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Abstract—In this paper, we study the resource allocation in a
device-to-device (D2D) communication underlaying green cellular
network, where the base station (BS) is powered by sustainable
energy. Our objective is to enhance the network sustainability
and efficiency by introducing power control and cooperative com-
munication. Specifically, we propose optimal power adaptation
schemes to maximize the network efficiency under two practical
power constraints. We then take the dynamics of the charging
and discharging processes of the energy buffer into consideration
to ensure the network sustainability. To this end, the energy
buffer is modeled as a G/D/1 queue where the input energy has
a general distribution. Power allocation schemes are proposed
based on the statistics of the energy buffer to enhance the network
efficiency and sustainability. Both theoretical analysis and nu-
merical results demonstrate that our proposed power allocation
schemes can improve the network throughput drastically while
maintaining the network sustainability at a certain level.

Index Terms—Green cellular networks, D2D communications,
cooperative communications, network sustainability, spectrum
efficiency, power allocation.

I. INTRODUCTION

THE rapid growth of Information and Communications
Technology (ICT) industry has boosted the development

of wireless communication, which has raised over 6 billion
cellular users worldwide [1]. With astronomical escalation
of mobile terminals, the cellular industry has unprecedented
growth of data traffic requirement, which leads to enormous
energy consumption. In 2011, more than 4 million base
stations have been deployed to provide services for mobile
users, causing an extremely high energy consumption of
25MWh per year in average [2]. Among the devices of cellular
networks, the BSs occupy almost 60% of the whole network’s
energy consumption [3]. Nowadays, the energy cost of cellular
networks has become a significant portion of the operational
expenditure with the increase of energy price. For example,
the operational cost of a BS powered by electrical grid is
approximately 3000 US dollars per year, and the cost may
be ten times more if the BS is powered by diesel power
generators in the rural area [2]. Therefore, it is essential to

Manuscript received June 25, 2013; revised September 16 and November
7, 2013; accepted November 14, 2013. The associate editor coordinating the
review of this paper and approving it for publication was Y. Sanada.

X. Zhang, Z. Zheng, Q. Shen, X. (Sherman) Shen, and L.-L. Xie are
with the Department of Electrical and Computer Engineering, University
of Waterloo, Waterloo, Ontario, Canada, N2L 3G1 (e-mail: {x79zhang,
z25zheng, q2shen, sshen, llxie}@uwaterloo.ca).

J. Liu is with Shanghai Jiao Tong University, Shanghai, China, 200240
(e-mail: jingliu lj@sjtu.edu.cn).

Digital Object Identifier 10.1109/TWC.2013.122713.131133

consider how to decrease the energy consumption, especially
the energy consumption of BSs, to fulfill the ever growing
users’ requirement and reduce the operational cost in cellular
networks.

To provide sustainable and clean power, eco-friendly green
energy, e.g., solar, wind and hydro, is emerging as a popular
substitute of traditional energy. Green wireless devices, i.e.,
wireless devices powered by green energy, are anticipated to
be widely deployed to construct the next-generation wireless
networks. In traditional electricity grid based wireless net-
works, the network devices are generally powered by limited
yet stable resources, e.g., coal, petroleum and natural gas. One
of the most critical research issues in this field is to maximize
the energy efficiency, such that the energy utilization can be
improved. However, unlike traditional energy, green energy
charging capability highly depends on its location, local
weather and time, which is naturally sustainable and highly
dynamic. For example, the harvested energy by solar panels is
different in daytime and night within the same day, which also
varies at different locations depending on the intensity of solar
radiation. The dynamic charging capability and availability
of green energy may cause intermittent power support for
green wireless devices, which have shifted the fundamental
design criterion and the main performance metric of green
wireless communication networks from energy efficiency to
energy sustainability. Therefore, how to efficiently allocate
the harvested energy to ensure the network sustainability and
fulfill the explosively increasing user demand has become an
essential research issue. On one hand, many works [4]–[7]
have addressed the energy sustainability issue of green wire-
less communication networks. In [4], a stochastic framework
to model the dynamics of green energy buffer is designed,
and a distributed admission control strategy is proposed to
guarantee high resource utilization and to improve energy
sustainability. In [5], [6], network planning in green wireless
networks is considered, and the minimum network device
deployment problem is formulated. Heuristic algorithms are
proposed to fulfill users’ QoS requirement and guarantee net-
work sustainability by using the minimal number of network
devices. In [7], a hybrid utilization of wind and solar power
is considered. Authors find that the combined use of wind
and solar power can provide more stable and lower-cost green
energy for WLAN mesh nodes in certain geographic locations,
i.e., Toronto, Seattle, Phoenix, etc., compared with using wind
or solar power only.

On the other hand, to fulfill the ever growing users’ re-
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quirement of high-data-rate communications, various promis-
ing technologies, e.g., device-to-device communication and
cooperative communication, have been introduced to cellular
networks. By utilizing D2D communication, cellular devices
can transmit data with each other directly without BSs, and the
network throughput of wireless cellular networks can be sig-
nificantly improved [8]–[11]. However, D2D communication
normally shares the same spectrum with regular cellular trans-
missions, which limits the performance of the whole network.
To further enhance the network performance, cooperative com-
munication is emerging as a promising technology. With the
help of relays, cooperative communication can significantly
increase the network throughput by taking advantage of the
broadcast nature of wireless channels. Considering the unique
features of the relay channel, wireless relay networks have
been studied from various perspectives, including transmission
framework [12], [13], cooperative protocol [14], [15], and
relay positioning [16], [17], etc. Among these, resource allo-
cation, including power allocation is one of the most efficient
methods to maximize the utilization of the existing limited
resources and improve the network performance [18]. For
example, [19], [20] study the resource allocation schemes
when the source and the relay occupy orthogonal channels.
With the assumption that the source and the relay transmit
in the same channel, [21] focuses on the power allocation
schemes to improve the achievable rate with the relay adopting
the amplify-and-forward scheme. [22], [23] investigate the
power allocation schemes for decode-and-forward relays.

In this paper, we aim at improving the network’s overall
throughput by exploiting the benefits of D2D and cooperative
communication, while maintaining the network sustainability
in green cellular networks. Specifically, we consider a green
device-to-device communication underlaying cellular network
where the BS is powered by sustainable energy. Coopera-
tive communication is utilized to improve the transmission
efficiency, and the BS helps to relay the source’s signal to
the destination. The cooperative BS adopts the decode-and-
forward protocol and transmits in the same channel with
the source. This type of cooperation can better exploit the
broadcast nature of wireless signals while improving the
utilization of existing allocated spectral resources. We focus
on designing efficient power allocation schemes and make the
following contributions:

• Both green energy and wireless communication technolo-
gies are considered to provide an efficient transmission
regime in a device-to-device communication underlaying
cellular network, where a BS powered by sustainable
energy is deployed in the network. To improve the
network throughput, the BS is equipped with cooperation
devices to assist the communication between the source
and the destination.

• Efficient power allocation schemes are proposed to max-
imize the overall throughput under two practical types of
power constraints depending on whether users are able
to adjust their transmission power. Our power allocation
schemes can effectively improve the network throughput
while ensuring that the energy harvested from the envi-
ronment can sustain the wireless communication without
any node outage.

• An analytical framework to model the dynamics of
the green energy charging and discharging processes is
presented. The energy buffer can be approximated as a
G/D/1 queue where the energy charging process has a
general distribution. The distribution of the buffer storage
is derived, which sheds some light on the green network
designs.

The remainder of the paper is organized as follows. Sec-
tion II introduces the system model and the relay channel
achievable rate. In Section III, we discuss the power adaptation
schemes to maximize the achievable rate of each single-user
channel. Depending on whether the source node is able to ad-
just its power levels, we solve the optimization problem under
two types of power constraints: total power constraint and BS
power constraint. Section IV further takes the dynamics of
the sustainable energy into consideration. The energy buffer is
modeled as a G/D/1 queue and power allocation schemes that
can ensure the network sustainability are proposed. Section
V contains some numerical results, and Section VI provides
concluding remarks and possible future work.

II. SYSTEM CONFIGURATION

A. Network Model

The structure of the D2D communication underlaying cel-
lular network considered in this paper is shown in Fig. 1.
The network consists of a set of wireless users and a single
BS, where all the users are located within the transmission
range of the BS. The wireless channels of cellular network
and D2D communication are orthogonal with each other, thus
the interference between cellular network and D2D communi-
cation is ignorable. Wireless users can communicate with each
other by either cellular network through the BS or by direct
data transmission through device-to-device communication.
As the BS occupies almost 60% energy consumption of the
whole network, a green BS, i.e., a BS powered by renewable
energy, is equipped in the network. Since the renewable energy
is by nature intermittent and variable, the BS is associated
with a rechargeable battery with large capacity to buffer the
dynamically charged energy and to provide a constant power
output. To ensure the network connectivity, a back up energy
source, such as power grid or battery is also available at the
BS to provide temporary power supply in some extreme cases
when the harvested renewable energy cannot support reliable
communication.

For D2D communication in the network, each wireless user
can communicate with all other users within the network, and
has the same time period for transmission. The green BS can
act as a relay and is capable of cooperation with the source
nodes to transmit data to the destinations. The cooperative pro-
tocols most commonly used are Amplify-and-Forward (AF)
and Decode-and-Forward (DF). AF relays simply amplify the
received signals and forward them to the destination. To avoid
propagating the interference and noise from the source-relay
channel, relay would employ extra resources such as time slots
or frequency bands for orthogonal transmission. On the other
hand, DF could completely eliminate the noise since the relay
decodes the received signal before forwarding it, so the source
and the relay are able to transmit at the same time and on the
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Fig. 1. A green device-to-device communication underlaying cellular
network.

same frequency band to improve the spectral efficiency. In this
work, considering that each user only has a short period for
transmission, we adopt DF protocol at the BS to better exploit
the broadcast nature of wireless signals.

In order to maintain fairness, each user has the same time
period T for data transmission, which is scheduled by the
BS through Time Division Multiple Access (TDMA) in a
synchronized manner. During each time period, only one
source-destination pair, i.e., one communication channel is
permitted for transmission in the network. Suppose there are
m pairs in the network, represented by M = {1, . . . ,m}.
Let i be the current active channel, i = 1, . . . ,m. The source
node, destination node and the BS for channel i are denoted as
si and di and r, respectively. As only one source-destination
pair is allowed to transmit, each transmission channel in this
network forms a three-terminal relay channel. To avoid the
confusion, in the rest of this paper, the term “BS” and “relay
node” will be used interchangeably.

With the help of the BS as the relay node, a single-hop and
long-distance transmission can be changed into two-hop and
shorter-range transmissions. The presence of an intermediate
node can significantly enhance the transmission performance
by the two-phase communication, i) source node si transmits
to relay node r and ii) relay node r transmits to the destination
di along with node si.

B. Achievable Rate

The highest information theoretic achievable rate of the
discrete memoryless DF relay channel when channel i is active
is given by:

R(i) ≤ max
p(xsi

,xr)
min{I(Xsi ;Yr|Xr), I(Xsi , Xr;Ydi)}, (1)

where xsi , ydi , yr and xr are denoted as the input to the
channel, the output of the channel, the observation by the relay
node and the input symbol chosen by the relay, respectively.

The first term I(Xsi ;Yr|Xr) is the largest rate that the
relay node can decode the signal, and the second term
I(Xsi , Xr;Ydi) is to ensure that the destination can decode.
The highest achievable rate of the relay channel is obtained

with an optimal joint probability between the codes sent by
the source and the relay.

In the D2D network, assume that all wireless channels are
independent Rayleigh fading channels with path loss. The
channel gain coefficients are denoted by hsir, hrdi and hsidi ,
representing the channel conditions for the source-BS, BS-
destination and source-destination channels, respectively. The
channel gain coefficients can be obtained through a feedback
channel in cellular networks. In this paper, we assume that
these coefficients can be estimated accurately at the BS. As
some research works have addressed the resource allocation
with imperfect channel state information, e.g. [24], [25], this
issue can be investigated in the future.

The received signals at the relay node and at the destination
node at time t are given by

yr(t) =hsirxsi(t) + zr(t),

ydi(t) =hsidixsi(t) + hrdixr(t) + zdi(t), (2)

where zr(t) and zdi(t) are independent zero-mean Gaussian
noises received at the relay node r and at the destination node
di both with variance σ2.

During each user’s transmission period, both the user and
the relay send a sequence of length n. The input sequence
at the source node is subject to the following average power
constraint:

1

n

n∑
t=1

x2
si(t) ≤ P (i)

s , (3)

and the transmitting power constraint at the relay node when
channel i is active is given by

1

n

n∑
t=1

x2
r(t) ≤ P (i)

r . (4)

When channel i is active, the highest achievable rate of the
relay channel is given by

R(i) = max
p(xsi

,xr)
min{I(Xsi ;Yr|Xr), I(Xsi , Xr ;Ydi)}

= max
0≤β≤1

min

{
1

2
log

(
1 +

|hsir|2βP (i)
s

σ2

)
,
1

2
log

(
1 +

1

σ2
·

(
|hsidi |2βP (i)

s +

(√
|hsidi |2β̄P (i)

s +

√
|hrdi |2P (i)

r

)2
))}

.

(5)

Rate (5) is achieved by the joint superposition encoding
process among the source node si and the relay node r, which
consists of consecutive blocks of transmission. During each
block, two codes are generated: one code u containing the
subsequent block’s message and the other code xr for the
current block’s message. During each transmission block, the
relay node r sends xr containing the current block’s message

with its maximum transmission power P (i)
r . The source node

si, on the other hand, divides its total transmission power P (i)
s

into two parts, βP (i)
s and β̄P

(i)
s with different purposes, where

β̄ = 1 − β. βP
(i)
s is used for transmitting u and β̄P

(i)
s is

devoted to cooperate with the relay for transmitting xr to the
destination. The code xsi sent by si is the superposition of u
and xr.
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III. RATE MAXIMIZATION FOR A SINGLE-USER CHANNEL

It can be observed from (5) that the achievable rate R(i)

is a function of the transmission powers P
(i)
s and P

(i)
r when

the location of the BS is fixed. Therefore, each single user’s
achievable rate can be improved by optimally adapting the
transmission powers. In this section, we consider two types of
transmission power constraints and discuss the optimal power
adaptation schemes and the maximum single user’s achievable
rates separately.

• Both wireless users and the BS can adopt different
power levels for data transmission. Therefore, we aim to
maximize the transmission efficiency, i.e., to maximize
the overall transmission rate of the channel under a total
power constraint.

• Only BS can adjust its power level and all users transmit
with a fixed power. In this scenario, we will derive
the optimal transmission power at the BS in terms of
maximizing the transmission rate.

A. Rate Maximization under Total Power Constraint

The objective is to allocate P
(i)
s and P

(i)
r under a total

power consumption constraint P
(i)
tot , which is the maximum

available transmission power for channel i. The problem is
formulated as an optimization problem:

max
P

(i)
s ,P

(i)
r

R(i)

subject to P (i)
s + P (i)

r ≤ P
(i)
tot . (6)

In the achievable rate expression (5), the first term is the
relay decoding rate and the second represents the destination
decoding rate. For any given P

(i)
s and P

(i)
r , the largest

achievable rate is attained by optimally choosing β by the
source. Since the highest achievable rate is obtained when the
relay decoding rate equals the destination decoding rate, our
optimal power allocation scheme tries to balance these two
rates by jointly designing P

(i)
s , P (i)

r and β.
Depending on whether relay decoding rate or destination

decoding rate is the bottleneck, there are two power allocation
strategies for the source node.

• If the destination decoding rate is the bottleneck, the
source node can reduce β until the relay decoding rate
equals the destination decoding rate.

• If the relay decoding rate is the bottleneck, the source
node will set β = 1.

Note that when β = 1, the source node and the relay
node will transmit independent codes. Therefore, the second
cooperation mode between the source and the relay is also
known as the “asynchronous case” while the first mode is
referred to as the “synchronous case”. For our optimization
problem, we will jointly allocate P

(i)
s , P (i)

r and β for both
cases.

1) Synchronous Case: The destination decoding rate is the
bottleneck, and β < 1. Denote P (i)

s1 = βP
(i)
s and P

(i)
s2 = β̄P

(i)
s

as the two components of P (i)
s . Since the signal received at the

destination contains a combined strength, we first maximize
the destination decoding rate with fixed P

(i)
0 , P

(i)
0 = P

(i)
s2 +

P
(i)
r . Then, we can allocate P

(i)
s1 and P

(i)
0 under the total

power constraint. The destination decoding rate is given by:

I(Xsi , Xr;Ydi) =
1

2
log

(
1 +

1

σ2
·(

|hsidi |2P (i)
s1 +

(√
|hsidi |2P (i)

s2 +

√
|hrdi |2(P (i)

0 − P
(i)
s2 )

)2
))

.

(7)

Since (7) is a concave function of P
(i)
s2 , the first-order con-

dition results in the optimum power allocation between P
(i)
s2

and P
(i)
r , which is given by

P (i)
s2 =

|hrdi|2
|hsidi |2 + |hrdi |2

P
(i)
0 ,

P (i)
r =

|hsidi |2
|hsidi |2 + |hrdi |2

P
(i)
0 , (8)

and the destination decoding rate becomes:

I(Xsi , Xr;Ydi) =

1

2
log

⎛
⎝1 +

4|hsidi
|2|hrdi

|2
|hsidi

|2+|hrdi
|2P

(i)
0 + |hsidi |2P

(i)
s1

σ2

⎞
⎠ . (9)

For the optimization problem (6), the optimum of rate R(i)

is achieved when P
(i)
s1 + P

(i)
s2 + P

(i)
r = P

(i)
tot and when the

relay decoding rate equals the destination decoding rate, i.e.,

|hsir|2P
(i)
s1

σ2
=

4|hsidi |2|hrdi |2P
(i)
0

(|hsidi |2 + |hrdi |2)σ2
+

|hsidi |2P
(i)
s1

σ2
. (10)

The above constraints lead to the optimal solution when
|hsidi | ≤ |hsir|:

P (i)
s1 =

|hsidi |2 + |hrdi |2
|hsir|2 + |hrdi |2

P
(i)
tot ,

P
(i)
0 =

|hsir|2 − |hsidi |2
|hsir|2 + |hrdi |2

P
(i)
tot . (11)

The highest achievable rate in the synchronous case is given
by

R(i)
sync =

1

2
log

(
1 +

|hsir|2(|hsidi |2 + |hrdi |2)
|hsir|2 + |hrdi |2

· P
(i)
tot

σ2

)
.

(12)

If |hsidi | > |hsir|, the source-destination channel has a
better channel condition than the source-relay channel. In this
case, any direct transmission is more reliable than cooperative
transmission. Therefore, the source transmits to the destination
directly to avoid the waste of resources, and the highest end
user rate (channel capacity) for non-cooperative transmission
is

R
(i)
dir =

1

2
log

(
1 +

|hsidi |2P
(i)
tot

σ2

)
. (13)



ZHANG et al.: OPTIMIZING NETWORK SUSTAINABILITY AND EFFICIENCY IN GREEN CELLULAR NETWORKS 1133

2) Asynchronous Case: In this case, the source and the
relay employ independent codes, so that β = 1.

The achievable rate for channel i becomes

R(i) = min

{
1

2
log

(
1 +

|hsir|2P
(i)
s

σ2

)
,

1

2
log

(
1 +

|hsidi |2P
(i)
s + |hrdi|2P

(i)
r

σ2

)}
. (14)

By the same argument, the maximum achievable rate is
obtained when the relay decoding rate equals the destination
decoding rate, i.e.,

|hsir|2P (i)
s = |hsidi |2P (i)

s + |hrdi|2P (i)
r . (15)

When |hsidi | ≤ |hsir|, the optimal power allocation in the
asynchronous case is given by:

P (i)
s =

|hrdi |2
|hsir|2 − |hsidi |2 + |hrdi |2

P
(i)
tot ,

P (i)
r =

|hsir|2 − |hsidi |2
|hsir|2 − |hsidi |2 + |hrdi |2

P
(i)
tot , (16)

and the highest achievable rate is given by

R(i)
asyn =

1

2
log

(
1 +

|hsir|2|hrdi |2
|hsir|2 − |hsidi |2 + |hrdi|2

· P
(i)
tot

σ2

)
.

(17)

Remark 1. The optimal cooperation strategy and power
adaptation scheme to maximize the achievable rate depends
on the channel conditions and the locations of the users. For
example, in the AWGN channel with path loss, if BS is closer
to the source, the power allocation in the synchronous case
achieves higher rate; otherwise, the power allocation scheme
in the asynchronous case achieves higher rate.

B. Rate Maximization under BS Power Constraint

Suppose all users have a fixed transmission power P
(i)
s =

Ps and only the BS can adjust its power level based on
the harvested energy and the QoS requirement. Then, the
rate maximization problem under BS power constraint is
formulated as:

max
P

(i)
r

R(i)

subject to P (i)
s = Ps

P (i)
r ≤ Pr, (18)

where Pr is the maximum transmission power at the BS.
Intuitively, the achievable rate R(i) improves with the BS

transmission power. However, since the relay decoding rate
is independent of P

(i)
r , in this problem, we are interested in

how R(i) changes with BS transmission power P (i)
r . When the

power level at the BS is known, the source node will adapt
its transmission power accordingly by choosing proper β to
maximize the achievable rate.

As shown in Section III-A, when |hsidi | > |hsir|, the
source transmits to the destination directly. Therefore, we only
discuss the power adaptation scheme for the source and the
BS to maximize the achievable rate when |hsidi | ≤ |hsir|.

In the synchronous case, the relay decoding rate is the
dominant one, so the source node will choose 0 < β < 1 to
balance the relay decoding rate and the destination decoding
rate. In this case, R(i) increases with P

(i)
r , so the maximum

is achieved when P
(i)
r = Pr. In the asynchronous case, the

relay decoding rate becomes the bottleneck, so β = 1.
1) Synchronous Case: In this case, the maximum rate is

achieved when P
(i)
r = Pr and

|hsir|2βPs = |hsidi |2βPs+

(√
|hsidi |2β̄Ps +

√
|hrdi|2Pr

)2

.

(19)
Solving (19) for β, we can get

β =
|hsidi |2|hrdi |2

|hsir|4Ps
·

(√
|hsir|2Ps − |hrdi |2Pr

|hrdi |2
+

√
(|hsir|2 − |hsidi |2)Pr

|hsidi |2

)2

.

(20)

The condition for this case to happen is

Pr <
|hsir|2 − |hsidi |2

|hrdi |2
Ps. (21)

Therefore, the maximum rate is given by

R(i)
sync =

1

2
log

(
1 +

|hsidi |2|hrdi |2
|hsir|2σ2

·
(√

|hsir|2Ps − |hrdi|2Pr

|hrdi|2
+

√
(|hsir|2 − |hsidi |2)Pr

|hsidi |2

)2
⎞
⎠ .

(22)

2) Asynchronous Case: When Pr ≥ |hsir
|2−|hsidi

|2
|hrdi

|2 Ps,
β = 1. Since the bottleneck is the relay decoding rate,
improving P

(i)
r cannot increase the achievable rate. In this

case, the maximum transmission rate is a constant and given
by

R(i)
asyn =

1

2
log

(
1 +

|hsir|2Ps

σ2

)
, (23)

and the optimal transmission power at the BS is given by

P (i)
r =

|hsir|2 − |hsidi |2
|hrdi |2

Ps. (24)

In conclusion, depending on the BS’s power output as
well as its location, the maximum achievable rate for the
optimization problem (18) is given by

R(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2
log

(
1 +

|hsidi
|2|hrdi

|2
|hsir

|2σ2 ·(√
|hsir

|2Ps−|hrdi
|2Pr

|hrdi
|2 +

√
(|hsir

|2−|hsidi
|2)Pr

|hsidi
|2

)2
)
,

if Pr <
|hsir

|2−|hsidi
|2

|hrdi
|2 Ps;

1
2
log
(
1 +

|hsir
|2Ps

σ2

)
, if Pr ≥ |hsir

|2−|hsidi
|2

|hrdi
|2 Ps.

(25)
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IV. POWER ALLOCATION CONSIDERING ENERGY BUFFER

DYNAMICS

In green cellular network, the BS is equipped with a
rechargeable energy battery to store and release the harvested
renewable energy. In this section, we take the dynamic energy
charging/discharging processes into consideration to allocate
the maximum power output P (i)

r for each channel i.

A. Energy Buffer Model

Since the renewable energy is intrinsically intermittent, the
charging process is a stochastic process. Denote N(t) as the
total harvested energy over time [0, t]. N(t) is non-decreasing
and its corresponding charging rate is λ(t). Considering the
intermittency of the renewable energy sources, we assume that
the charging rate changes over time and the charging process
is described as a non-homogeneous random process in this
paper. As the transmission time for each channel is relatively
short compared with the process, the charging rate of the
process during channel i’s transmission can be approximated
as a constant λ(i).

The harvested energy at the BS is consumed for signal
processing, coding and forwarding the information to the
destination. The total transmission energy when channel i is
active can be calculated by

E(i) = P (i)
r T, (26)

where T is the transmission time for channel i.
Suppose the energy used for signal processing and coding

is a constant E0 for all time periods. Denote V (t) as the total
energy discharged over [0, t]. Then,

V (t) =
E0t

T
+

∫ t

0

Pr(s)ds, (27)

where Pr(s) = P
(i)
r when channel i is active at time s. The

discharging rate of channel i is thus a constant given by

μ(i) = P (i)
r + E0/T. (28)

Denote C as the battery capacity, which is assumed to
be large enough to store the energy harvested within a time
period. Then, the energy stored in the buffer at time t is given
by

Q(t) = min[max[N(t)− V (t), 0], C]. (29)

Define D(Q
(i)
0 ) as the energy depletion time of the energy

buffer with initial buffer length Q
(i)
0 ,

D(Q
(i)
0 ) = inf(t ≥ 0|Q(t) = 0, Q(0) = Q

(i)
0 ), (30)

where inf{t ∈ T } denotes the infimum of set T .
Our objective is to design the maximum transmission power

for each channel while preventing the D2D communication
network from battery energy depletion. Specifically, we intend
to avoid energy buffer vacancy during each transmission
period by deciding the transmission power at the beginning
of the period.

To achieve this goal, we investigate the relationship between
the energy depletion time of the energy buffer D(Q

(i)
0 ) and the

discharging rate μ(i). Let fD(t;Q
(i)
0 ) denote the probability

density function of the energy depletion time. Based on the
start up delay analysis in [26], we have

fD(t;Q
(i)
0 ) = − d

dt

∫ ∞

0

pQ(q, t)dq, (31)

where pQ(q, t) is the probability density function of the buffer
energy storage Q(t) at time t.

In the following, we intend to obtain pQ(q, t), which is
denoted as

pQ(q, t) = E[δ(q −Q(t))], (32)

where E[·] calculates the expectation of the input function.
During each transmission period, the energy buffer has

a random input and a constant rate output. Without loss
of generality, suppose the arrival process during channel i’s
transmission is a random process with a general distribution.
Thus, the temporal evolution of the energy buffer during a
small time interval Δ can be described by

dQ(t) = Q(t+Δ)−Q(t) = η(Δ) − μ(i)Δ, (33)

where η(Δ) = N(t+Δ) −N(t) denotes the the summation
of energy charged during Δ.

The charging process with a general distribution can be
approximated as a Wiener process with a drift [27], [28].
The drift during channel i’s transmission is at rate λ(i). The
variance of the charging process ν(i) is determined by the
Wiener process. In a Wiener process, the increment within a
time duration Δ is normally distributed with zero mean and
a variance, which is linearly proportional to the time duration
Δ [29]. As a result, let ν(i) = 2γΔ, where 2γ is a scaling
factor determined by the specific charging technology. The
probability density function for η(Δ) = x+λ(i)Δ is given by

pη(x,Δ) =
1√

4πΔγ
e−(x)2/(4Δγ). (34)

Since the analysis of probability density function with a
constant drift rate is complex, to facilitate analysis, we adopt
the techniques in [30] to obtain pQ(q, t) through Fourier
transform. Let F{u(x)} denote the Fourier transform of a
function u(x), we have

F{u(x)} := ûξ =

∫ ∞

−∞
u(x)e−jξxdx, (35)

where ûξ is the transformed function, and ξ is the transform
variable. The Fourier transform of the probability density
function is a characteristic function of the random variable.
Thus, the Fourier transform preserves all the random variable’s
statistic information. This feature guarantees the accuracy of
our analysis.

Let p̂Qξ (t) and p̂ηξ (Δ) denote the Fourier transform of
pQ(q, t) and pη(x,Δ), respectively. Performing Fourier trans-
form on (33) and taking Δ → 0, we can get

∂

∂t
p̂Qξ (t) = μ(i)F{ ∂

∂q
pQ(q, t)}+ p̂Qξ (t)φξ, (36)

where

φξ = lim
Δ→0

1

Δ
[p̂ηξ (Δ)− 1]. (37)
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To get p̂ηξ (Δ) in (37), we perform Fourier transform on the
probability density function pη(x,Δ), which is given by (34),
and obtain

p̂ηξ (Δ) = e−γΔξ2e−jξλ(i)

. (38)

Thus, φξ is given by

φξ = −γξ2 − jξλ(i). (39)

Based on the time derivative property of Fourier trans-
form, (36) could be further reformed as

∂

∂t
p̂Qξ (t) = jξμ(i)p̂Qξ (t) + p̂Qξ (t)φξ

= (jξμ(i) + φξ)p̂
Q
ξ (t). (40)

To solve this first order ordinary differential equation (40),
we need to determine initial values. The initial condition
of (40) could be obtained at time t = 0. At time t = 0,
the energy buffer length is Q

(i)
0 , namely pQ(q = Q

(i)
0 , 0) = 1.

The Fourier transform of this condition is p̂Qξ (0) = e−jξQ
(i)
0 .

With this initial condition and (39), the solution to (40) can
be obtained as

p̂Qξ (t) = e−jξQ
(i)
0 e(jξ(μ

(i)−λ(i))−γξ2)t. (41)

Finally, pQ(q, t) can be obtained by performing the inverse
Fourier transform on (41). Replacing pQ(q, t) in (31), the
probability density function of the energy depletion time with
initial buffer length Q

(i)
0 is given by

fD(t;Q
(i)
0 ) =

Q
(i)
0√

4γπt3
exp

{
− (Q

(i)
0 + (λ(i) − μ(i))t)2

4γt

}
.

(42)

B. Power Allocation Schemes

We have modeled the energy buffer and provided the
probability density function of energy depletion time in the
previous subsection. Based on our theoretical analysis, in this
subsection, we design power allocation schemes to maxi-
mize the transmission efficiency while ensuring the network
sustainability. Assume that the initial energy storage in the
buffer and the statistical parameters of the charging process
can be estimated and are available at the beginning of each
transmission period. The BS can adjust the discharging rate
by choosing transmission power P

(i)
r during channel i’s

transmission period. The objective of our power allocation
scheme is to maximize each single channel’s transmission
rate while maintaining the sustainability of the network at a
certain level. We still consider two different network scenarios
depending on whether users are able to adjust the transmission
power. In the first network scenario, both the BS and users
can adjust transmission power. Thus, our scheme can allocate
power for both the BS and users to improve the transmission
efficiency. Then, we consider the case that users can not
adjust transmission power due to equipment constraints, which
means that only the BS can choose various powers for data
transmission. In the following, we present the transmission
power allocation frameworks under both total power constraint
and BS power constraint cases.

1) Power Allocation under Total Power Constraint: We
first consider the situation that both the BS and users can adjust
their transmission power levels. In the proposed network sce-
nario, since improving the transmission rate is at the expense
of consuming more transmission power, the communication
network may not be sustainable over time due to power deple-
tion. To tackle this issue, our design objective is to improve the
transmission efficiency of each channel while maintaining the
whole network’s sustainability. Our proposed scheme allocates
both BS transmission power and user transmission power on
a slot-by-slot basis.

At the beginning of channel i’s transmission period, the
remaining energy in the buffer is Q

(i)
0 . In order to maintain

the network sustainability, the maximum transmission power
P

(i)∗
r for the BS on channel i is determined by numerically

solving the following equation:

E[D(Q
(i)
0 )] = T + δ, (43)

where δ denotes a constant to guarantee the sustainability
of green wireless networks. δ is decided according to the
tolerance level of the transmission or the available volume
of backup energy. If there is sufficient backup energy or
the transmission has high tolerance level, i.e., the network
tolerates a high transmission latency like data transmission,
δ can be set to a small value. If the available volume of the
backup energy is not enough and the transmission does not
tolerate a high transmission latency, such as voice/video, a
large δ is chosen.

Based on our analysis in Section IV-A, the expectation of
the depletion time can be calculated by

E[D(Q
(i)
0 )] =∫ ∞

0

Q
(i)
0√

4γπt
exp

{
− (Q

(i)
0 + (λ(i) − (P

(i)
r + E0/T ))t)

2

4γt

}
dt.

(44)

Then, we can obtain the optimal Ps to maximize the
transmission efficiency based on the value of P

(i)∗
r . In the

total power constraint case, the user is able to adjust its
own transmission power to cooperate with the BS to improve
the transmission efficiency. Based on (8) and (11) in Sec-
tion III-A, in the synchronous case, the optimal transmission
power for the user is given by

P (i)∗
s =

|hsidi |2(|hsidi |2 + |hrdi|2) + |hrdi |2(|hsir|2 + |hrdi|2)
|hsidi |2(|hsir|2 − |hsidi |2)

P (i)∗
r .

(45)

In the asynchronous case, according to (16), the optimal
user transmission power is given by

P (i)∗
s =

|hrdi|2
|hsir|2 − |hsidi |2

P (i)∗
r . (46)

2) Power Allocation under BS Power Constraint: We fur-
ther consider the case that users can not adjust their trans-
mission power level due to the device constraints. In this
case, users transmit with fixed power while BS adapts its
transmission power to meet our design objective.
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Fig. 2. Rate comparison under the total power constraint for a single-user
channel.

According to (25), the maximum rate for the optimiza-
tion problem (18) is achieved when P

(i)
r = Pr if Pr <

|hsir
|2−|hsidi

|2
|hrdi

|2 Ps, and P
(i)
r =

|hsir
|2−|hsidi

|2
|hrdi

|2 Ps if Pr ≥
|hsir

|2−|hsidi
|2

|hrdi
|2 Ps.

Therefore, the power allocation scheme performs as follows:
at the begining of channel i’s transmission period, based on
the remaining buffer energy Q

(i)
0 , the BS first calculates a

transmission power P (i)∗
r such that

E[D(Q
(i)
0 )] = T + δ, (47)

which is the same as the first step of the power allocation
scheme in the total power constraint case.

Then, the BS compares P
(i)∗
r with

min{Pr,
|hsir

|2−|hsidi
|2

|hrdi
|2 Ps} and chooses the minimum

of the two values as the optimal transmission power.

V. NUMERICAL RESULTS

To verify the above theoretical analysis and to evaluate
our power allocation schemes, we provide some numerical
results in this section. We assume that all wireless channels
are independent Rayleigh fading channels with path loss.

Firstly, in order to illustrate the rate enhancement by the co-
operative communication in a single-user channel, we compare
the optimal rate achieved by our proposed cooperative power
adaptation schemes with the non-cooperative transmission rate
under the total power constraint as shown in Fig. 2. The
transmission power for the non-cooperative communication is
set to be P

(i)
tot , which is the maximum total transmission power

for channel i. Suppose P
(i)
tot/σ

2 ranges from 10dB to 30dB,
and the path loss exponent α is 2. The distances between
the source and the BS, between the BS and the destination,
and between the source and the destination are 75 meters, 80
meters and 150 meters, respectively.

It can be observed that cooperative transmission can achieve
higher rate than non-cooperative transmission in both syn-
chronous case and asynchronous case. In a high SNR envi-
ronment, the spectrum efficiency can be doubled.

Fig. 3 depicts the rate comparison employing different
power adaptation schemes for both total power constraint and
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Fig. 3. Rate comparison for a single-user channel.

BS power constraint problems. Suppose P
(i)
r /σ2 ranges from

10dB to 40dB. For the total power constraint problem, the
source would adapt its own transmission power based on
the available BS’s transmission power. For the BS power
constraint problem, the transmission power at the source is
set to be 20dB and the maximum BS transmission power
Pr is 40dB. The rest of the simulation parameters remain
unchanged. To illustrate the rate improvement, we also set
the capacity of the non-cooperative transmission as a baseline
for comparison, where the user transmission power is 20dB.

It can be observed that the power adaptation schemes under
the total power constraint can achieve higher rate, which is
at the expense of higher transmission power at the source.
Under the BS power constraint, the channel rate reaches a
constant when P

(i)
r is large, which is bounded by the limited

transmission power at the source.
Secondly, we evaluate our proposed power allocation

schemes considering the energy buffer dynamics. The cumu-
lative distribution function (CDF) of energy depletion time
is shown in Fig. 4, where Fig. 4(a) illustrates the CDF with
different initial buffer storage and Fig. 4(b) depicts the CDF
with different discharging rate.

It can be seen from Fig. 4(a) that the CDF curve of the
energy depletion time shifts right as the initial buffer energy
Q

(i)
0 grows, which means that the BS is more likely to provide

energy output for a longer time if Q(i)
0 is large. As shown in

Fig. 4(b), the CDF curve shifts left as the discharging rate μ(i)

grows, which means that the BS is more likely to deplete its
energy soon with the increase of the discharging rate.

The depletion time expectation E[D(Q
(i)
0 )] of the green

energy buffer model shown in Subsection IV-A is depicted in
Fig 5. The charging rate λ(i) is set to be 3.5. It can be seen that
E[D(Q

(i)
0 )] decreases with depletion rate μ(i) and increases

with the initial energy storage Q(i)
0 from both analytical results

and simulation results.
Fig. 6 and Fig. 7 illustrate the performance of our proposed

power allocation schemes in a practical network containing
20 consecutive transmissions. The user transmission power in
the BS constraint case is set to be 2dB and the maximum
BS transmission power is 10dB. The battery capacity is
100. The renewable energy charging rate at the BS during
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Fig. 4. CDF of energy depletion time.
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Fig. 5. Expectation of depletion duration (λ(i) = 3.5).

each transmission period is random and time-variant. Suppose
that the energy charging rate can be forecasted based on
some historical data, e.g. data from the previous day or
year. To demonstrate the energy efficiency of our proposed
schemes, we compare with a max-sustainability scheme where

P
(i)
r =

Q
(i)
0 −E0

T in total power constraint case and P
(i)
r =

min{Q
(i)
0 −E0

T , P
(i)∗
r , Pr} in BS power constraint case. We

calculate both the energy depletion probability and the average
transmission rate of all channels according to the reference
max-sustainability scheme and our proposed power allocation
schemes derived in Subsection IV-B. The comparison in the
total power constraint case is shown in Fig. 6 and the result
in the BS power constraint case is shown in Fig. 7.
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Fig. 6. Total power constraint case (channel number=20).

It can be observed that our proposed power allocation
schemes can improve the average transmission rate drastically
for both total power constraint case and BS power constraint
case. The reason is that our schemes exploit the dynamic
charging process of the renewable energy to improve the en-
ergy efficiency. Compared with the max-sustainability power
allocation scheme which has zero energy depletion probability,
our proposed method is associated with very low depletion
probability.

VI. CONCLUSION

In this paper, we have proposed several power allocation
schemes to maximize the throughput while maintaining the
network sustainability in a D2D communication underlaying
green cellular network. The results should shed some light on
the green wireless network design with energy efficiency and
energy sustainability as critical design criteria. For the future
work, we will consider more network scenarios including
various mobility patterns and QoS requirement of users to
optimize the network efficiency and sustainability in green
wireless communication networks.
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1999-2000 and with the Coordinated Science Labo-
ratory, University of Illinois at Urbana-Champaign,
during 2000-2002. He is currently a Professor at the
Department of Electrical and Computer Engineer-

ing, University of Waterloo, Waterloo, ON, Canada. His research interests
include wireless networks, information theory, adaptive control, and system
identification.


