
1

A Lightweight Encryption Scheme for
Network-Coded Mobile Ad Hoc Networks

Peng Zhang, Chuang Lin, Senior Member, IEEE, Yixin Jiang, Yanfei Fan, and
Xuemin (Sherman) Shen, Fellow, IEEE

Abstract—Energy saving is an important issue in Mobile Ad Hoc Networks (MANETs). Recent studies show that network coding can
help reduce the energy consumption in MANETs by using less transmissions. However, apart from transmission cost, there are other
sources of energy consumption, e.g., data encryption/decryption. In this paper, we study how to leverage network coding to reduce
the energy consumed by data encryption in MANETs. It is interesting that network coding has a nice property of intrinsic security,
based on which encryption can be done quite efficiently. To this end, we propose P-Coding, a lightweight encryption scheme to provide
confidentiality for network-coded MANETs in an energy-efficient way. The basic idea of P-Coding is to let the source randomly permutes
the symbols of each packet (which is prefixed with its coding vector), before performing network coding operations. Without knowing the
permutation, eavesdroppers cannot locate coding vectors for correct decoding, and thus cannot obtain any meaningful information. We
demonstrate that due to its lightweight nature, P-Coding incurs minimal energy consumption compared to other encryption schemes.

Index Terms—Mobile ad hoc networks, energy saving, network coding, lightweight encryption.

�

1 INTRODUCTION

MOBILE Ad Hoc Networks (MANETs) are important
wireless communication paradigms. The mobile

and infrastructureless nature of MANETs makes them
suitable for collecting emergency data in disastrous areas
and performing mission-critical communication in battle
fields. A critical issue in MANETs is how to reduce
energy consumption and maintain a longer life time
for mobile nodes. Several energy-efficient schemes are
proposed to resolve this issue [2]–[4].

Recent studies demonstrate that network coding [5]
can help achieve a lower energy consumption in
MANETs [6]–[8]. The energy saving comes from fact that
less transmissions are required when in-network nodes
are enabled to encode packets. The basic idea can be
illustrated using the following example. Suppose there
are six nodes forming a hexagon, and the transmission
range of each node can only reach its left and right
neighbor. Each node needs to broadcast one message to
all other nodes. Without network coding, each message
would require four broadcasts, as shown in Fig. 1(1).
With network coding (Fig. 1(2)-(4)), a total number of
nine transmissions are needed for three messages, i.e.,
three transmissions per message. If we would not con-
sider the energy consumed by encoding and decoding
operations, this means 1/4 energy can be saved.

Besides basic transmissions, energy consumption can
also come from encryption and decryption operations at

• P. Zhang, C. Lin, and Y. Jiang are with Dept. of Computer Science and
Technology, Tsinghua University, Beijing, China.
Email:{pzhang, clin, yxjiang}@csnet1.cs.tsinghua.edu.cn

• Y. Fan and X. Shen are with Dept. of Electrical and Computer Engineering,
University of Waterloo, Waterloo, Ontario, Canada.
Email: {yfan, xshen}@bbcr.uwaterloo.ca

Part of this work was presented in IEEE INFOCOM’10 [1].

Fig. 1: Example illustrating how network coding reduces
transmission times in MANETs. The shaded nodes are
those involved in transmissions.

each node, as most MANETs need some level of protec-
tion on their content. For example, in a battle field, the
data communicated between soldiers with mobile de-
vices can be very sensitive, and should be kept confiden-
tial during transmissions. The straightforward approach
to provide confidentiality for network-coded MANETs
is to encrypt the packet payload using symmetric-key
encryption algorithms. While this method is not that
efficient: reference [9] shows that on a Motorola’s “Drag-
onBall” embedded microprocessor, it consumes around
13.9μJ to send a bit, while consumes another 7.9μJ per
bit when symmetric-key algorithms are used. In fact, the
information mixing feature of network coding provides

Digital Object Indentifier 10.1109/TPDS.2013.161 1045-9219/13/$31.00 © 2013 IEEE

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2

an intrinsic security, based on which a more efficient
cryptographic scheme can be designed. Vilela et al. [10]
propose such a scheme, in which the source performs
random linear coding on the messages to be sent and
locks/encrypts the coding vectors using the symmetric
key shared between it and all sinks. Fan et al. [11]
propose to encrypt coding vectors using Homomorphic
Encryption Functions (HEFs) in an end-to-end manner.
Due to the homomorphic nature of HEFs, network cod-
ing can be performed directly on the encrypted coding
vectors, without impacting the standard network coding
operations. However, the above two approaches have
large overhead with respect to either computation or
space, and may not be suitable for MANETs.

In this paper, we attempt to design a new encryp-
tion scheme that can fully exploit the security prop-
erty of network coding. Since both the coding vectors
and message content are necessary for decoding, randomly
reordering/mixing them will generate considerable confusion
to the eavesdropping adversary. In specific, we propose P-
Coding, a lightweight encryption scheme to fight against
eavesdroppers in network-coded MANETs. In a nutshell,
P-Coding randomly mixes symbols of each coded packet
(packet prefixed with its coding vector) using permutation
encryption, to make it hard for eavesdroppers to locate
coding vectors for packet decoding.

Our contribution is two-fold: (1) we propose a new
encryption scheme which is lightweight in computation
by leveraging network coding, which makes it very
attractive in network-coded MANETs to further reduce
energy consumption; and (2) we present an analysis on
the intrinsic weak security provided by network coding,
which is more accurate than [12]. We show that network
coding is inherently weakly-secure with high probability,
when the coding vectors are randomly chosen over a
large finite field.

The remainder of this paper is organized as follows.
Section 2 presents the system model and security model.
Section 3 evaluates the intrinsic security provided by net-
work coding. Section 4 introduces the P-Coding scheme
and its enhanced version, and their security is analyzed
in Section 5. Section 6 evaluates the performance of P-
Coding with analysis and experiments. 7 surveys some
related works on secure network coding, followed by a
conclusion in Section 8.

2 PROBLEM STATEMENT

2.1 System Model
We consider a typical MANET consisting of N nodes,
each of which can be a source. The MANET can be
modeled as an acyclic directed graph G = (V,E). For
each node v ∈ V , there is a link from v to u if u is
within v’s transmission range. Let Γ−(v) be the set of
links terminating at v, and Γ+(v) be the set of links
originating from v. We assume that each link e ∈ E has
the capacity of one packet per unit time, and y(e) is the
packet carried on it. Here a packet is defined as a row

vector of l elements from finite field Fq . We also assume
that linear network coding is enabled in this network. To
illustrate how network coding works, let us consider the
case that one node s needs to deliver a series of packets
xi, . . . ,xh to a set of sinks T ⊂ V . Define the matrix of
source packets as X = [xT

i , . . . ,x
T
h]

T , i.e., X consists of
all source packets as its rows. For simplicity, let Γ−(s)
consists of h imaginary links, ẽ1, . . . , ẽh, with y(ẽi) = xi.
Then for any e ∈ Γ+(v), v /∈ T , y(e) is calculated by
linearly combining the incoming packets of v as:

y(e) =
∑

e′∈Γ−(v)
βe′(e)y(e

′) = β(e)[yT (e′)]Te′∈Γ−(v) (1)

where the coefficients βe′ are chosen over Fq , and the
row vector β(e) = [βe′]e′∈Γ−(v) is termed as the Local
Encoding Vector (LEV) of link e. By induction, y(e) can be
represented as the linear combination of source packets:

y(e) =
h∑

i=1

gi(e)xi = g(e)X (2)

where g(e) = [g1(e), . . . , gh(e)] can be calculated re-
cursively using Eq. (1), and is termed as the Global
Encoding Vector (GEV) of link e. Assume that h packets
y(e1), . . . , y(eh) are received by a sink node v from links
e1, . . . , eh. Then, by applying Eq. (2), we have:

Y =

⎡
⎢⎣
y(e1)

...
y(eh)

⎤
⎥⎦ =

⎡
⎢⎣
g(e1)

...
g(eh)

⎤
⎥⎦X = GX (3)

where G is termed as the Global Encoding Matrix (GEM)
of node v. Since G is invertible with high probability
when q is sufficiently large [13], v can reconstruct source
messages X by calculating X = G−1Y .

In practice, the source prefixes each packet xi with the
ith unit vector ui:

[ui,xi] = [0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
h−i

, xi,1, . . . , xi,l] (4)

where each ui is termed as a tag. With the same coding
operations performed on these tags, each packet will
automatically contain its GEV.

2.2 Security Model
Informally, the adversary considered in this paper aims
at intercepting packets and decoding them to harvest
meaningful information. It can act as an external eaves-
dropper to monitor network links, and/or as an internal
eavesdropper to compromise intermediate nodes and read
their memories. For any eavesdropping attack W , let
E′ ⊂ E denote the set of links being monitored, and
V ′ ⊂ V denote the set of nodes being compromised.
We characterize the attack W as the set of packets
intercepted by the adversary:

W = {y(e) : e ∈ E′ ∪ Γ−v ∪ Γ+v , v ∈ V ′} (5)

Then, an adversary can be defined as a set A = {Wi},
i.e., it can launch any attack belonging to A. Let Wi be
a matrix whose rows contain all linearly independent

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

3

GEVs of packets in Wi. Let ki be the number of rows in
Wi. Then the capability of the adversary can be defined
as k = maxi ki. We say A is k-capable if it has capability k,
and we say A is global if k = h. With the adversary model
given above, we consider the following three different
levels of security for network-coded systems:

1) Shannon Security [14]: The system is said to be Shan-
non secure (perfectly secure), if the adversary cannot get
any information about the source messages X from the
intercepted packets, which can be formulated as:

H(X|Wi) = H(X), ∀Wi ∈ A (6)

2) Weak security [12]: If no meaningful information
about the source messages X can be derived from the
packets intercepted by adversary, the system is said to
be weakly secure, which can be formally stated as:

H(xi|Wi) = H(xi), ∀xi ∈ X; ∀Wi ∈ A (7)

The difference between Shannon security and weak
security can be illustrated using the following simple
example: Suppose the eavesdropper Eav has intercepted
one bit a ⊕ b, where a and b are two i.i.d bits from
the source. Then Eav obtains one bit of information
about a and b, and the system is clearly not Shannon
secure. However, Eav cannot recover either a or b, i.e.,
no meaningful information is leaked about either a or b.
The system is said to be weakly secure.

3) Computational Security [15]: Computational secu-
rity is based on the assumption that the adversary is
resource-bounded. It is satisfied if the amount of effort
to recover any meaningful information about ∀xi ∈ X
using the best currently-known methods exceeds com-
putational resources of the adversary.
Remarks: In this paper, we will not consider Shannon
security, as it is only achievable under ideal assumption
that the adversary can only monitor a limited number of
links [16]. In other words, Shannon security cannot be
achieved when there are global eavesdroppers. As for
weak security, we will show that given that the finite
field size is sufficiently large and the adversary is less
than h-capable, network coding is inherently weakly
secure with high probability. Computational security
will be our main focus, as it can be achieved using
cryptographic approaches.

3 INTRINSIC SECURITY OF NETWORK CODING

In this section, we will demonstrate the weak security
property of network coding through two theorems. The
first one states that under certain assumptions, network
coding is inherently weakly secure with high probability;
while the second considers the smart adversary which
can guess some combinations of the source messages.

We consider the Random Linear Network Coding
(RLNC) model [13], where coding coefficients (i.e., el-
ements of LEVs) are chosen randomly from finite field
Fq .
Theorem 1. For sufficiently large value of q, the proba-
bility that the adversary of capability k < h will not get

any meaningful information can be approximated as:

Pws(k) =

k∏
i=1

(1− hqi−h + hqi−h−1) (8)

Proof: See Appendix A.
We show our approximate result (i.e., Theorem 1) and

that of Bhattad’s [12] in Fig. 2. For comparison, we also
include the accurate Pws(k) using the value of M(0, k)
calculated by Eq. (18). From Fig. 2, we can see that if
the size of finite field is sufficiently large, the probability
of weak security can be made arbitrarily high. Moreover,
our approximate result is closer to the accurate one,
compared to the result given by Bhattad’s.

Next we consider a more general case where a smart
adversary can accurately guess some linear combinations
of source messages. The adversary is also allowed to
choose the linear coefficients for the combinations. In
a successful case for the adversary, it can solve more
than g messages with only g guesses. We then evaluate
the probability for network coding to resist this guessing
threat.
Theorem 2. The probability that the smart adversary can
only solve g messages by g guesses is:

Pgws(k, g) = 1− | ∪1≤t≤h−g Gt|/qhk, (1 ≤ g < h− k) (9)

where Gt = {Wi : ∃{r1, . . . , rt} ⊂ (span(I1, . . . , Ig+t) ∩
span(Wi))}, each Ii, (1 ≤ i ≤ h) is a unit row vector of
dimension h, and Ii
= Ij for i
= j.

Proof: See Appendix B.

4 P-CODING: THE PROPOSED SCHEME

This section defines permutation encryption, based on
which we introduce P-Coding, a lightweight encryption
scheme. Then, we introduce an enhanced scheme to
further improve the security of P-Coding.

4.1 Permutation Encryption
We formalize the concept of permutation encryption as
a special case of the classic transposition cipher [15].
Notations: We term a sequence π containing each ele-
ment of set 1, . . . , n once and only once as a permutation
with length n. Let π(i) be the ith element of π, then
the product of two permutations π1 and π2, defined by
π1◦π2, or π1π2 is calculated using π1π2(i) = π1(π2(i)). Let
π−1 be the inverse of π with respect to product operation.
Definition 1. Let m = [m1,m2, . . . ,mn] be a sequence
of symbols from finite field Fq , and k be a permutation
with length n, then the Permutation Encryption Function
(PEF) on m using key k is defined as:

Ek(m) = [mk(1),mk(2), . . . ,mk(n)] (10)

Similarly, we can define the Permutation Decryption Func-
tion on c using key k as Dk(c), satisfying Dk(Ek(m)) =
m. Here, the permutation k is termed as the PEF key.
Remarks: Note that permutation encryption is quite
simple and vulnerable to cryptographic analysis [17].

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4

20 40 60 80 100

0.98

0.99

1

Field Size

S
ec

ur
ity

 P
ro

ba
bi

lit
y

Exact Result
Approximate Result
Bhattad’s Result

(a) h = 7, k = 4.

20 40 60 80 100

0.85

0.9

0.95

1

Field Size

S
ec

ur
ity

 P
ro

ba
bi

lit
y

Exact Result
Approximate Result
Bhattad’s Result

(b) h = 7, k = 5.

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Field Size

S
ec

ur
ity

 P
ro

ba
bi

lit
y

Exact Result
Approximate Result
Bhattad’s Result

(c) h = 7, k = 6.

Fig. 2: Security probability vs. field size.

However, we try to use it on top of network coding
to generate considerable confusion to the adversary. It
may work in the context of network coding, as packets
in network coding are linear combinations of original
packets. To decode it, we need GEVs. Randomly per-
muting the packet symbols can make the eavesdropper
unable to locate the GEVs and thus fail to decode the
packets. Detailed proof will be given in Section 5.

4.2 The P-Coding Scheme

Fig. 3: Permutation encryption on coded messages.

The basic idea of P-Coding is to perform permutation
encryptions on coded messages, as shown in Fig. 3.
After PEF operations, symbols of the messages and cor-
responding GEVs can be mixed and reordered together.
We will show in Section 5 that such PEF operations can
generate considerable confusions to the adversary.

The P-Coding scheme primarily consists of three
stages: source encoding, intermediate recoding, and sink
decoding. Without loss of generality, we assume that
there is a Key Distribution Center (KDC) responsible
for symmetric key establishment, so that the source and
sinks can share a PEF key k at the bootstrap stage of
P-Coding.
Source Encoding: Consider the situation that a source s
has h messages, denoted by column vectors x1, . . . ,xh,
to be sent out. It first prefixes these h messages with
their corresponding unit vectors, according to Eq. (4).
Then the source performs linear combinations on these
messages with randomly chosen LEVs. For instance,
with LEV β(ei) of output link ei, we can get the
coded message y(ei) = [β(ei),β(ei)X], where X =
[xT
1 , . . . ,x

T
h]

T . Finally, the source performs permutation

encryption on each message y(ei) to get its ciphertext
c[y(ei)] = Ek[y(ei)].
Intermediate Recoding: Since the symbols of messages
and corresponding GEVs are rearranged via PEF, and
the intermediate nodes have no knowledge of the key
being used, it is rather difficult for them to reconstruct
source messages. On the other hand, as permutation
encryptions are exchangeable with linear combinations,
intermediate recoding can be transparently performed
on the encrypted messages:

c[y(ei)] = c[
∑

e′∈Γ−(v)
βe′(e)y(e

′)] =
∑

e′∈Γ−(v)
βe′(e)c[y(e

′)]

Note that this transparency property makes P-Coding
rather efficient, since no extra effort is needed at any
intermediate node.
Sink Decoding: For each sink node, on receiving a
message c[y(ei)] from its incoming link ei ∈ Γ−(v), it
decrypts the message by performing permutation de-
cryption on it:

Dk{c[y(ei)]} = E−1k {Ek[y(ei)]} = y(ei) (11)

Once h linearly independent messages y(e1), . . . , y(eh)
are collected, the sink derives the following matrix rep-
resentation similar to 3:

Y =

⎡
⎢⎣
y(e1)

...
y(eh)

⎤
⎥⎦ =

⎡
⎢⎣
g(e1), g(e1)X

...
g(eh), g(eh)X

⎤
⎥⎦ = [G,GX] (12)

Finally, the source messages can be recovered by ap-
plying Gaussian eliminations on Y :

Y = [G,GX]
Guassian−−−−−−−−→

elimination
[I,X] (13)

4.3 The Enhanced P-Coding Scheme
In practical network coding applications (e.g., dis-
tributed content distribution [18]), the source may need
to transmit a large volume of data D. In this case, the
source should first divide D into generations:

D = [x1, . . . ,xh︸ ︷︷ ︸
G1

, . . . ,x(n−1)h+1, . . . ,xnh︸ ︷︷ ︸
Gn

, . . .]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

5

Then D is sent as a stream of generations, with net-
work coding only performed among messages belonging
to the same generation. In P-Coding, if the same PEF key
is used throughout the transmission, single generation
failure may occur, in which an accidental key disclosure
in one generation will compromise the secrecy of the
following transmission.

We address this problem by randomly perturbing the
key used in each generation. More specifically, for each
generation Gi, let the PEF key be used in Gi as ki. Before
each generation of data transmission, the source S con-
ducts the following three steps: (1) S chooses a random
permutation ωi of length n, termed as the perturbing key;
(2) S updates ki, using the equation ki = ωi ◦ ki−1,
where ◦ denotes the product of two permutations; (3) S
encrypts ωi using another cryptographic approach (e.g.,
AES [19]), and sends the ciphertext of ωi to all sinks who
can similarly update ki.

If the perturbing key ωi is randomly chosen each gen-
eration and communicated securely between the source
and sinks, this scheme can effectively prevent the sin-
gle generation failure. However, the scheme will also
inevitably incur some space overhead as the perturbing
key should be transmitted in each generation. One pos-
sible implementation is to prefix each packet of the ith
generation with the ciphertext of ωi. Considering that
each perturbing key is of length n, the same with a
tagged packet, this scheme will incur 100% space over-
head if no extra measure is taken, clearly not feasible. In
the following, we will show how to make this scheme
more efficient.

Definition 2. Suppose π is a permutation with length n,
if π(i) = i holds for each i /∈ [s, s + m − 1] ⊆ [1, n], we
say that π is m-partial.

For a partial permutation, some elements of it are in
their original positions. It can be seen that an m-partial
permutation with length n can be represented by an
integer s ∈ [0, n−m+ 1] and a permutation with length
m. Thus, we can decrease the length of the key to m, by
using an m-partial permutation as the perturbing key.

Next, we consider compressing the m-partial per-
mutation to an integer d ∈ [0,m! − 1] for efficient
transmission. To achieve this, we must find a one-to-
one correspondence between integers and permutations,
so that given an integer it is efficient to calculate the
corresponding permutation. Therefore, we introduce the
following proposition.

Proposition 1. There is a one-to-one correspondence
between integers n ∈ [0,m!−1] and permutations π with
length m.

Proof: From basic combinatorics, any n ∈ [0,m! − 1]
can be uniquely represented as:

n = am−1(m− 1)! + am−2(m− 2)!+, . . . ,+a1 · 1! (14)

where ai ∈ [0, i] can be calculated using two recursive
formulas: ai = ni%(i + 1) and ni+1 = �ni/(i + 1)�,
with initial condition n1 = n. Construct a sequence

b1, . . . , bm−1 from a1, . . . , am−1, with bi = m − am−i,
and we have bi ∈ [i,m]. Define a permutation ω =
(1, 2, . . . ,m), and perform m rounds of operations: in
the ith round, exchange the elements of ω(i) and ω(bi).
Then, the resultant ω is the corresponding permutation
of length m. Since the above construction is a one-to-one
correspondence, the proposition is proven.

Based on this proposition, we propose Algorithm 1,
which aims to perturb the key using five parameters, of
which k is the current PEF key; n denotes the length
of the tagged packet; m denotes the partiality of the
perturbing key; s and d are chosen randomly from their
respective domains to represent the perturbing key.

Algorithm 1: Key Pertrubing Function
Input: a permutation k of length n, integers

n,m, s, d with 1 ≤ m ≤ n, s ∈ [0, n−m+ 1]
and d ∈ [0,m!− 1]

Output: a perturbed permutation k̃ of length n
// to generate the sequence (a1, . . . , am−1)
foreach i ∈ [1,m− 1] do

a(i) ← d%(i+ 1) ;
d = �d/i+ 1� ;

end
// to generate the sequence (b1, . . . , bm−1)
foreach i ∈ [1,m− 1] do

b(i) ← m− a(m− i) ;
end
// Initialization
foreach i ∈ [1, n] do

ω(i) ← i ;
end
// to calculate the partial permutation
foreach i ∈ [1,m− 1] do

ω(s− 1 + i) ↔ ω(s− 1 + b(i)) ;
end
// to perturb the current key k using ω
foreach i ∈ [1, n] do

k̃(i) ← ω(k(i)) ;
end
return k̃ ;

In the enhanced P-Coding scheme, we can employ
symmetric encryptions to secure the transmission of
perturbing key (s, d) from the source to sinks. Another
possible approach is to let the source and sinks share a
common Pseudo Random Number Generator (PRNG),
so that the perturbing key (s, d) can be generated by the
source and sinks in a distributed manner.

5 SECURITY ANALYSIS

In this section, we will analyze the security property of
the proposed P-Coding scheme, both theoretically and
with experimental validation. We will show the condi-
tion for permutation encryption to be secure based on

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6

elementary probability models, and demonstrate that P-
Coding provides a relatively high level of confidentiality.
The experimental validation confirms our analysis that
P-Coding is much more secure than the naive transpo-
sition cipher.

5.1 Theoretical Model

We represent the message to be encrypted as a ran-
dom vector M = [M(1), . . . ,M(n)] over finite field
Fq . Similarly, we represent the PEF key and corre-
sponding ciphertext as K = [K(1), . . . ,K(n)] and C =
[C(1), . . . , C(n)], respectively. For sake of notations, we
define equivalent events {K = k} =

⋂n
i=1{K(i) = k(i)},

{M = x} =
⋂n

i=1{M(i) = xi}, and {C = x} =⋂n
i=1{C(i) = xi}. To simplify our analysis, assume the

field size q is sufficiently large, so that the sequence
M will not include duplicate symbols, i.e., P (M(I) =
M(J)) = P (I = J), where I and J are random variables
distributed over [1, n].
Definition 3. We say a permutation encryption is forward
random, or has the property of forward randomness, if and
only if it satisfies:

P (
n⋂

i=1

{C(i) = xk(i)}|M = x) = 1/n!, (∀k, ∀x) (15)

Similarly, we say a permutation is backward random, or
has the property of backward randomness, if and only if it
satisfies:

P (
n⋂

i=1

{M(i) = xk(i)}|C = x) = 1/n!, (∀k, ∀x) (16)

Of these two random properties of permutation en-
cryption, backward randomness means that the plain-
text could have been any possible order/sequence of the
ciphertext with equal probability. This can make the
cryptanalysis on permutation encryption degrade into
exhaustive search, which promises a very strong security
for permutation encryption. In the following, we will
give sufficient conditions for the property of forward and
backward randomness, respectively.
Theorem 3. A sufficient condition for the permutation
encryption to be have forward randomness is: P (K =
k) = 1/n! for each k, and K is distributed independent
of M .

Proof: See Appendix C.
Theorem 4. A sufficient condition for the permutation
encryption to have backward randomness is: the per-
mutation encryption has forward randomness, and each
M(i) ∈ M is independently and uniformly distributed.

Proof: See Appendix D.
Is P-Coding backward random? We claim that P-Coding
is forward random since the PEF key k is generated
randomly and uniformly, and chosen independently of
the messages to be encrypted. Then, packet in network
coding undergoes rounds of random linear combina-
tions, thus the dependence among its elements has been

largely eliminated and the distribution tends to be uni-
form. This fact makes P-Coding backward random to
some extent according to Theorem 4.
Exhaustive search is rather expensive. Recall that each
generation contains h messages, and each message has
length n. To carry out exhaustive search, the adversary
needs to try O(n!) rounds to guess the plaintext or
PEF key. In each round, it should test its guess by
performing Gaussian eliminations according to Eq. (13),
with computational complexity to be O(h3) in terms of
multiplication operations. Therefore, the computational
complexity for exhaustive search is O(n! · h3).

5.2 Experimental Validation

We consider a typical cryptanalysis on transposition ci-
pher, and evaluate its effectiveness in breaking P-Coding.
This cryptanalysis is based on the non-uniform frequen-
cies of n-letter combinations, known as n-grams [20], in
natural languages. For example, bigram ’TH’ has a much
higher frequency than bigram ’QZ’ in English. Using
frequency statistics of n-grams, the fitness of a guessed
permutation p can be easily accessed: first decrypt a
large number of ciphertexts by permuting them with
the inverse of p, and then evaluate how close the n-
gram statistics of the decrypted messages are to those
of the underlying language. After that, by searching
in the neighborhood of ps’ with good fitness, we are
expected to find other permutations with better fitness.
This searching process continues until the key k is finally
found. Recent studies show that optimization heuristics,
e.g., Genetic Algorithms [17], Simulated Annealing [21],
and Ant Colony [22], can be used to automate this
searching process.

Though the above cryptanalysis is quite effective in
breaking transposition ciphers, we argue that it does
not work well for P-Coding, for the following reasons.
(1) In P-Coding, before we can access the fitness of a
permutation p, we should first decrypt generations of
packets with p, and then decode them with the GEVs.
The decoding process requires O(nh2l) multiplications,
where n is the number of generations, h is the gener-
ation size, and l is the length of a message. Thus, it
is much more time-consuming to access the fitness of
p in P-Coding than in transposition cipher. (2) Even a
small change in the permutation p, say an exchange
of two positions, will result in different GEVs, which
may decode messages into quite different content. This
means that even p has a good fitness, we cannot expect
to find permutations with better fitness by searching in
p’s neighborhood.

To justify the above argument, we implement the
genetic algorithm proposed in [17], and evaluate its
feasibility to break our P-Coding scheme (please refer
to Appendix F for the algorithm). For comparison, we
also include the performance of the algorithm to defeat
traditional transposition ciphers. The metrics to compare
include: (1) Success Ratio, the ratio of the number of

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

7

10 12 14 16 18
0

0.1

0.2

0.3

key length

su
cc

es
s

ra
tio

p−coding
transposition cipher

(a) Success ratio

10 12 14 16 18
0

0.3

0.6

0.9

key length

re
co

ve
r

ra
tio

p−coding
transposition cipher

(b) Recover ratio

Fig. 4: The effectiveness of Genetic algorithm on trans-
position cipher and P-Coding.

rounds in which the key is recovered, to the total number
of rounds, and (2) Recovery Ratio, the ratio of the average
number of recovered positions of the key, to the total
length of the key.

In our simulation, we chose a readable passage of
length 1000 (in words), divide it into multiple messages,
and perform P-Coding and transposition encryption on
them, respectively. Note that the primary difference
between P-Coding scheme and transposition ciphers is
the former permutes messages after they are randomly
and linearly coded, while the latter permute messages
directly. For the parameters of genetic algorithm, we
set the group size to 12, and the maximum round of
mating and mutation to 100. We experiment by varying
the length of permutation key from 10 to 19. For each
case, we run the genetic algorithm 500 rounds for both
P-Coding and transposition cipher. We report the results
in Fig. 4.

From Fig. 4(a), we can see that genetic algorithm
is effective to break transposition ciphers on passage
we chose, particularly when the key length is 10. For
longer key length, the success attack ratio stays above 0,
meaning that this attack is till feasible. However, with
P-Coding, the permutation encryption is rather resistant
to this attack. This is justified by observing that the
probability of successful attack becomes 0 when the key
length increase to 14.

Fig. 4(b) shows that even the genetic algorithm suc-
ceeds in recovering the whole key at a low probability,
it can actually recover the majority of the key. This
indicates the effectiveness of genetic algorithm (partially
recovered key can also disclose very critical information
about the plaintext). On the other hand, the recovery
ratio for our P-Coding is only about 10% (when the key
length is 19), which is very low, considering that even
a randomly generated sequence can has some positions
that coincide with the key.

5.3 Security Analysis for Enhanced P-Coding

If the PEF key does not leak in any generation, the
security level of enhanced scheme is as high as that
of the P-Coding scheme. When single generation failure
occurs, the enhanced scheme can provide two appealing
properties.

0 10 20 30 40 50
0

100

200

of generations

of

 p
er

tu
rb

ed
 e

le
m

en
ts

simulation result
asympotical analysis

(a) n = 255,m = 10.

0 10 20 30 40 50
0

100

200

of generations

of

 p
er

tu
rb

ed
 e

le
m

en
ts

simulation result
asympotical analysis

(b) n = 255,m = 15.

Fig. 5: Number of perturbed positions vs. number of
generations.

Security: After the compromise of security in current
generation, the security level in following ones will be
strong enough to resist further attacks. We show this by
evaluating the computational complexity for the adver-
sary to guess the next PEF key based on the current one.
First, it should locate the start point of key perturbing
operation, which has O(n) different choices. Then it
should fix the correct sequence of the perturbed section
of PEF key, which has O(m!) different choices. It is fair to
assume that these choices are equally possible, according
to the randomness property of permutation encryption
in P-Coding. Finally, the adversary should decode the
messages by performing Eq. (13), which requires O(h3)
multiplication operations. Thus, the computational com-
plexity in terms of multiplication is O(n ·m! ·h3), which
can be made sufficiently large by choosing m properly.
Recovery: As the PEF key is perturbed randomly and
incrementally, it will become more and more irrelevant
to its original value with the iterations of generations.
Thus, even if the current key is disclosed, its randomness
to the adversary will gradually recover after several
generations. Theorem 5 gives the numerical result to
justify this argument.
Theorem 5. After i generations, the expected number of
all perturbed positions in the PEF key is approximately:

EXi =
i− 1

i+ 1
(n−m)[1− (1− m

n−m
)i+1] +m (17)

when n → ∞.
Proof: See Appendix E.

Fig. 5 shows the approximated results from Theorem
5. For comparisons, we also include the exact results
obtained from simulation. It can be seen that the number
of perturbed positions in PEF key increases with the
number of generations, meaning that its randomness will
gradually recover after accidental disclosure.

6 PERFORMANCE EVALUATION

6.1 Analysis

The P-Coding Scheme: As the PEF key can be pre-
distributed at the bootstrap stage, the only online com-
putation overhead of P-Coding comes from the permuta-
tion encryption operations at the source and decryption
operations at sinks. According to Eq. (10), the encryption
and decryption processes only involve reordering the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8

symbols of messages, thus require O(n) memory copy
operations. As there are h messages in each generation,
the computation overhead is then O(n · h) in terms of
memory copy operations. Since the inherent overhead
of network coding is at least O(h3) in terms of multi-
plication operations (due to the necessity of Gaussian
eliminations), P-Coding is quite lightweight in compu-
tation. In addition, P-Coding does not cause any space
overhead either.
The Enhanced P-Coding Scheme: In the enhanced
scheme, the source should generate two integers s and d
to represent the perturbing key in each generation. It is
fair to assume that the generation of these two integers
can be done within a constant time. So it is the same
with the encryption and decryption of them. As the
computational complexity of key perturbing processes
is O(n) according to Algorithm 1, the extra computation
overhead incurred by the enhanced scheme is just O(n).

Fig. 6: Three cryptographic approaches for network-
coded MANETs. Here GEV refers to Global Encoding
Vector.

Comparisons: We compare the computation overhead
of P-Coding and three other cryptographic schemes
[10], [11] for network-coding based systems. These three
schemes are depicted in Fig. 6: (a) the intuitive approach
of directly encrypting the message content; (b) the ap-
proach proposed in [10] to encrypt only coding vectors;
(c) the approach proposed in [11] to encrypt coding
vectors using HEF.

For scheme (a), source messages will be encrypted us-
ing symmetric-key cryptographic algorithms (e.g., AES
[19]), which cost around O(h · l) multiplicative oper-
ations. For scheme (b), symmetric-key encryptions are
only performed on GEVs, with the overhead of O(h2)
multiplicative operations. In addition, this scheme also
requires operations of source encoding, intermediate
recoding and sink decoding, which will cost O(h2),
O(M ·N ·h) and O(h3) multiplicative operations, respec-
tively (M denotes the average number packet recoding
performed by all intermediate nodes; N is the average
number of combined packets for each coding operation).
It also requires a space overhead of ratio h/(n + h), as
it inserts a duplicate GEV of length h in each packet
of length n. For scheme (c), it encrypts GEVs using the
public-key based Paillier cryptosystem [23], which will
incur a heavy computation overhead at both source and
sinks. Moreover, the linear combinations performed by
intermediate nodes on GEVs will also require multiplica-
tive and exponential operations, which are even more
expensive.

Since the computation overhead of P-Coding scheme
is only O(n) in terms of memory copy operations, and
there is no space overhead, it is fair to conclude that our
P-Coding scheme outperforms the other three schemes
on thwarting eavesdropping attacks.

6.2 Experiments

In the following, we will evaluate the performance of P-
Coding through experiments. For implementation of P-
Coding, we first split plaintext into multiple generations
of packets, then let each generation go through a random
linear coding process, and perform permutation encryp-
tion on each coded packet. For comparisons, we also
implement AES and 3DES (both with CBC mode) using
cryptography libraries of OpenSSL [24]. Our experiment
environment is a Linux desktop with 3.30GHz Intel
Core i3 CPU and 4GB memory. The performance metrics
we consider include encryption time, throughput, and
energy consumption.
Encryption Time: We let P-Coding, AES and 3DES en-
crypt a given plaintext with length up to 1K bytes, and
measure the time they use. The experiment setting is as
follows. First, since the key size of 3DES is 192 bits (64
bits for each round), we also choose a 192-bit key for
AES. Second, since 192 bits can represent a permutation
of length 46, we let the P-Coding key be a random
permutation of length 45. The generation size is set to be
5, meaning that each generation has 5 packets. Note that
the block size of P-Coding is (45− 5)× 5 = 200 bytes.

The results are shown in Fig. 7(a). It can be seen the
encryption time of 3DES, AES, and P-Coding increases
with steps of 8 bytes, 16 bytes, and 200 bytes, respec-
tively. In addition, the encryption time of P-Coding is
around 1/3 that of AES. Considering OpenSSL’s highly-
optimized implementation of AES, and our limited time
in optimizing P-Coding encryption algorithms, we ex-
pect this ratio to be even lower than that.
Throughput: Less encryption time means larger
throughput. We will show that the throughput of
P-Coding is affected by packet length (which equals
the length of permutation key) and generation size
(which equals the length of a GEVs). First, given a
fixed generation size, the larger the packet length is,
the lower the overhead of GEVs is. This is shown
in Fig. 7(b), where the generation size is set to be 5.
Second, given a fixed packet length, the throughput
of P-Coding decreases linearly with respect to the
generation size, as shown in Fig. 7(c). This is because
when the packet length is fixed (here set to be 45), the
increase of generation size means the increase of GEV
length, and thus the increase of encryption overhead.
Energy Consumption: Less encryption time also means
fewer CPU cycles, and less energy consumptions. To
evaluate the energy efficiency of P-Coding in MANETs,
we will estimate the energy consumption of P-Coding
encryption on mobile nodes. Here, we choose the Mo-
torola’s “DragonBall MC68328”, a common embedded

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

9

 0

 4

 8

 12

 16

 0 100 200 300 400

E
nc

ry
pt

io
n

T
im

e
(μ

S
)

Plaintext Length (Byte)

3DES
AES

P-Coding

(a) Encryption Time

 300

 320

 340

 30 40 50 60

T
hr

ou
gh

pu
t (

M
B

/S
)

Packet Length

(b) Throughput vs. Packet Legnth

 180

 220

 260

 300

 340

 0 5 10 15 20

T
hr

ou
gh

pu
t (

M
B

/S
)

Generation Size

(c) Throughput vs. Generation Size

 0

 0.4

 0.8

 1.2

 1.6

 100 300 500 700 900E
ne

rg
y

C
on

su
m

pt
io

n
(μ

J

Plaintext Length (Byte)

AES
P-Coding

(d) Per-Byte Energy Consumption

Fig. 7: Experimental results of P-Coding’s performance (encryption time, throughput, and energy consumption).

microprocessor deployed in millions of wireless PDAs.
Carman et al. [25] estimated that it took around 0.013mJ
energy for AES to encrypt a 128-bit block with 128-bit
key on DragonBall. Their estimation is based on the fact
that it takes around 400 CPU cycles on 32-bit Intel mi-
croprocessors [26], and is obtained by scaling this result
by some factor for the DragonBall microprocessors.

Here we use a similar method: we first measure the
ratio of running time of P-Coding and 128-bit AES, and
then estimate the per-byte energy consumption of P-
Coding by scaling that of AES by this ratio. Fig. 7(d)
gives the per-byte energy consumption of DragonBall
microprocessor when using 128-bit AES and P-Coding,
respectively. As the block size of P-Coding is 200 bytes,
it can be seen that its per-byte energy consumption
increases shapely when the plaintext length reaches mul-
tiples of 200 bytes, while drops gradually with further
increase of plaintext length. As the plaintext length
increases, the per-byte energy consumption of AES and
P-Coding converges to 0.8μJ and 0.25μJ , respectively.

7 RELATED WORK

Network coding, as an alternative to traditional store-
and-forward mechanism, allows intermediate nodes to
code/mix incoming data flows. This novel information
dissemination approach is proved to maximize the mul-
ticast throughput [5]. Random Linear Network Coding
(RLNC), in which participating nodes linearly combine
incoming packets using randomly chosen coefficients, is
verified to be both sufficient and efficient for network
coding paradigms [13].

The application of network coding in achieving min-
imum energy transmissions has received significant at-
tention. In [6], Wu et al. show that by allow interme-
diate nodes encode packet, the problem of finding the
minimum-energy multicast tree can be formulated as a
linear program, which can be solved in polynomial time.
This is in contrast with the fact that the same problem is
NP-complete if traditional routing is used [27]. Fragouli
et al. [7] studied the problem of energy-efficient broad-
casting in MANETs using network coding, and propose
some probabilistic algorithms. The same problem is
treated in [8], in which the authors propose deterministic
algorithms based on partial dominant pruning (PDP).
Their algorithms relies on the information of two-hop
neighbors and opportunistic listening to encode packets.

Besides reducing energy consumption of transmission
in MANETs, network coding also bears a free security
property, which has been researched in [12], [28], [29].
Bhattad et al. [12] introduce the concept of weak security,
by which the system is said to be secure if the adversary
can not recover any meaningful information. They show
that random linear network coding is inherently weakly
secure with a high probability if coding is performed
over a large finite field. Lima et al. [28] consider the
threats posed by ”nice but curious“ intermediate nodes
and develop an algebraic security criterion to access
the intrinsic security provided by network coding. They
derive the relationship between field size and the se-
curity level, and observe that the security is dependent
on network topology. The algebraic security criterion is
essentially weak security. Based on the weak security
model, Wang et al. [29] design a polynomial-time de-
terministic code to secure linear network coding. They
show that by using this scheme, optimal throughput
for multiple streams between a single source-destination
pair can be achieved.

By leveraging the intrinsic security of network coding,
some cryptographic approaches have been proposed to
secure network-coding-based applications. One scheme
is SPOC [10], proposed by Vilela et al, in which the
source encrypts/locks the GEV of each message after
random linear coding, and attach another set of GEVs
to enable standard network coding. Recivers can recover
the source messages by following a decode-decrypt-
decode procedure. This scheme is essentially an end-
to-end cryptographic approach, and is lightweight in
computation. Another scheme proposed by Fan et al. [11]
is based on Homomorphic Encryption Function (HEF)
[30]. This scheme has the coding coefficients encrypted
using HEF. Due to the homomorphic property of HEF,
linearly combination operations can be directly per-
formed on the encrypted coding coefficients. As a result,
no extra coding coefficients are needed as by SPOC. As
another difference from SPOC, Fan’s HEF-based scheme
can achieve both content secrecy (i.e., confidentiality),
and contextual secrecy (i.e., privacy) at the same time.
However, both of these two schemes fail to fully exploit
the mixing nature of network coding.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

10

8 DISCUSSION AND CONCLUSION

8.1 Discussion

Node Mobility: In the above, we have not specified
how to handle node mobility. Actually, node mobil-
ity poses a challenge for key management: since net-
work topology is constantly changing, there is no pre-
established route for key establishment [31]. However,
once keys are established, mobility has little impact on
encryptions/decryptions. In this paper, we view key
management as an orthogonal problem, which has been
studied in many previous works [32].
Extension: We believe the applications of P-Coding are
beyond MANETs. Any system that enables random
linear network coding, like P2P live streaming [33],
distributed storage [34], and file distribution [18] may
use P-Coding for confidentiality. While the values of
applying P-Coding in these applications are not as high
as in MANETs, since these applications are generally not
energy-constrained and any symmetric cryptographic
algorithms would function well. We will extend our
scheme to other scenarios where encryption efficiency
is critical.

8.2 Conclusion

This paper studied the problem of energy saving in
MANETs based on the technique of network coding.
Previous studies demonstrated that network coding can
reduce energy consumption with less transmissions in
MANETs. We proposed P-Coding, a lightweight encryp-
tion scheme on top of network coding, to further reduce
energy consumption in MANETs by cutting the security
cost. P-Coding exploits the intrinsic security property of
network coding, and uses simple permutation encryp-
tions to generate considerable confusion to eavesdrop-
ping adversaries. We showed that P-Coding is efficient
in computation, and incurs less energy consumption
for encryptions/decryptions. Our future work includes
extending the application of P-Coding to other commu-
nication networks, e.g., vehicular ad hoc networks.

REFERENCES

[1] P. Zhang, Y. Jiang, C. Lin, Y. Fan, and X. Shen, “P-Coding: Secure
network coding against eavesdropping attacks,” in Proceedings of
IEEE INFOCOM, Mar. 2010.

[2] S. Singh, C. Raghavendra, and J. Stepanek, “Power-aware broad-
casting in mobile ad hoc networks,” in Proceedings of IEEE PIMRC,
1999.

[3] J. Wieselthier, G. Nguyen, and A. Ephremides, “Algorithms for
energy-efficient multicasting in static ad hoc wireless networks,”
Mobile Networks and Applications, vol. 6, no. 3, pp. 251–263, 2001.

[4] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris, “Span: An
energy-efficient coordination algorithm for topology maintenance
in ad hoc wireless networks,” Wireless Networks, vol. 8, no. 5, pp.
481–494, 2002.

[5] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network
information flow,” IEEE Transactions on Information Theory, vol. 46,
no. 4, pp. 1204–1216, Jul. 2000.

[6] Y. Wu, P. Chou, and S. Kung, “Minimum-energy multicast in
mobile ad hoc networks using network coding,” IEEE Transactions
on Communications, vol. 53, no. 11, pp. 1906–1918, 2005.

[7] C. Fragouli, J. Widmer, and J. Boudec, “A network coding ap-
proach to energy efficient broadcasting: from theory to practice,”
in Proceedings of IEEE INFOCOM, 2006.

[8] L. Li, R. Ramjee, M. Buddhikot, and S. Miller, “Network coding-
based broadcast in mobile ad-hoc networks,” in Proceedings of
IEEE INFOCOM, 2007.

[9] N. R. Potlapally, S. Ravi, A. Raghunathan, and N. K. Jha, “A
study of the energy consumption characteristics of cryptographic
algorithms and security protocols,” IEEE Transactions on Mobile
Computing, vol. 5, no. 2, pp. 128–143, 2006.

[10] J. P. Vilela, L. Lima, and J. Barros, “Lightweight security for
network coding,” in Proceedings of IEEE ICC, May 2008.

[11] Y. Fan, Y. Jiang, H. Zhu, and X. Shen, “An efficient privacy-
preserving scheme against traffic analysis in network coding,”
in Proceedings of IEEE INFOCOM, Apr. 2009.

[12] K. Bhattad and K. R. Narayanan, “Weakly secure network cod-
ing,” in Proceedings of NetCod, Apr. 2005.

[13] T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi,
and B. Leong, “A random linear network coding approach to
multicast,” IEEE Transactions on Information Theory, vol. 52, no. 10,
pp. 4413–4430, Oct. 2006.

[14] C. E. Shannon, “Communication theory of secrecy systems,” Bell
Systems Technical Journal, vol. 28, pp. 656–715, Oct. 1949.

[15] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of applied
cryptography. CRC Press, Oct. 1996.

[16] N. Cai and R. W. Yeung, “Secure network coding,” in Proceedings
of IEEE ISIT, Jun 2002.

[17] A. Dimovski and D. Gligoroski, “Attacks on the transposition
ciphers using optimization heuristics,” in Proceedings of Interna-
tional Scientific Conference on Information, Communication and Energy
Systems and Technologies, Oct. 2003.

[18] C. Gkantsidis and P. Rodriguez, “Network coding for large scale
file distribution,” in Proceedings of IEEE INFOCOM, Mar. 2005.

[19] J. Daemen and V. Rijmen, The design of Rijndael: AES–the advanced
encryption standard. Springer Verlag, 2002.

[20] L. C. Washington and W. Trappe, Introduction to cryptography: with
coding theory. Prentice Hall PTR, 2002.

[21] J. Giddy and R. Safavi-Naini, “Automated cryptanalysis of trans-
position ciphers,” The Computer Journal, vol. 37, no. 5, pp. 429–436,
1994.

[22] M. D. Russell, J. A. Clark, and S. Stepney, “Making the most of
two heuristics: Breaking transposition ciphers with ants,” in The
2003 Congress on Evolutionary Computation, 2003.

[23] P. Paillier, “Public-key cryptosystems based on composite degree
residuocity classes,” in Proceedings of EUROCRYPT, May 1999.

[24] “The OpenSSL project,” http://www.openssl.org/.
[25] D. W. Carman, P. S. Kruus, and B. J. Matt, “Constraints and ap-

proaches for distributed sensor network security (final),” DARPA
Project report, 2000.

[26] K. Aoki and H. Lipmaa, “Fast implementations of aes candi-
dates,” in Third AES Candidate Conference, 2000, pp. 13–14.

[27] M. Čagalj, J. Hubaux, and C. Enz, “Minimum-energy broadcast in
all-wireless networks: Np-completeness and distribution issues,”
in Proceedings of ACM Mobicom, 2002.

[28] L. Lima, M. Médard, and J. Barros, “Random linear network
coding: A free cypher?” in Proceedings of IEEE ISIT, Jun. 2007.

[29] J. Wang, J. Wang, K. Lu, B. Xiao, and N. Gu, “Optimal linear
network coding design for secure unicast with multiple streams,”
in Proceedings of IEEE INFOCOM, Mar. 2010.

[30] J. Benaloh, “Dense probabilistic encryption,” in Proceedings of the
Workshop on Selected Areas in Cryptography, Aug. 1994.

[31] A.-F. Chan, “Distributed symmetric key management for mobile
ad hoc networks,” in Proceedings of IEEE INFOCOM, 2004.

[32] J. V. D. Merwe, D. Dawoud, and S. McDonald, “A survey on
peer-to-peer key management for mobile ad hoc networks,” ACM
computing surveys, vol. 39, no. 1, p. 1, 2007.

[33] M. Wang and B. Li, “R2: Random push with random network
coding in live peer-to-peer streaming,” IEEE Journal on Selected
Areas in Communications, vol. 25, no. 9, pp. 1655–1666, Dec. 2007.

[34] Y. Hu, H. C. Chen, P. P. Lee, and Y. Tang, “Nccloud: applying
network coding for the storage repair in a cloud-of-clouds,” in
Proceedings of USENIX FAST, 2012.

[35] S. Ross, Introduction to probability models, 9th ed. Academic Press,
2007.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

11

Peng Zhang received the B.Eng. degree in
Computer Science from Beijing University of
Posts and Telecommunications in 2008. He is
now a Ph.D. candidate in the Department of
Computer Science and Technology at Tsinghua
University. His research interests include net-
work coding, network security, and information-
centric networking.

Chuang Lin received the Ph.D. degree in Com-
puter Science from Tsinghua University in 1994.
He is now a professor of the Department of
Computer Science and Technology, Tsinghua
University, China. He is a Honorary Visiting Pro-
fessor, University of Bradford, UK. His current
research interests include computer networks,
performance evaluation, network security analy-
sis, and Petri net theory and its applications. He
has published more than 300 papers in research
journals and IEEE conferences, and four mono-

graphs in these areas.

Yixin Jiang received the Ph.D. degree in Com-
puter Science from Tsinghua University in 2006.
He is now an associate professor at Tsinghua
University. In 2005, he was a Visiting Scholar
with the Department of Computer Science, Hong
Kong Baptist University. From 2007 to 2009, he
was a Post Doctorial Fellow with University of
Waterloo. His research interests include wireless
network security, trusted computing and network
coding.

Xuemin (Sherman) Shen (IEEE M’97-SM’02-
F09) received the B.Sc.(1982) degree from
Dalian Maritime University (China) and the
M.Sc. (1987) and Ph.D. degrees (1990) from
Rutgers University, New Jersey (USA), all in
electrical engineering. He is a Professor and
University Research Chair, Department of Elec-
trical and Computer Engineering, University of
Waterloo, Canada. He was the Associate Chair
for Graduate Studies from 2004 to 2008. Dr.
Shen’s research focuses on resource manage-

ment in interconnected wireless/wired networks, wireless network secu-
rity, wireless body area networks, vehicular ad hoc and sensor networks.
He is a co-author/editor of six books, and has published more than 600
papers and book chapters in wireless communications and networks,
control and filtering. Dr. Shen served as the Technical Program Commit-
tee Chair for IEEE VTC’10 Fall, the Symposia Chair for IEEE ICC’10, the
Tutorial Chair for IEEE VTC’11 Spring and IEEE ICC’08, the Technical
Program Committee Chair for IEEE Globecom’07, the General Co-Chair
for Chinacom’07 and QShine’06, the Chair for IEEE Communications
Society Technical Committee on Wireless Communications, and P2P
Communications and Networking. He also serves/served as the Editor-
in-Chief for IEEE Network, Peer-to-Peer Networking and Application,
and IET Communications; a Founding Area Editor for IEEE Transactions
on Wireless Communications; an Associate Editor for IEEE Transac-
tions on Vehicular Technology, Computer Networks, and ACM/Wireless
Networks, etc.; and the Guest Editor for IEEE JSAC, IEEE Wireless
Communications, IEEE Communications Magazine, and ACM Mobile
Networks and Applications, etc. Dr. Shen received the Excellent Grad-
uate Supervision Award in 2006, and the Outstanding Performance
Award in 2004, 2007 and 2010 from the University of Waterloo, the Pre-
mier’s Research Excellence Award (PREA) in 2003 from the Province
of Ontario, Canada, and the Distinguished Performance Award in 2002
and 2007 from the Faculty of Engineering, University of Waterloo. Dr.
Shen is a registered Professional Engineer of Ontario, Canada, an IEEE
Fellow, an Engineering Institute of Canada Fellow, a Canadian Academy
of Engineering Fellow, and a Distinguished Lecturer of IEEE Vehicular
Technology Society and Communications Society.

Yanfei Fan received the M.Eng. degree (2005)
from Tsinghua University, China, and the B.Eng.
degree (2002) from Beijing University of Posts
and Telecommunications, China, all in Computer
Science. He is currently pursuing his Ph.D. de-
gree in the Department of Electrical and Com-
puter Engineering at University of Waterloo,
Canada. His research interests include network
coding, security in wireless communication and
mobile computing.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

