulations very
well, and there exist a slight error when the probability of
loss-burst length equals to 1.

4. PROTOCOL IMPROVEMENTS

To know the packet loss rate and the loss-burst/loss-gap
lengths is key for the evaluation or optimization of com-
munication protocols and algorithms. For example, the
packet loss rate is an important metric to design FEC codes,
ARQ, and adaptive packetization schemes [17–19]; the
loss-burst/loss-gap lengths can be applied to the design of
the retransmission time and the route protocols [7]. The
existing methods to predict the packet loss rate and the
loss-burst/loss-gap lengths, however, are often complicate
yet not accurate enough.

(a) p = 10−4. (b) p = 10−3.
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Figure 7. The probability mass function (PMF) of the loss-burst length with different p.
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Figure 8. The probability mass function (PMF) of the loss-gap length with different p.
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Figure 9. The average loss-burst/loss-gap lengths with the increase of p.

In the previous sections, we have derived the closed-
form expressions of the average packet loss rate and
the average loss-burst/loss-gap lengths. On the basis
of the results, in what follows, we propose an ana-
lytical method to predict the packet loss rate and
the loss-burst/loss-gap lengths in wireless networks,
and design a transmission-delay-constrained and failure-
probability-constrained packetization scheme accordingly
as an example to showcase the implementation of the
analytical models.

4.1. Prediction of channel performance

As indicated in [16], with a specific digital modulation
scheme and knowing the parameters of the channel fad-
ing model, such as the maximum Doppler frequency and
the fading envelope, we can derive the parameters of the
bit-level GE model, that is, p, q, hg , and hb (Phase I).
In this paper, we bridge the bit-level GE model with the
packet loss rate in Section 3.1 and the loss-burst/loss-gap
lengths in Section 3.2 (Phase II). By combining the two
phases, we can derive the packet loss performance given

the parameters of the channel fading model. The compu-
tation complexity of this prediction method is constant as
the computation complexities of the two phases are both
constant. In addition, our update interval is adapted to the
dynamics of the fading model parameters, and it is longer
than the update interval in previous work, which typically
updates the packet loss performance after the delivery of
each packet [17,18]. Therefore, our prediction method is
faster and can be used for the evaluation and optimiza-
tion of wireless communications more conveniently than
previous work.

4.2. Application for packetization design

Let td and pf denote the expected transmission delay and
failure probability, respectively. Our goal is to maximize
the payload of transmission with bounded delay and failure
probability, mathematically,

Lopt W maximize
L

L

s:t:; td � Td ;

pf � Pf

(21)
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where Td and Pf denote the upper bounds of transmis-
sion delay and failure probability, respectively. Given the
parameters of the channel fading model, we first derive the
bit-level parameters (i.e., p, q, hg , and hb), then derive
the packet loss rate PLR. Combining with the maximum
retransmission number m and the channel capacity band-
width B , the transmission delay and failure probability of
packets are functions of the packet length L as

td D
L

B

mX
iD0

.i C 1/.1�PLR.Lj //PLR.Lj /
i ; (22)

pf D 1�

mX
iD0

.1�PLR.Lj //PLR.Lj /
i : (23)

By substituting Equations (22) and (23), Lopt can be
optimally solved.

The packet length L is updated correspondingly at each
interval T on the basis of Lopt. Here, the interval T is
adapted to the dynamics of the fading model parameters.

Most previous work [17,18] to design packetization
schemes assumes that the bit errors are IID for simplic-
ity, and then to derive the packet loss rate, denoted as
PLRIID, by PLRIID D 1 � .1 � pb/

L, where pb is the
bit error probability. The packetization scheme [17,18],
which uses PLRIID to predict the packet loss rate and
updates the packet length after the delivery of each packet,
is called the IID-based scheme. In what follows, we com-
pare our solution of Lopt with the IID-based scheme using
simulations.

In the simulation, a node sends packets to a base sta-
tion. We set Td D 2 ms, Pf D 10�3, the modulation
frequency f D 900 MHz, and the Rayleigh fading enve-
lope � D �20 dB. The moving speed of the node varies
between 2 and 50 km/h. The protocol header (MAC+PHY
header) size is 416 bits. We define the effective throughput
of wireless channels as the transmission rate of payloads.
From Figure 10, we can see that the effective throughput
of the proposed scheme is more than 10% higher com-
pared with the IID-based scheme. Figure 11 shows the
PMFs of the transmission delay and the failure probability.
As we can see, the results of both the schemes can meet
the transmission-delay bound (2 ms) and the transmission-
failure-probability bound (0:001). Most transmission fail-
ure probabilities from the schemes are much smaller than
the bound, indicating that the main restriction on packet
length is the delay bound in this simulation. Moreover,
using our scheme the average transmission delay is more
close to 2 ms compared with that achieved by using the
IID-based scheme, and the distributions of transmission
failure probability of the two schemes are very simi-
lar. In summary, by applying our prediction mechanism,
the proposed packetization scheme can meet the require-
ments of the delay or packet-loss-sensitive services, and
achieve a better balance among transmission delay, fail-
ure probability, and effective throughput to improve the
service performance.
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Figure 10. The throughput comparison of two packetization
schemes.
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5. RELATED WORK

The phenomenon of packet loss burstiness in wireless
channels has been observed in many early works, and
how to measure the packet loss burstiness and address the
burstiness in protocol designs are intensively pursued.

The typical mathematical metrics for describing the
inter-correlations of a sequence, such as the autocorrela-
tion and CPDF, can be used to measure the packet loss
burstiness. However, the autocorrelation is inconvenient
to help design protocols because it does not distinguish
the loss gaps from the loss bursts. The CPDF is more
informative and powerful than the autocorrelation, but can-
not be directly applied for protocol designs because of its
complexity. Consequently, some metrics to guide protocol
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designs are developed on the basis of CPDF, such as ˇ and
� described next.

Aguayo et al. [5] observe the packet loss burstiness in
a 802.11b mesh network and use the Allan deviation [6]
of PRR over different time scales to measure the bursti-
ness of packet losses. The Allan deviation is large when
the time interval is near the packet-loss-burst length, and it
is small for other time intervals. Then, the Allan deviation
is an indirectly metric through which we can obtain the
packet-loss-burst length approximately. The packet-loss-
burst length is very helpful for network designs, while it
is not so powerful to represent the packet loss burstiness,
because it is hard to distinguish the wireless channel with
burst losses from the wireless channel with independent
packet losses through their loss-burst lengths.

Srinivasan et al. [7] studied the bursty losses in various
802.15.4 wireless sensor networks and proposed a met-
ric ˇ that uses the concept of CPDF for measuring the
burstiness. By analyzing the different values of ˇ in dif-
ferent time intervals, we can find the smallest time interval
with which the burstiness of packet losses is minimized.
Then, we can pause for this smallest time interval to send
the next packet after encountering a transmission failure.
Such algorithm can break the packet loss correlations, and
it is called opportune transmission, which can reduce the
average transmission cost by 15%. Actually, the average
packet-loss-burst length can also be used to design this
algorithm instead of the smallest time interval obtained
from the metric ˇ.

All the aforementioned metrics are empirical; that is,
they are more suitable to be derived from real network mea-
surements. There are also some works for modeling packet
losses using theoretical models, and such models could be
extended to measure the packet loss burstiness. In the GE
model [11,20], which is a popular model for wireless chan-
nels, the metric � is proposed to reveal the burstiness [13].
The larger the � is, the more bursty the wireless chan-
nel is. The metric � is also an effective metric to reveal
the channel capacity, and it can be used to improve the
channel capacity.

Our proposed metric, average correlation length of
packet loss rate, is also derived from the theoretical model.
It, however, is more effective to represent the packet loss
burstiness than previous metrics, and it provides a new
means for the evaluation or optimization of communication
protocols and algorithms, that is, to derive the closed-form
solutions on the packet loss rate and the loss-burst/loss-gap
length distributions.

6. CONCLUSION

In this paper, we have developed a new metric called aver-
age correlation length of packet loss rate to dimension the
packet loss burstiness in a generic GE wireless channel.
We have derived the closed-form analytical models for the
packet loss performance, including the average packet loss
rate and the loss-burst/loss-gap length distributions. These
derived results can help to evaluate or optimize wireless
communications conveniently. We have taken a packetiza-
tion scheme as an example to show the improvements. In
the future work, we will study the burstiness of the packet
losses caused by on-top protocols, such as MAC protocols
and FEC schemes.

APPENDIX A: PROOF OF LEMMA 1

In segment n, denote the length of the first pair of G-run
and B-run as Pn, and the length of the left pairs of G-runs
and B-runs asQn. Assume that there are C .C � 0/ pack-
ets, as shown in Figure 2. We then obtain Equation (A1) on
the basis of the definitions of Rn and segment n.

Rn�1CC �LDRnCQnCPn;

Pn > .C � 1/ �LCRn�1;

PnC1 >Rn

(A1)

Denote the sum of aG-run length and an adjacent B-run
length in segment n as Zn. Then, from Equation (A1) and
the distribution of Zn, we can derive the distributions of
Pn and Qn as in Equation (A2).

Pr.Pn D z/D

�
Pr.Zn D z/; .C � 1/ �LC j C 1� z � C �LC j � r � 2 �D;

0; else;

Pr.Qn D z/D

�
Pr.D �Zn D z/ ; z D C �LC j � r �Pn;

0; else

(A2)

where Rn D r , Rn�1 D j , and D is the number of pairs
of G-runs and B-runs in Qn.

Thus, Pr.Rn D r jRn�1 D j / is derived by

1X
CD1

.L�r�1/=2X
DD0

C �LCj�r�2�DX
zD.C�1/�LCjC1

Pr .Zn D z/ � Pr.D �Zn D C �LC j � r � z/ Pr.ZnC1 > r/ (A3)
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On the basis of Equation (A3), we use mathematical
induction to prove that the PMF ofRn is as Equation (1).

(I) We show that the PMF of R1 is as Equation (1).
Pr.Rn D r/ can be calculated as

L�1X
jD0

Pr .Rn D r jRn�1 D j / Pr.Rn�1 D j / (A4)

By denoting that R0 D j (j can be any value
between 0 and L � 1), we have Pr.R0 D j / D 1.
Combining with Equation (A3), we can then derive
the PMF of R1 as Equation (1).

(II) Assuming that the PMF of Rn�1 can be derived
by Equation (1) and substituting Equation (A3) into
Equation (A4), we can derive the PMF of Rn as
Equation (1).

Combining I and II, we conclude that the PMF of Rn.nD
0; 1; 2 : : :/ is given by Equation (1).

Moreover, we obtain Pr.Rn D r/ D Pr.Rn D
r jRn�1 D j / from Equation (A3); thus, Rn�1 and Rn are
independent.

APPENDIX B: DERIVATION OF THE
LOSS-BURST/LOSS-GAP LENGTH
DISTRIBUTIONS

From Equation (12), the PMF of E can be obtained as

Pr.E D k/D ..1�q/L/k�1.1� .1�q/L/ k � 1 (B1)

Denoting by Wj .k/ D
nl
MnCjCXnCj

L

m
D k;AnCj

< L
o
, we have

Pr.Wj .k//D

8̂̂
ˆ̂̂<
ˆ̂̂̂̂:

0
@ 0X
aD2�L

L�aX
xD1�a

C

L�1X
aD1

L�aX
xD1

1
APr.AnCj D a/ Pr.XnCj D x/ k D 1;

L�1X
aD2�L

k�L�aX
xD.k�1/�LC1�a

Pr .AnCj D a/ Pr.XnCj D x/ k > 1

(B2)

The value of Pr.Wj .1// is a bizarre point. For ease
of computation, it is necessary to ignore the difference
between the expressions of Pr.Wj .k// when k D 1 and
k > 1 in Equation (B2) and make an approximation that
Pr.Wj .k// is calculated by

L�1X
aD2�L

k�L�aX
xD.k�1/�LC1�a

Pr .AnCjDa/Pr.XnCjDx/.k�1/

(B3)
The accuracy of this approximation is investigated in

Section 3.3.2. After normalization,
Pr.Wj .k//

Pr.AnCj<L/
is derived

as ..1� p/L/k�1.1� .1� p/L/. Similarly, we can derive

Pr.
l
MnCjCXnCj

L

m
D k/ D ..1 � p/L/k�1.1 � .1 �

p/L/. Therefore, Pr.Wj .k// D Pr.
l
MnCjCXnCj

L

m
D

k/Pr.AnCj < L/.

In addition,

0
@m�1[
jD0

�
MnCj CXnCj

L

�
DNe;nCj

1
A is

the sum of m independent variables following the geo-
metric distribution with parameter 1 � .1 � p/L. This is
a negative binomial distribution, and the probability func-
tion is f .m; k/ D .k�1/Š

.k�m/Š.m�1/Š
.1 � .1 � p/L/m..1 �

p/L/k�m .1 � m � k/. From Equation (13), F is then
derived by

Pr.F D k/

D

kX
mD1

f .m; k/.Pr.A < L//m�1.1� Pr.A < L//

D .Pr.A < L/ � .1� .1� p/L/C .1� p/L/k�1

� .1� .Pr.A < L/ � .1� .1� p/L/C.1� p/L// k�1

(B4)

where Pr.A < L/D
L�1X
aD2�L

Pr.AD a/.
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