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SPOC: A Secure and Privacy-preserving
Opportunistic Computing Framework for
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Abstract—With the pervasiveness of smart phones and the advance of wireless body sensor networks (BSNs), mobile Healthcare
(m-Healthcare), which extends the operation of Healthcare provider into a pervasive environment for better health monitoring, has
attracted considerable interest recently. However, the flourish of m-Healthcare still faces many challenges including information security
and privacy preservation. In this paper, we propose a secure and privacy-preserving opportunistic computing framework, called SPOC,
for m-Healthcare emergency. With SPOC, smart phone resources including computing power and energy can be opportunistically
gathered to process the computing-intensive personal health information (PHI) during m-Healthcare emergency with minimal privacy
disclosure. In specific, to leverage the PHI privacy disclosure and the high reliability of PHI process and transmission in m-Healthcare
emergency, we introduce an efficient user-centric privacy access control in SPOC framework, which is based on an attribute-based
access control and a new privacy-preserving scalar product computation (PPSPC) technique, and allows a medical user to decide who
can participate in the opportunistic computing to assist in processing his overwhelming PHI data. Detailed security analysis shows
that the proposed SPOC framework can efficiently achieve user-centric privacy access control in m-Healthcare emergency. In addition,
performance evaluations via extensive simulations demonstrate the SPOC’s effectiveness in term of providing high reliable PHI process
and transmission while minimizing the privacy disclosure during m-Healthcare emergency.

Index Terms—Mobile-Healthcare emergency; opportunistic computing; user-centric privacy access control; PPSPC
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1 INTRODUCTION
In our aging society, mobile Healthcare (m-Healthcare) system
has been envisioned as an important application of pervasive
computing to improve health care quality and save lives, where
miniaturized wearable and implantable body sensor nodes
and smartphones are utilized to provide remote healthcare
monitoring to people who have chronic medical conditions
such as diabetes and heart disease [1], [2], [3], [4]. Specifically,
in an m-Healthcare system, medical users are no longer needed
to be monitored within home or hospital environments. In-
stead, after being equipped with smartphone and wireless body
sensor network (BSN) formed by body sensor nodes, medical
users can walk outside and receive the high-quality healthcare
monitoring from medical professionals anytime and anywhere.
For example, as shown in Fig. 1, each mobile medical user’s
personal health information (PHI) such as heart beat, blood
sugar level, blood pressure and temperature and others, can
be first collected by BSN, and then aggregated by smartphone
via bluetooth. Finally, they are further transmitted to the
remote healthcare center via 3G networks. Based on these
collected PHI data, medical professionals at healthcare center
can continuously monitor medical users’ health conditions
and as well quickly react to users’ life-threatening situations
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and save their lives by dispatching ambulance and medical
personnel to an emergency location in a timely fashion.

Fig. 1. Pervasive health monitoring in m-Healthcare
system

Although m-Healthcare system can benefit medical users
by providing high-quality pervasive healthcare monitoring,
the flourish of m-Healthcare system still hinges upon how
we fully understand and manage the challenges facing in m-
Healthcare system, especially during a medical emergency. To
clearly illustrate the challenges in m-Healthcare emergency,
we consider the following scenario. In general, a medical
user’s PHI should be reported to the healthcare center every 5
minutes for normal remote monitoring [5]. However, when he
has an emergency medical condition, for example, heart attack,
his BSN becomes busy reading a variety of medical measures,
such as heart rate, blood pressure, and as a result, a large
amount of PHI data will be generated in a very short period
of time, and they further should be reported every 10 seconds
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for high-intensive monitoring before ambulance and medical
personnel’s arrival. However, since smartphone is not only
used for healthcare monitoring, but also for other applications,
i.e., phoning with friends, the smartphone’s energy could be
insufficient when an emergency takes place. Although this kind
of unexpected event may happen with very low probability,
i.e., 0.005, for a medical emergency, when we take into 10, 000
emergency cases into consideration, the average event number
will reach 50, which is not negligible and explicitly indicates
the reliability of m-Healthcare system is still challenging in
emergency.

Recently, opportunistic computing, as a new pervasive com-
puting paradigm, has received much attention [6], [7], [8], [9].
Essentially, opportunistic computing is characterized by ex-
ploiting all available computing resources in an opportunistic
environment to provide a platform for the distributed execution
of a computing-intensive task [9]. For example, once the
execution of a task exceeds the energy and computing power
available on a single node, other opportunistically contacted
nodes can contribute to the execution of the original task
by running a subset of task, so that the original task can
be reliably performed [6]. Obviously, opportunistic computing
paradigm can be applied in m-Healthcare emergency to resolve
the challenging reliability issue in PHI process. However, PHI
are personal information and very sensitive to medical users,
once the raw PHI data are processed in opportunistic comput-
ing, the privacy of PHI would be disclosed. Therefore, how to
balance the high reliability of PHI process while minimizing
the PHI privacy disclosure during the opportunistic computing
becomes a challenging issue in m-Healthcare emergency.

In this paper, we propose a new secure and privacy-
preserving opportunistic computing framework, called SPOC,
to address this challenge. With the proposed SPOC framework,
each medical user in emergency can achieve the user-centric
privacy access control to allow only those qualified helpers
to participate in the opportunistic computing to balance the
high-reliability of PHI process and minimizing PHI privacy
disclosure in m-Healthcare emergency. Specifically, the main
contributions of this paper are threefold.

• First, we propose SPOC, a secure and privacy-preserving
opportunistic computing framework for m-Healthcare
emergency. With SPOC, the resources available on other
opportunistically contacted medical users’ smartphones
can be gathered together to deal with the computing-
intensive PHI process in emergency situation. Since the
PHI will be disclosed during the process in opportunis-
tic computing, to minimize the PHI privacy disclosure,
SPOC introduces a user-centric two-phase privacy access
control to only allow those medical users who have sim-
ilar symptoms to participate in opportunistic computing.

• Second, to achieve user-centric privacy access control in
opportunistic computing, we present an efficient attribute-
based access control and a novel non-homomorphic en-
cryption based privacy-preserving scalar product com-
putation (PPSPC) protocol, where the attributed-based
access control can help a medical user in emergency to
identify other medical users, and PPSPC protocol can
further control only those medical users who have similar

symptoms to participate in the opportunistic computing
while without directly revealing users’ symptoms. Note
that, although PPSPC protocols have been well studied
in privacy-preserving data mining [10], [11], [12], yet
most of them are relying on time-consuming homomor-
phic encryption technique [13], [14]. To the best of
our knowledge, our novel non-homomorphic encryption
based PPSPC protocol is the most efficient one in terms
of computational and communication overheads.

• Third, to validate the effectiveness of the proposed SPOC
framework in m-Healthcare emergency, we also develop
a custom simulator built in Java. Extensive simulation
results show that the proposed SPOC framework can
help medical users to balance the high-reliability of PHI
process and minimizing the PHI privacy disclosure in m-
Healthcare emergency.

The remainder of this paper is organized as follows. In
Section 2, we formalize the system model and security model,
and identify our design goal. Then, we present the SPOC
framework in Section 3, followed by the security analysis
and performance evaluation in Section 4 and Section 5,
respectively. We also review some related works in Section 6.
Finally, we draw our conclusions in Section 7.

2 MODELS AND DESIGN GOAL
In this section, we formalize the system model and security
model, and identify our design goal as well.

2.1 System Model
In our system model, we consider a trusted authority (TA)
and a group of l medical users U = {U1, U2, · · · , Ul},
as shown in Fig. 2. TA is a trustable and powerful entity
located at healthcare center, which is mainly responsible for
the management of the whole m-Healthcare system, e.g.,
initializing the system, equipping proper body sensor nodes
and key materials to medical users. Each medical user Ui ∈ U

is equipped with personal BSN and smartphone, which can
periodically collect PHI and report them to the healthcare
center for achieving better health care quality. Unlike in-bed
patients at home or hospital [15], [16], [17], medical users
U in our model are considered as mobile ones, i.e., walking
outside [18].

Fig. 2. System model under consideration
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BSN and smartphone are two key components for the
success of m-Healthcare system. In order to guarantee the
high reliability of BSN and smartphone, the batteries of BSN
and smartphone should be charged up everyday so that the
battery energy can support daily remote monitoring task in
m-Healthcare system [1], [19]. In general, since the BSN is
dedicated for remote monitoring, after being charged everyday,
BSN can deal with not only the normal situations but also
the emergency cases in m-Healthcare. However, since the
smartphone could be used for other purposes, e.g., phoning
friends, surfing webpages, when an emergency suddenly takes
place, the residual power of smartphone may be insufficient
for high-intensive PHI process and transmission. To deal with
this embarrassing situation, opportunistic computing provides
a promising solution in m-Healthcare system, i.e., when other
medical users find out one medical user Ui ∈ U is in
emergency, they will contribute their smartphones’ resources
to help Ui with processing and transmitting PHI.

2.2 Security Model

Opportunistic computing can enhance the reliability for high-
intensive PHI process and transmission in m-Healthcare emer-
gency. However, since PHI is very sensitive, a medical user,
even in emergency, will not expect to disclose his PHI to all
passing-by medical users. Instead, he may only disclose his
PHI to those medical users who have some similar symptoms
with him. In this case, the emergency situation can be handled
by opportunistic computing with minimal privacy disclosure.
Specifically, in our security model, we essentially define
two-phase privacy access control in opportunistic computing,
which are required for achieving high-reliable PHI process and
transmission in m-Healthcare emergency, as shown in Fig. 3.

Phase-I access control: Phase-I access control indicates that
although a passing-by person has a smartphone with enough
power, as a non-medical user, he is not welcomed to par-
ticipate in opportunistic computing1. Since the opportunistic
computing requires smartphones that are installed with the
same medical softwares to cooperatively process the PHI, if a
passing-by person is not a medical user, the lack of necessary
softwares does not make him as an ideal helper. Therefore,
the phase-I privacy access control is prerequisite.

Phase-II access control: Phase-II access control only allows
those medical users who have some similar symptoms to
participate in the opportunistic computing. The reason is that
those medical users, due to with the similar symptoms, are
kind of skilled to process the same type PHI. Note that,
the threshold th is a user self-control parameter. When the
emergency takes place at a location with high traffic, the
threshold th will be set high to minimize the privacy dis-
closure. However, if the location has low traffic, the threshold
th should be low so that the high-reliable PHI process and
transmission can be first guaranteed.

1. Note that, a passing-by person can still assist in processing some physical
cares before the ambulance arrives.
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Fig. 3. Opportunistic computing with two-phase privacy
access control for m-Healthcare emergency

2.3 Design Goal
Our design goal is to develop a secure and privacy-preserving
opportunistic computing framework to provide high reliability
of PHI process and transmission while minimizing PHI privacy
disclosure in m-Healthcare emergency. Specifically, we i)
apply opportunistic computing in m-Healthcare emergency to
achieve high-reliability of PHI process and transmission; and
ii) develop user-centric privacy access control to minimize the
PHI privacy disclosure.

3 PROPOSED SPOC FRAMEWORK
In this section, we propose our SPOC framework, which con-
sists of three parts: system initialization, user-centric privacy
access control for m-Healthcare emergency, and analysis of
opportunistic computing in m-Healthcare emergency. Before
describing them, we first review the bilinear pairing technique
[20], [21], [22], [23], which serves as the basis of the proposed
SPOC framework.

3.1 Bilinear Pairings
Let G, GT be two multiplicative cyclic groups with the same
prime order q. Suppose G and GT are equipped with a pairing,
i.e., a non-degenerated and efficiently computable bilinear map
e : G×G → GT such that e(ga1 , gb2) = e(g1, g2)

ab ∈ GT for all
a, b ∈ Z∗

q and any g1, g2 ∈ G. In group G, the Computational
Diffie-Hellman (CDH) problem is hard, i.e., given (g, ga, gb)
for g ∈ G and unknown a, b ∈ Z∗

q , it is intractable to compute
gab in a polynomial time. However, the Decisional Diffie-
Hellman (DDH) problem is easy, i.e., given (g, ga, gb, gc)
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for g ∈ G and unknown a, b, c ∈ Z∗

q , it is easy to judge
whether c = ab mod q by checking e(ga, gb)

?
= e(gc, g). We

refer to [20] for a more comprehensive description of pairing
technique, and complexity assumptions.

Definition 1: A bilinear parameter generator Gen is a prob-
abilistic algorithm that takes a security parameter κ as input,
and outputs a 5-tuple (q, g,G,GT , e), where q is a κ-bit prime
number, G,GT are two groups with order q, g ∈ G is a
generator, and e : G × G → GT is a non-degenerated and
efficiently computable bilinear map.

3.2 Description of SPOC

3.2.1 System Initialization

For a single-authority m-Healthcare system under consider-
ation, we assume a trusted authority (TA) located at the
healthcare center will bootstrap the whole system. Specifically,
given the security parameter κ, TA first generates the bilinear
parameters (q, g,G,GT , e) by running Gen(κ), and chooses
a secure symmetric encryption algorithm Enc(), i.e., AES,
and two secure cryptographic hash functions H and H ′,
where H,H ′ : {0, 1}∗ → Z∗

q . In addition, TA chooses
two random numbers (a, x) ∈ Z∗

q as the master key, two
random elements (h1, h2) in G, and computes b = H(a),
A = ga, and e(g, g)x. Finally, TA keeps the master (a, b, x)
secretly, and publishes the system parameter params =
(q, g,G,GT , e,H,H ′, h1, h2, A, e(g, g)

x, Enc()).
Assume there are total n symptom characters considered in

m-Healthcare system, and each medical user’s symptoms can
be represented through his personal health profile, a binary
vector �a = (a1, a2, · · · , an) in the n-dimensional symptom
character space, where ai ∈ �a indicates a symptom character,
i.e., ai = 1 if the medical user has the corresponding symptom
character, and ai = 0 otherwise. Therefore, for each medical
user Ui ∈ U, when he registers himself in the healthcare
center, the medical professionals at healthcare center first make
medical examination for Ui, and generate Ui’s personal health
profile �a = (a1, a2, · · · , an). Afterwards, the following steps
will be performed by TA:

• Based on Ui’s personal health profile �a, TA first chooses
the proper body sensor nodes to establish Ui’s personal
BSN, and installs the necessary medical softwares in Ui’s
smartphone.

• Then, TA chooses two random numbers (ti1, ti2) ∈
Z∗

q , and computes the access control key aki =

(gx+ati1 , gti1 , gti2 , hti1
1 hti2

2 ) for Ui.
• Finally, TA uses the master key b to compute the secret

key ski = H(Ui||b) for Ui.
After being equipped with the personal BSN and key

materials (aki, ski), Ui can securely report his PHI to health-
care center for achieving better healthcare monitoring by the
following procedure.

• Ui first chooses the current date CDate, computes the
session key ki = H(ski||CDate) for one day, and
distributes the session key ki to his personal BSN and
smartphone.

• Every five minutes, BSN collects the raw PHI data rPHI
and reports the encrypted value Enc(ki, rPHI||CDate) to
the smartphone with bluetooth technology.

• Upon receiving Enc(ki, rPHI||CDate), the smartphone
uses ki to recover rPHI from Enc(ki, rPHI||CDate).
After processing rPHI, the smartphone uses the 3G
technology to report the processed PHI to healthcare
center in the form of Ui||CDate||Enc(ki,PHI||CDate).

• When the TA receives Ui||CDate||Enc(ki,PHI||CDate)
at the healthcare center, he first uses the master key b to
compute Ui’s secret key ski = H(Ui||b), and uses ski to
compute the current session key ki = H(ski||CDate).
After that, TA uses ki to recover PHI||CDate from
Enc(ki,PHI||CDate). If the recovered CDate is cor-
rected, TA sends PHI to the medical professionals for
monitoring.

3.2.2 User-Centric Privacy Access Control for m-
Healthcare Emergency
When an emergency takes place in m-Healthcare, e.g., user U0

suddenly falls down outside, the healthcare center will monitor
the emergency, and immediately dispatch an ambulance and
medical personnel to the emergency location. Generally, the
ambulance will arrive at the scene around 20 minutes [24].
During the 20 minutes, the medical personnel needs high-
intensive PHI to realtime monitor U0. However, the power
of U0’s smartphone may be not sufficient to support the
high-intensive PHI process and transmission. In this case, the
opportunistic computing, as shown in Fig. 3, is launched, and
the following user-centric privacy access control is performed
to minimize the PHI privacy disclosure in opportunistic com-
puting.

• Phase-I Access Control: The goal of phase-I access con-
trol is to identify other medical users in emergency. To
achieve the phase-I access control, U0’s smartphone first
chooses a random number s ∈ Z∗

q , computes e(g, g)xs and
C = (C1, C2, C3) as

C1 = gs, C2 = As · h−s
1 , C3 = h−s

2 (1)

When user Uj passes by the emergency location, U0 sends
C = (C1, C2, C3) to Uj . After receiving C = (C1, C2, C3),
Uj will perform the following steps:

• Use his access control key akj = (gx+atj1 , gtj1 , gtj2 ,
h
tj1
1 h

tj2
2 ) to compute

e(C1,g
x+atj1 )

e(gtj1 ,C2)·e(g
tj2 ,C3)·e(h

tj1
1

h
tj2
2

,C1)

= e(gs,gxg
atj1 )

e(gtj1 ,gas
·h
−s
1

)·e(gtj2 ,h
−s
2

)·e(h
tj1

1
h
tj2

2
,gs)

= e(gs,gx)e(gs,g
atj1 )

e(gtj1 ,gas)e(gtj1 ,h
−s
1

)·e(gtj2 ,h
−s
2

)·e(h
tj1

1
h
tj2

2
,gs)

= e(gs,gx)

e(gs,h
tj1

1
h
tj2

2
)−1

·e(h
tj1

1
h
tj2

2
,gs)

= e(g, g)xs

(2)

• Compute Auth = H ′(e(g, g)xs||timestamp), where
timestamp is the current timestamp, and send back
Auth||timestamp to U0.

When user U0 receives Auth||timestamp at time timestamp′,
he first checks the validity of the time interval between
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timestamp′ and timestamp in order to resist the replaying
attack. If |timestamp′− timestamp| ≤ ΔT , where ΔT denotes
the expected valid time interval for transmission delay, U0

accepts and processes Auth||timestamp, and rejects other-
wise. Once Auth||timestamp is accepted, U0 uses the stored
e(g, g)xs to compute Auth′ = H ′(e(g, g)xs||timestamp), and
checks whether Auth′ ?

= Auth. If it does hold, Uj is authenti-
cated as a medical user, and passes the phase-I access control.

Correctness. The correctness of the phase-I access control
is obvious. If Uj is not a medical user, he cannot generate
e(g, g)xs to produce a valid Auth to pass U0’s authenti-
cation. In addition, since U0 can efficiently use the same
C = (C1, C2, C3) and the timestamp technique to authenticate
other medical users, the phase-I access control is also efficient.

Algorithm 1 Privacy-preserving Scalar Product Computation
1: procedure PPSPC PROTOCOL
2: Input: U0’s binary vector �a = (a1, a2, · · · , an) and Uj’s binary

vector �b = (b1, b2, · · · , bn), where n ≤ 26

3: Output: The scalar product �a · �b =
∑n

i=0 ai · bi
—————————————————————————————–

4: Step-1: U0 first does the following operations:
5: choose two large primes α, β, where α is of the length |α| = 256

bits and β > (n+ 1) · α2, e.g., the length |β| > 518 bits if n = 26

6: set K = 0 and choose n positive random numbers
(c1, c2, c3, · · · , cn) such that

∑n
i=1 ci < α− n

7: for each element ai ∈ �a do
8: choose a random number ri, compute ri · β such that |ri · β| ≈

1024 bits, and calculate ki = ri · β − ci
9: if ai = 1 then

10: Ci = α+ ci + ri · β, K = K + ki
11: else if ai = 0 then
12: Ci = ci + ri · β, K = K + ki
13: end if
14: end for
15: keep (β,K) secret, and send (α, C1, C2, C3, · · · , Cn) to Ui

—————————————————————————————–
16: Step-2: Uj then executes the following operations:
17: for each element bi ∈ �b do
18: if bi = 1 then

19: Di = α · Ci=

{
α2 + ci · α+ ri · α · β, if ai = 1;
ci · α+ ri · α · β, if ai = 0.

20: else if bi = 0 then

21: Di = Ci=

{
α+ ci + ri · β, if ai = 1;
ci + ri · β, if ai = 0.

22: end if
23: end for
24: compute D =

∑n
i=1 Di and return D back to U0

—————————————————————————————–
25: Step-3: U0 continues to do the following operations:
26: compute E = D +K mod β

27: return E−(E mod α2)

α2 as the scalar product �a · �b =
∑n

i=0 ai · bi
28: end procedure

• Phase-II Access Control: Once Uj passes the phase-I
access control, U0 and Uj continue to perform the phase-II
access control to check whether they have some similar symp-
toms. Suppose the personal health profiles of medical users
U0, Uj are �a = (a1, a2, · · · , an) and �b = (b1, b2, · · · , bn),
respectively. U0 first defines an expected threshold th for
the number of common symptom characters. Then, in order
to compute �a · �b in a privacy-preserving way, U0 and Uj

invoke our newly designed PPSPC protocol in Algorithm 1.
Since the PPSPC protocol ensures neither U0 nor Uj will
disclose their personal healthcare profiles to each other during

the computation of �a · �b, it can efficiently achieve privacy-
preserving access control. For example, if the returned value
�a ·�b ≥ th, Uj passes the phase-II access control and becomes
a qualified helper. Then, U0 assigns the current session key
k0 = H(sk0||CDate) to Uj . With the session key k0, Uj

can decrypt and process the raw PHI sent from U0’s personal
BSN, and also transmit the processed PHI to healthcare center
to reduce the burden of U0’s smartphone. However, if the
returned value �a · �b < th, Uj is not a qualified helper to
participate in opportunistic computing. Note that the threshold
th is not fixed, if the residual power of U0’s smartphone can
last a little long time, th can be set relatively high to minimize
the PHI privacy disclosure. However, if the residual power is
little, th can be set low so as to firstly guarantee the reliability
of high-intensive PHI process and transmission.

Correctness of PPSPC Protocol. The correctness of our
proposed PPSPC protocol can be clearly illustrated by
the following typical example. Assume two binary vectors
are �a = (a1, a2, a3, a4, a5) = (1, 1, 0, 0, 1) and �b =
(b1, b2, b3, b4, b5) = (1, 0, 1, 0, 1). After Step-1 is performed,
we have C1 = α + c1 + r1 · β, C2 = α + c2 + r2 · β,
C3 = c3 + r3 · β, C4 = c4 + r4 · β, and C5 = α+ c5 + r5 · β.

After Step-2 is executed, we have D1 = α2+c1 ·α+r1 ·α·β,
D2 = α+ c2+ r2 ·β, D3 = c3 ·α+ r3 ·α ·β, D4 = c4+ r4 ·β,
D5 = α2 + c5 · α+ r5 · α · β, and D =

∑5
i=1 Di.

Based on the returned D and the secret K =
∑5

i=1 ki, the
value of E can be calculated in Step-3 as

E = D +K =
∑5

i=1(Di + ki)
= [α2 + c1 · (α− 1) + r1 · α · β + c1 + k1] + (α+

r2 · β + c2 + k2) + [c3 · (α − 1) + r3 · α · β + c3+
k3] + (r4 · β + c4 + k4) + [α2 + c5 · (α− 1)+
r5 · α · β + c5 + k5] mod β

= [α2 + c1 · (α− 1) + r1 · (α+ 1) · β] + (r2 · 2 · β
+α) + [c3 · (α− 1) + r3 · (α+ 1) · β] + r4 · 2 · β
+[α2 + c5 · (α− 1) + r5 · (α+ 1) · β] mod β

= 2 · α2 + α+ (c1 + c3 + c5) · (α − 1) mod β
(3)

Since α−n = α−5 >
∑n

i=1 ci =
∑5

i=1 ci, β > (n+1)·α2 =
6 · α2 when n = 5, the value

2 · α2 + α+ (c1 + c3 + c5) · (α− 1)

< 2 · α2 + α+
∑5

i=1 ci · α < 2 · α2 + α(1 + α− 5)
< 2 · α2 + α2 = 3 · α2 < β

(4)
Therefore, we can remove “ mod β” from Eq.(3) and have

E =2 · α2 + α+ (c1 + c3 + c5) · (α− 1) mod β

=2 · α2 + α+ (c1 + c3 + c5) · (α− 1)
(5)

Again, since α+ (c1 + c3 + c5) · (α− 1) < α2, we have

E − (E mod α2)

α2
=

2 · α2

α2
= 2 (6)

According to the line-19 in Algorithm 1, only when both ai
and bi are 1, an α2 can be produced. Then, the coefficient of
α2 is just the required scalar product �a · �b. As a result, the
correctness of PPSPC protocol is verified.

Extension of PPSPC protocol. Although Algorithm 1 deals
with the PPSPC for binary vectors, it can be easily extended
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for the generalized vector’s PPSPC. For example, to calculate
the PPSPC of the generalized vectors �a = (a1, a2, · · · , an),
�b = (b1, b2, · · · , bn), where any ai, bi ∈ Zm with 2 < m <
28, we only make the following modifications in Algorithm 1,
and its correctness can be easily verified as well.

5: choose two large primes α, β, where α is of the length |α| = 256 bits
and β > (n ·m2 + 1) · α2

6: set K = 0 and choose n positive random numbers (c1, c2, c3, · · · , cn)
such that m ·

∑n
i=1 ci < α−m · n

9: if ai �= 0 then
10: Ci = ai · α+ ci + ri · β, K = K + ki
18: if bi �= 0 then
19: Di = bi · α · Ci

3.2.3 Analysis of Opportunistic Computing in m-
Healthcare Emergency
Consider the ambulance will arrive at the emergency location
in the time period t. To gauge the benefits brought by oppor-
tunistic computing in m-Healthcare emergency, we analyze
how many qualified helpers can participate in opportunistic
computing within the time period t, and how many resources
can the opportunities computing provide. Assume that the
arrival of users at the emergency location follows a Poisson
process {N(t), t ≥ 0} having rate λ. For a given threshold
th, Nq(t) = n and Nq̄(t) = m are respectively denoted as the
number of qualified helpers and the number of non-qualified
helpers within [0, t]. For any arriving user at time τ ∈ [0, t],
the probability that the user is a qualified helper is P (τ). Then,
Theorem 1 can give the expected number of qualified helpers
participating in opportunistic computing within [0, t].

Theorem 1: The expected number of the qualified helpers
participating in opportunistic computing within [0, t] is
E(Nq(t)) = λtp, where p = 1

t

∫ t

0
P (τ)dτ .

Proof: Given total N(t) = Nq(t) + Nq̄(t) = n + m
users arriving within time period [0, t], we know the time τ is
uniformly distributed in interval [0, t] for any user who arrives
at time τ [25]. Therefore, when defining the probability p =
P{one user arriving in [0, t] is a qualified helper|N(t) = n+
m}, we have p = 1

t

∫ t

0
P (τ)dτ . Since all users arrive indepen-

dently, P{Nq(t) = n,Nq̄(t) = m|N(t) = n+m} just shows
the probability that n qualified helpers’ arrivals during total
n+m Bernoulli experiments. Therefore,

P{Nq(t) = n,Nq̄(t) = m}
= P{Nq(t) = n,Nq̄(t) = m|N(t) = n+m}

·P{N(t) = n+m}

=

(
n+m

n

)
pn(1− p)me−λt (λt)

n+m

(n+m)!

= (n+m)!
n!·m! pn(1− p)me−λt(p+1−p) (λt)

n
·(λt)m

(n+m)!

= e−λtp (λtp)n

n! · e−λt(1−p) (λt(1−p))m

m!

(7)

which indicates that both Nq(t) and Nq̄(t) are independent
Poisson processes with respective rate λtp and λt(1− p). As
a result, the expected number of qualified helpers participating
in the opportunistic computing within [0, t] is E(Nq(t)) = λtp

with p = 1
t

∫ t

0
P (τ)dτ .

Assume each qualified helper can provide η computing and
power resources per unit of time, Theorem 2 further gives the
expected resources that can be opportunistically provided by
opportunistic computing within [0, t].

Theorem 2: The expected resources that can be provided
by opportunistic computing is λt2p

2 η within [0, t].
Proof: Suppose the k-th qualified helper arrives at time

τk ∈ [0, t], where 1 ≤ k ≤ Nq(t). Then, the total resources
R(t) provided by all arrived qualified helpers can be expressed
as

∑Nq(t)
k=1 (t− τk) · η. Because

E{R(t)|Nq(t) = n} = E{
∑Nq(t)

k=1 (t− τk) · η|Nq(t) = n}
= E{

∑n
k=1(t− τk) · η|Nq(t) = n}

= ntη − E{
∑n

k=1 τk · η|Nq(t) = n} = ntη − ntη
2 = ntη

2
(8)

and E(Nq(t)) = λtp from Theorem 1, we have the expected
resources E{R(t)} as

E{R(t)} =
∑

∞

n=0 (P{Nq(t) = n}E{R(t)|Nq(t) = n})

=
∑

∞

n=0 P{Nq(t) = n} · ntη
2 = tη

2 ·E(Nq(t)) =
λt2p
2 · η

(9)
Therefore, the expected resources that can be provided by
opportunistic computing is λt2p

2 η within [0, t].
We plot the E(Nq(t)), E(R(t)) versus λ and t with different

p = 0.2, 0.8 in Fig. 4. From the figure, we can see both
large λ and large p can increase E(Nq(t)), E(R(t)) with
the time. Therefore, when the emergency location has high
traffic, i.e., enough opportunistic resources can be expected,
we can set the threshold th high to reduce the probability
p, so that the PHI privacy disclosure can be minimized.
However, if the emergency location has low traffic, in order to
guarantee the high reliability of PHI process and transmission,
the threshold th should be set low to increase the probability
p. In Section 5, we will conduct simulations to further evaluate
the effectiveness of opportunistic computing in m-Healthcare
emergency.
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Fig. 4. E(Nq(t)), E(R(t)) versus λ and t with different p

4 SECURITY ANALYSIS
In this section, we analyze the security properties of the
proposed SPOC framework. In specific, following the security
requirements discussed earlier, our analyses will focus on
how the proposed SPOC framework can achieve the user-
centric privacy access control for opportunistic computing in
m-Healthcare emergency.
• The proposed SPOC framework can achieve the phase-

I access control. In the phase-I access control, the single-
attribute encryption technique is employed [26]. Since
e(g, g)xs can be recovered only by a registered medical user
Uj ∈ U with his access key akj = (gx+atj1 , gtj1 , gtj2 ,
h
tj1
1 h

tj2
2 ) from (C1 = gs, C2 = As · h−s

1 , C3 = h−s
2 ),
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if Uj can recover e(g, g)xs, he can be authenticated as a
registered medical user. In addition, the timestamp in the
returned Auth = H ′(e(g, g)xs||timestamp) can also prevent
the possible replaying attack. Therefore, the phase-I access
control can be achieved in the proposed SPOC framework.
• The proposed SPOC framework can achieve the phase-

II access control. In the phase-II access control, our novel
PPSPC protocol is employed. As shown in Algorithm 1, for
each ai ∈ �a, we have Ci = α + ci + riβ when ai = 1, and
Ci = ci + riβ when ai = 0. Since either α or 0 is masked
by ci + riβ in Ci, without knowing the random numbers ci
and riβ, it is impossible to distinguish whether Ci is formed
by α + ci + riβ or ci + riβ. In addition, since the random
numbers (ci, riβ) are individually used for one time, different
Ci and C′

i are unlinkable. Therefore, each ai ∈ �a is privacy-
preserving during the scalar product computation. On the other
hand, for each bi ∈ �b, we have Di = αCi when bi = 1,
and Di = Ci when bi = 0. Obviously, this operation cannot
directly hide α. However, when all Di are summated into D,
i.e., D =

∑n

i=1 Di, the unknown
∑n

i=1 ci + riβ will hide the
operation on each Di. As a result, each bi ∈ �b is also privacy-
preserving during the scalar product computation. Due to the
correctness of Algorithm 1, the scalar product �a · �b indicates
the number of same symptom characters of two personal health
profiles. Once the result �a ·�b is more than the threshold th, Uj

is authenticated as a qualified helper, and assigned with U0’s
session key k0. Since Uj has the similar symptoms as U0,
to protect his own health information, Uj is discouraged to
disclose U0’s health profiles. In such a way, U0’s PHI privacy
disclosure can be minimized. As a result, the phase-II access
control is also achieved in the proposed SPOC framework.
• The proposed SPOC framework can achieve the ses-

sion key’s forward and backward secrecy. In the proposed
SPOC framework, once Uj has passed the phase-II access
control, he can hold the session key k0 = H(sk0||CDate)
of U0 to decrypt and process the encrypted raw PHI from
Enc(k0, rPHI||CDate). However, since the one-wayness of the
hash function H(), the secret key sk0 cannot be inversely
obtained from k0 = H(sk0||CDate). Moreover, since the
session key k0 = H(sk0||CDate) is date-dependent, i.e., U0

will utilize unlinkable session key everyday. Therefore, even
though Uj gets the session key k0 in m-Healthcare emergency,
he cannot use it to derive U0’s previous and/or future session
keys. As a result, the session key’s forward and backward
secrecy is also satisfied in the proposed SPOC framework.

From the above security analysis, we can see the proposed
SPOC framework can indeed achieve the user-centric privacy
access control of opportunistic computing in m-Healthcare
emergency.

5 PERFORMANCE EVALUATION
In this section, we evaluate the performance of the proposed
SPOC framework using a custom simulator built in Java.
The simulator implements the application layer under the
assumptions that the communications between smartphones
and the communications between BSNs and smartphones are
always workable when they are within each other’s transmis-
sion ranges. The performance metrics used in the evaluation

are 1) the average number of qualified helpers (NQH), which
indicates how many qualified helpers can participate in the
opportunistic computing within a given time period, and 2) the
average resource consumption ratio (RCR), which is defined
as the fraction of the resources consumed by the medical user
in emergency to the total resources consumed in opportunistic
computing for PHI process within a given time period. Both
NGH and RCR can be used to examine the effectiveness
of the proposed SPOC framework with user-centric privacy
access control of opportunistic computing in m-Healthcare
emergency.
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(b) Mobility model

Fig. 5. Simulation area and mobility model under consid-
eration

5.1 Simulation Setup

In the simulations, total l users U = {U0, U1, · · · , Ul−1} are
first uniformly deployed in an interest area of 500 m×500 m,
as shown in Fig. 5(a). Each user Ui ∈ U is equipped with his
personal BSN and a smartphone with a transmission radius of
20 meters, and independently moves along the road with the
velocity v ∈ [0.5, 1.2]m/s in the area by following the mo-
bility model described in Fig. 5(b). Assume that the symptom
character space n = 16, each user is randomly assigned 6-8
symptom characters. Let the emergency of user U0 take place
at time t = 0, he sets the threshold th as {3, 5}, and waits the
qualified helpers participating in the opportunistic computing
before the ambulance arrives in 20 minutes. Note that, in the
simulations, we consider all users will stop when they meet
U0’s emergency, and only the qualified helpers will participate
in the opportunistic computing. To eliminate the influence of
initial system state, a warm-up period of first 10 minutes is
used. In addition, we consider U0’s emergency takes place at
three locations, A, B, and C, in the map to examine how the
factors l, th affect the NGH and RCR at different locations.
The detailed parameter settings are summarized in Table 1.

TABLE 1
Simulation Settings

Parameter Setting
Simulation area 500 m × 500 m
Simulation warm-up, duration 10 minutes, 20 minutes
Number, velocity of users l = {40, 60}, v = 0.5− 1.2 m/s
Similarity threshold th = {3, 5}
Transmission of smartphone, BSN 20 m, 20 m
Raw PHI data generation interval every 10 seconds
Emergency location A, B, and C
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In the following, we run the simulations with different
parameter settings. For each setting, the simulation lasts for
20 minutes (excluding the warm-up time), and the average
performance results over 10000 runs are reported.

5.2 Simulation Results
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(c) l = 35, th = 5
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(d) l = 45, th = 5

Fig. 6. NQH varying with time under different l and th

In Fig. 6, we compare the average NQHs at locations A,
B and C varying with time from 2 minutes to 20 minutes
under different user number l and threshold th. From the
figure, we can see, with the increase of time, the average
NQH will also increase, especially for the location A. The
reason is that, when all users move in the simulation area
by following the same mobility model, location A will have
higher traffic than locations B and C. In addition, when the
user number l in the simulation area increases, the user arrival
rate at locations A, B, and C also increase. Then, the average
NQH increases as well. By further observing the differences
of the average NQH under thresholds th = 3 and th = 5, we
can see the average NQH under th = 5 is much lower than
that under th = 3, which indicates that, in order to minimize
the privacy disclosure in opportunistic computing, the larger
threshold should be chosen.

However, since the high reliability of PHI process is ex-
pected in m-Healthcare emergency, minimizing the privacy
disclosure in opportunistic computing is not always the first
priority. In Fig. 7, we plot the corresponding RCR varying
with the time under different user number l and threshold th.
From the figure, we can observe both high-traffic location,
i.e., location A, and large number of users, i.e., l = 45, can
reduce the U0’s RCR. However, the RCR under th = 5 is
higher than that under th = 3. Therefore, once U0 sets the
threshold th = 5 while the residual energy in his smartphone
is not enough, his smartphone cannot support high-reliability
of PHI process and transmission before the ambulance arrives.
This indicates U0 should carefully choose the threshold th
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Fig. 7. RCR varying with time under different l and th

to balance the high reliability of PHI process and privacy
disclosure. For example, if the emergency takes place at a high
traffic location and the residual energy in U0’s smartphone
is not too low, U0 can choose a relative high threshold to
minimize the privacy disclosure. However, if the emergency
location has low traffic and the smartphone’s energy is also
insufficient, th should be as low to first fit the high-reliability
of PHI process and transmission in m-Healthcare emergency.

6 RELATED WORKS
Opportunistic computing: The study of opportunistic comput-
ing has gained the great interest from the research community
recently, and we briefly review some of them related to our
work [6], [7], [8], [9]. In [6], Avvenuti et al. introduce the
opportunistic computing paradigm in wireless sensor network
to solve the problem of storing and executing an application
that exceeds the memory resources available on a single
sensor node. Especially, their solution is based on the idea
of partitioning the application code into a number of oppor-
tunistically cooperating modules, and each node contributes to
the execution of the original application by running a subset of
the application tasks and providing service to the neighboring
nodes. In [7], Passarella et al. evaluate the performance of
service execution in opportunistic computing. Specifically,
they first abstract resources in pervasive computing as services,
that are opportunistically contributed by providers and invoked
by seekers. Then, they present a complete analytical model
to depict the service invocation process between seekers and
providers, and derive the optimal number of replicas to be
spawned on encountered nodes, in order to minimize the
execution time and optimize the computational and bandwidth
resources used.

Although [6] and [7] are important for understanding how
the opportunistic computing paradigm work when resources
available on different nodes can be opportunistically gathered
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together to provide richer functionality, they have not con-
sidered the potential security and privacy issues existing in
the opportunistic computing paradigm [8], [9]. Different from
the above works, our proposed SPOC framework aims at the
security and privacy issues, and develops a user-centric privacy
access control of opportunistic computing in m-Healthcare
emergency.

Privacy-preserving scalar product computation: Research
on privacy-preserving scalar product computation (PPSPC) has
been conducted for privacy-preserving data mining [27], [11],
[10], [28], and as well for secure friend discovery in mobile
social networks quite recently [29], [30]. Initially, PPSPC
protocol was designed by involving a semi-trusted party [27].
Later, to remove the semi-trusted party, many PPSPC protocols
without a third party were proposed [11], [10], [28], [12].
However, they are relying on time-consuming “homomorphic
encryption” [13] and/or “add vector protocol”, and are not
quite efficient2. In our proposed SPOC framework, we present
a new PPSPC protocol, which does not use any “homomorphic
encryption”, but is very efficient in terms of computational
and communication costs, i.e., the computational cost only
takes 2n multiplications (mul), and the communication cost
is only (n + 1) · 1024 + 256 bits. Let Tmul, Texp denote
the time needed to execute a modulus multiplication and
a modulus exponentiation, respectively. When we roughly
estimate Texp ≈ 240Tmul [31], we use Fig. 8 to compare the
computation and communication costs of the proposed PPSPC
protocol and the popular Paillier Cryptosystem (PC)-based
PPSPC protocol described in Fig. 9. From Fig. 8, we can
obviously observe that our proposed PPSPC protocol is much
efficient, especially in computation costs. To the best of our
knowledge, our proposed PPSPC is the most efficient privacy-
preserving scalar product computation protocol till now.
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Fig. 8. Computation and communication comparisons
between the proposed PPSPC and the PC-based PPSPC
varying with n

7 CONCLUSIONS
In this paper, we have proposed a secure and privacy-
preserving opportunistic computing (SPOC) framework for
m-Healthcare emergency, which mainly exploits how to use
opportunistic computing to achieve high reliability of PHI
process and transmission in emergency while minimizing

2. Although the PPSPC protocol in [28] is not based on homomorphic
encryption, the description of protocol is incorrect, as noted in [12].

The currently popular Paillier Cryptosystem (PC)-based PPSPC
is described as follows. Given the Paillier cryptosystem E(x) =
gxrN mod N2 [13], where N = pq and the base g are public,
U0 keeps (p, q) secretly and performs the following steps with Uj :
i) for each element ai ∈ �a = (a1, a2, · · · , an), U0 first uses a
random number ri to encrypt ai as E(ai) = gairNi mod N2. Then,
U0 sends E(�a) = (E(a1), E(a2), · · · , E(an)) to Uj ; and ii) after
receiving E(�a) = (E(a1), E(a2), · · · , E(an)), Uj uses his vector
�b = (b1, b2, · · · , bn) to compute E(�a · �b) as

n∏
i=1

E(ai)
bi ≡

n∏
i=1

(
g
air

N
i

)bi
≡

n∏
i=1

g
aibi

(
ri

bi
)N

≡ g
∑n

i=1 ai·bi ·

(
n∏

i=1

(
ri

bi
))N

mod N2 = E

(
n∑

i=1

ai · bi

)

= E(�a · �b)

and returns E(�a · �b) back to U0; iii) upon receiving E(�a · �b), U0

uses the secret (p, q) to recover �a · �b from E(�a · �b).
Computational cost. For binary vectors (�a, �b), U0 should take

at least n exponentiations to compute E(�a). Then, Uj takes around
(n− 1) multiplications to calculate E(�a · �b). Finally, U0 takes one
more exponentiation to recover �a · �b. Therefore, the computational
cost is around (n + 1) · Texp + (n − 1) · Tmul. Note that, if (�a, �b)
are generalized vectors, the computational cost should be (3n+1) ·
Texp + (n− 1) · Tmul.

Communication cost. The security of the Paillier cryptosystem
relies on the unknown factorization of modulus N = pq. When
N = pq is set as 1024, each E(ai) and E(�a · �b) will be expanded
to 2048 bits, and then the communication cost will be (n+1) ·2048
bits.

Fig. 9. Description of Paillier Cryptosystem (PC)-based
PPSPC

the privacy disclosure during the opportunistic computing.
Detailed security analysis shows that the proposed SPOC
framework can achieve the efficient user-centric privacy access
control. In addition, through extensive performance evaluation,
we have also demonstrated the proposed SPOC framework can
balance the high-intensive PHI process and transmission and
minimizing the PHI privacy disclosure in m-Healthcare emer-
gency. In our future work, we intend to carry on smartphone
based experiments to further verify the effectiveness of the
proposed SPOC framework. In addition, we will also exploit
the security issues of PPSPC with internal attackers, where the
internal attackers will not honestly follow the protocol.
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