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Abstract—In this paper, we study the optimal energy delivery
problem from viewpoints of both the vehicle owner and aggregator,
in load shaving services of a vehicle-to-grid (V2G) system. We for-
mulate the optimization problem based on a general plug-in hybrid
electric vehicle (PHEV)model, taking into account the randomness
in vehicle mobility, time-of-use electricity pricing, and realistic bat-
terymodeling. Stochastic inventory theory is applied to analyze the
problem. We mathematically prove that a state-dependent
policy is optimal for the daily energy cost minimization of each
vehicle, and develop an estimation algorithm to calculate the pa-
rameters of the optimal policy for practical applications. Further-
more, we investigate the multi-vehicle aggregator design problem
by considering the power system constraints. A policy adjustment
scheme is proposed to adjust the values of and with respect to
the optimal policy adopted by each PHEV, such that the aggregated
recharging and discharging power constraints of the power system
can be satisfied, while minimizing the incremental cost (or revenue
loss) of PHEV owners. Based on characteristics of the state-depen-
dent policy and our proposed policy adjustment scheme,
the optimal aggregator operation problem is transformed into a
convex optimization one which can be readily solved by existing al-
gorithms. The performance of our proposed schemes is evaluated
via simulations based on real data collected from Canadian utili-
ties, households, and commuters.

Index Terms—Optimal energy delivery, plug-in hybrid electric
vehicle, stochastic inventory theory, vehicle-to-grid.
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Cost of increasing the energy level of
the battery of PHEV by in period
.
Energy cost of PHEV in period
with respect to state , energy level
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States (regions) of PHEV location:
home, work, commute.
Set of PHEVs connected to the
aggregator in period .
Index of the aggregate period.

Transition probability of the state
of PHEV from in period to

in period .
Time-of-use electricity price in period
.
Average cost of using gasoline to
satisfy a unit of energy demand of
PHEV .
Factor of battery value loss of PHEV
with respect to the recharged (or
discharged) energy.
State of PHEV in period .

Recharging (discharging) threshold
of PHEV in period with respect
to state .
Adjusted recharging (discharging)
threshold of PHEV in period with
respect to state .
Policy adjustment parameter of PHEV
in period with respect to state .
Duration of a period.

Energy level of the battery of PHEV
at the end of period .
Optimal decision of PHEV in period
.
Optimal policy of PHEV in period
with respect to state and energy

level .
Limit of the aggregated recharging
(discharging) energy in period .
Maximum amount of energy that can
be recharged into (discharged from)
the battery of PHEV in a period.
Adjusted decision of PHEV in
period .
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Adjusted policy of PHEV in period
with respect to state and energy

level .
Decision variable of PHEV .

Decisions made by PHEV from
period to period .
Optimal decisions of PHEV .

Optimal decisions of PHEV from
period to period .
Adjusted decisions of PHEV from
period to period .
Class of all admissible decisions for
PHEV .
Class of all admissible decisions for
PHEV from period to period

.
Class of all admissible adjusted
decisions of PHEV from period
to period .
Value function of PHEV within
periods with
respect to state and energy level .
Energy level of the battery of PHEV
at the beginning of period .
Capacity of the battery of PHEV .

Minimum energy level of the battery
of PHEV .

w Self-discharging percentage of the
battery of PHEV .
Round-trip efficiency in recharging
and discharging of PHEV .
Household energy demand of PHEV
in period .
Expectation of the household energy
demand of PHEV in period .
Commute energy demand of PHEV
in period .

I. INTRODUCTION

T HE next-generation electricity grid, commonly referred
to as smart grid, incorporates information and commu-

nication technology into various aspects of a power system to
deliver electricity in a more efficient, reliable, economic, and
secure way [1]. As nearly 90% of power outages and distur-
bances are related to the distribution network, distributed en-
ergy storage has become one of the key technologies for the
smart grid. With an increasing market penetration rate of elec-
tric vehicles, vehicle-to-grid (V2G) systems are expected to be a
critical auxiliary energy storage infrastructure in the smart grid
[2]–[4]. A key feature of a V2G system is a bidirectional energy
delivery mechanism which enables an electric vehicle to either
draw energy from or feed energy back to the grid. Aided by
communication technologies, the energy delivery can be con-
trolled in a smart way to reduce the transport cost while im-
proving the grid stability. Two kinds of services can be pro-
vided by V2G systems [2], [3]. The ancillary services in terms
of frequency regulation are used to mitigate the frequency fluc-
tuations in the power system caused by the supply-demand im-
balances. Since the imbalances are temporary and small-scale in

nature, the ancillary servicesmay not necessarily involve energy
delivery but simply use the capacity of vehicle batteries. On the
other hand, the load shaving services, which are the main focus
of this paper, use the energy stored in vehicle batteries to com-
pensate for the peak load of the power grid. From the vehicle
owners’ point of view, since electricity price is determined by
demand, the energy cost can be relatively reduced by drawing
“cheap” energy from the grid, and feeding energy back to the
grid when electricity price is high. In order to regulate the ag-
gregated recharging/discharging power over a large number of
electric vehicles, aggregators are typically used in V2G systems
[4]. However, unlike traditional energy storage systems such as
the uninterrupted power supply (UPS) units [5], [6], vehicles are
(randomly) mobile in nature and their mobility characteristics
are highly non-stationary during different times of a day (e.g.,
rush and non-rush hours), which poses significant challenges in
analyzing and solving the optimal energy delivery problem.
In this work, we use stochastic inventory theory to solve the

optimal energy delivery problem and investigate the basic struc-
ture of an optimal energy delivery policy. The study is based
on an analogy between the state-of-charge (SOC) of a plug-in
hybrid electric vehicle (PHEV) battery and the stock level of
an inventory. This work extends our previous research [7] to
solve an optimal aggregator operation problem. The PHEV mo-
bility is modeled as a non-stationary Markov chain. A state-de-
pendent policy is proved to be optimal for the daily en-
ergy cost minimization problem of each vehicle, and an estima-
tion algorithm is developed for policy parameter calculation in
practical applications. We further propose a policy adjustment
scheme for multi-vehicle aggregator design based on the opti-
mality of the state-dependent policy, where the and
values of each PHEV are adjusted to coordinate the recharging/
discharging process of the aggregator. In this way, the power
system constraints in terms of the aggregated recharging/dis-
charging power can be satisfied. Then, the original optimal ag-
gregator operation problem for minimizing the incremental cost
(or revenue loss) of PHEV owners to satisfy the power system
constraints is transformed into a convex optimization problem
which can be readily solved by existing algorithms. Simula-
tions are performed to evaluate the efficiency of our proposed
schemes based on real data collected from Canadian utilities,
households, and commuters. To the best of our knowledge, this
is the first work in the literature to study the optimal energy de-
livery problem in a V2G system based on a stochastic model
(specifically, a non-stationary Markov chain model) of PHEV
mobility, and utilize stochastic inventory theory to derive the
optimal policy. The research outcomes should shed some light
not only on shaving the peak load of the smart grid from the
utility’s point of view but also on reducing the energy cost of
PHEV owners, which in turn stimulates the consumer adoption
of PHEVs.
The remainder of this paper is organized as follows.

Section II provides an overview of the related work. Section III
and Section IV describe the system model and problem formu-
lation, respectively. The solution technique based on stochastic
inventory theory is discussed in Section V. Numerical results
are presented in Section VI to demonstrate the performance
of the proposed solution. Section VII concludes the research
work.
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II. RELATED WORK

In the literature, there is a large body of research on V2G
ancillary services, including both unidirectional V2G [8],
[9] and bidirectional V2G [4], [10]. The unidirectional V2G
involves only recharging control of electric vehicles and is
considered to be a logical first step of V2G implementation,
since no significant update is required for the standard vehicle
battery chargers [9]. By further introducing discharging control,
significantly higher benefits can be achieved by bidirectional
V2G. Although load shaving services also involve recharging
and discharging control, the optimization techniques developed
for V2G ancillary services cannot be directly applied. The main
reason is that the ancillary services may not necessarily involve
energy delivery, so that the revenue is typically evaluated
based on the usage of the vehicle batteries in terms of available
capacity and service provisioning duration [4], [8]. For load
shaving services, on the other hand, the cost and revenue in
energy transactions incurred by buying and selling electricity,
respectively, should be investigated [3].
A major challenge in optimizing the energy delivery for load

shaving services is to deal with the randomness in vehicle mo-
bility. A widely used approach in the state-of-art research is to
assume that each electric vehicle is stationary during a certain
period of time, and the target SOC of the vehicle at the end of
the stationary period can be estimated [3], [11]–[13]. The accu-
racy of the estimation is crucial for optimal energy delivery in
load shaving services. For instance, the less economic gasoline
engine should be used by a PHEV if insufficient energy is re-
served for the commute demand, while simply reserving more
energy may result in less revenue in energy transactions. How-
ever, the estimation is not a straightforward task, as it needs to
take account of not only the randomness in vehicle mobility and
the associated commute energy demand, but also the potential
electricity price variations after the stationary period. For sim-
plicity, constant approximation is typically used in the existing
research based on average commute energy demand [3], [11],
[12]. However, such estimates can lead to suboptimal solutions
for load shaving services. A practical example is given in [13]
where a vehicle driver might be required to undertake an unex-
pected journey and the commute energy demand depends on the
actual traffic condition. As a result, a significantly large amount
of energy should be reserved to address the uncertainty [13].
Again, how to optimize the amount of energy reservation while
taking into account the electricity price variation after the sta-
tionary period needs further research.
In order to fine-tune the load shaving services, dynamic pro-

gramming can be used [5]. However, for a highly non-stationary
vehicle mobility, dynamic programming over a relatively long
time frame (e.g., one day) suffers from the curse of dimension-
ality. The complexity of searching for an optimal policy in-
creases exponentially with the number of possible system states.
To reduce the computational complexity, the structure of an op-
timal energy delivery policy should be investigated. Further, to
optimize the operation of an aggregator which manages a large
number of energy storage devices (i.e., the electric vehicles in
this research), the computational complexity of dynamic pro-
gramming becomes prohibitive [14]. One promising approach
to this problem is to distribute the computational load among

Fig. 1. An illustration of the individual PHEV model.

the energy storage devices [15]. However, since the calcula-
tion by each device is electricity price oriented, the aggregated
recharging/discharging power of energy storage devices may vi-
olate the power system constraints. As a result, a central con-
troller should be developed to make realtime adjustments to reg-
ulate the recharging/discharging power of each energy storage
device [15]. Yet, how to exploit the optimal energy delivery
policy calculated by each vehicle such that the aggregator can
make efficient realtime adjustments for V2G load shaving ser-
vices needs further research.
Different from the existing works, a stochastic model is used

in this research to characterize the randomness in PHEV mo-
bility. We use stochastic inventory theory to develop the op-
timal energy delivery policy for each PHEV. The properties of
the optimal policy are further investigated such that the optimal
aggregator operation problem can be solved efficiently based on
existing algorithms.

III. SYSTEM MODEL

Both individual PHEV and aggregator models are consid-
ered for a V2G system. An illustration of the individual PHEV
model is given in Fig. 1. The PHEV controller manages bat-
tery recharging/discharging when the PHEV is connected to
the power grid, and operates the electric motor and combus-
tion engine when the PHEV is commuting. The battery status
and commute energy demand can be directly monitored by the
PHEV controller. Based on the communication functionality of
the V2G system, the information of electricity price, PHEVmo-
bility status, and household energy demand is acquired by the
PHEV controller via wireline/wireless links. On the other hand,
when a large number of vehicles in a small area (e.g., a parking
lot) are involved in V2G services, an aggregator is used to reg-
ulate the vehicle recharging/discharging behaviors. An illustra-
tion of the model for an aggregator is shown in Fig. 2. In this
work, we focus on a single aggregator in the smart grid with
certain recharging/discharging power constraints, while the co-
ordination among multiple aggregators is left for future work.
Consider a time slotted system. Time is partitioned into

periods with equal duration (e.g., 10 minutes). The PHEV
mobility is represented by the dynamics of PHEV locations
and is modeled by a Markov chain. The state transition proba-
bilities of the Markov chain can be obtained based on a typical
vehicular communication network [16]. Time-of-use (TOU)
electricity pricing is considered for the V2G system with a
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Fig. 2. An illustration of the aggregator model.

net metering arrangement for the pricing of energy feedback
to the grid [3], [17]. Within each period, the location region
of the PHEV stays unchanged and the price of electricity
remains constant. Moreover, a realistic battery model is con-
sidered for each PHEV, which includes energy and value loss
in recharging/discharging, limited battery capacity, limited
recharging/discharging rate, and self-discharge effect [3], [5],
[6], [18]. More details of the system model are given in the
following subsections.

A. PHEV Mobility and Energy Demand

Without loss of generality, we consider three states (regions)
of the PHEV location, i.e., home , work , and commute
. An extension is straightforward to include more locations

by increasing the state space. Consider a specific PHEV . De-
note the state of PHEV in period as . When
or , energy can be either drawn from or fed back to the grid
based on the bidirectional plugs of a V2G system, as shown in
Fig. 1. The household appliances can use the energy in the bat-
tery only when . Consider one PHEV for each house-
hold [3] and let random variable denote the household en-
ergy demand in period based on the smart meter readings.
When , the energy in the battery is used to drive the
electric motor. Let random variable denote the commute
energy demand in period given . If a battery is de-
pleted when , gasoline is used to drive the PHEV com-
bustion engine with an additional cost. The variations of PHEV
location are modeled as a Markov chain [16]. Taking account
of the non-stationary PHEV mobility, the state transition prob-
abilities of the Markov chain are time-dependent. Given period

and the current state of PHEV , the
transition probability to state in period is denoted
by , where period
0 corresponds to the first period of a day.
Note that, if the vehicle mobility is highly predictable, the

Markov chain model can be simplified. Specifically, the state
transition probability associated with two predictable vehicle lo-
cations in two consecutive periods can be set to one. Consider an
example where the owner of PHEV is scheduled to participate
in a multi-hour meeting at work. Then, for any two consecu-
tive periods (e.g., periods and ) during the meeting, we
can set , , and . In
this way, the number of potential mobility trajectories of PHEV
is reduced, so is the complexity associated with the dynamic
programming in Section V. In addition, if the commute energy

demand is predictable based on traffic condition forecast, a con-
stant can be used to replace the random variable , which fur-
ther reduces the complexity in optimizing the energy delivery
via a V2G system.

B. Electricity Pricing

TOU electricity pricing is considered for the V2G system [3].
We do not consider the spatial difference in electricity price for
a single aggregator, under an assumption that most daily com-
mutes are over a relatively short distance. For instance, 75% of
Americans commute 65 km or less round-trip [19]. However,
an extension is straightforward by considering the specific lo-
cations of home and work. In period , the cost of drawing
units of energy from the grid is given by , where is the
TOU price. The net metering arrangement is considered for the
pricing of energy feedback to the grid. Rather than paying cash,
credit is given to the PHEV owner as an amount of excess en-
ergy is fed into the grid [17]. As a result, the same TOU price can
be achieved for buying and selling energy,1 while selling energy
can be considered the same as reducing the energy drawn from
the grid by the neighborhood (when ) or workplace
appliances (when ) [3]. If the battery is depleted when

, gasoline is used to drive the PHEV combustion en-
gine.2 For PHEV , the average cost of using gasoline to satisfy
units of energy demand in period is . Since the gasoline
price fluctuates at a much slower rate than the electricity price,
a constant approximation is typically used, i.e., [19].

C. Battery Model

A realistic battery model is considered in this work. For each
recharge and discharge of the battery, a certain amount of energy
is lost due to the battery conversion loss. Therefore, we use a
virtual capacity of the battery such that all stored energy can be
used. Specifically, when units of energy are used to recharge
the battery of PHEV , the energy that can be fed back to the
grid or used by the household appliances is ,
where is the round-trip efficiency which merges the energy
loss in both recharging and discharging [6]. Moreover, the life-
time of a battery is shortened for each recharging/discharging
cycle since the capacity of the battery slowly deteriorates fol-
lowing the depth-of-discharge (DoD). As the deterioration is al-
most imperceptible on a daily basis [18], the capacity of the bat-
tery (denoted by ) is approximately unchanged for the time
frame that we consider. However, the loss of the battery value
is modeled as a cost which is proportional to the recharged (or
discharged) energy with a factor [3]. As a result, the cost to
increase the energy level of the battery by in period

is given by

(1)

In order to prolong the battery lifetime, the energy level of the
battery should not drop below according to certain SOC

1Specifically, in September 2009, the Delaware governor has signed a bill
for V2G system which requires electric utilities to compensate for the energy
feedback to the grid at the same price as it is drawn from the grid [20].
2For instance, either a series hybrid or a series-parallel hybrid operation mode

can be used by Chevrolet Volt based on the vehicle speed [19].
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[4]. With the virtual capacity, we consider for sim-
plicity. We assume for the PHEVs. That is,
the cost of using the combustion engine is higher than using the
electric motor, taking account of all cost in the recharging/dis-
charging process, which is one of the key features of PHEVs
[19]. Within each period, the battery can be either recharged or
discharged, but not both [5]. Because of a limited recharging/
discharging rate, the maximum amount of energy that can be
recharged into and discharged from the battery of PHEV in a
period is given by and , respectively. Because of the
self-discharge effect, the energy stored in the battery decreases
by a percentage, , for each period. Specifically,
if the remaining energy in the battery of PHEV at the end of
a period is , then the maximum amount of energy that can be
used in the next period is .

D. Aggregator Model

Consider a specific aggregator in the V2G system. In pe-
riod , there is a set, , of PHEVs connected to the aggre-
gator, as shown in Fig. 2. The aggregator provides an inter-
face to the main electric power grid (potentially via power elec-
tronic converters and/or transformers) such that energy can be
exchanged between the grid and PHEVs. Different from the fre-
quency regulation services, the load shaving services considered
in this work involve a significant amount of energy delivery [2],
[3]. Therefore, the aggregated power output (either aggregated
recharging power or aggregated discharging power) of the ag-
gregator is subject to a set of constraints. Firstly, the aggregated
recharging/discharging power is limited by the maximum cur-
rent that can be transmitted through the aggregator [12]. Sec-
ondly, the aggregated recharging power is subject to an addi-
tional load limit which is mandated by the utility to prevent ex-
cessive loading of the system [8], [12]. In addition, if the ag-
gregator is connected in a distribution system, the aggregated
recharging/discharging power is further capped since excessive
loading may cause undervoltage in the distribution system, and
vice versa [21]. Taking into account all the constraints, we use

and to denote the limits of the aggregated
recharging and discharging energy in period , respectively, for
the set of connected PHEVs. Note that if multiple constraints
coexist for the aggregated recharging (or discharging) energy in
a period, the most stringent constraint is used to define
(or ). Detailed calculations of and
are outside the scope of this research. In the following, we as-
sume that the aggregator obtains the values of and

via wireline/wireless communications with the utility
at the beginning of period , and coordinates the recharging/dis-
charging processes of the connected PHEVs in period accord-
ingly.

IV. PROBLEM FORMULATION

The problem formulation consists of two parts. Each in-
dividual PHEV owner strives to minimize his/her own daily
energy cost based on the fluctuations of electricity price. On the
other hand, because of the power system constraints
and , the optimal energy delivery policy adopted by
each PHEV may not be feasible from the aggregator’s point
of view and need to be adjusted. As an incremental cost is
inevitable for modifying the optimal policies adopted by the

PHEVs, the objective of optimal aggregator operation is to
minimize the incremental cost of the connected PHEVs for
a certain period under consideration. To investigate the daily
energy cost minimization problem, we partition each day into

periods, i.e., . The duration of period
is . Since the PHEV mobility is negli-

gible during the midnight off-peak period, we define period
as an aggregate period to reduce the computational complexity.
For instance, if corresponds to the periods
between 6:00 am and 10:00 pm, then period is the remaining
time between 10:00 pm and next 6:00 am. For simplicity, we
neglect the self-discharge effect in period for the off-peak
hours since the battery can be recharged at a low cost. The
analytical method of stochastic inventory theory [22]–[24] is
used. For the V2G system under consideration, we extend the
theory by incorporating the bidirectional energy flow, PHEV
mobility pattern, and realistic battery model.

A. Energy Cost Minimization of Each Vehicle

Denote the energy level of the battery of PHEV at the be-
ginning of period as , where is
the initial energy level. The decision variable is given by

(2)

where denotes the energy level of the battery of PHEV
at the end of period . The decision of is made at the be-
ginning of period given that PHEV is connected to the grid,
i.e., or . Since recharge and discharge cannot be per-
formed simultaneously, we have and
if the battery is recharged and discharged, respectively, while

if the battery is not used (or idle) in period . Taking
account of the self-discharge effect, the battery energy that can
be used in period is . For a limited battery capacity
and recharging/discharging rate, we have

(3)
Denote the energy cost with respect to PHEV in period

as which depends on
the system states ( and ) and the decision variable .
When , we have

(4)

where is an indication function which equals 1 if is true
and 0 otherwise, while is defined as

(5)

Note that for a recharging or idle period with , all
household demand resorts to drawing energy from the grid at a
cost since the battery cannot be discharged at the same
time. For a discharging period with , if
, the unsatisfied demand resorts to drawing energy from the

grid, while if , the energy unused by the de-
mand is fed back to the grid with a negative cost representing
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the revenue. Since the same price is used for buying and selling
energy, the benefit of selling energy back to the grid is the same
as compensating for the household demand. Therefore, the cost
of household demand, , can be considered as irrelevant to
the decision , as shown in (4). When , we have

(6)

where the only difference from (4) is that the household demand
is not considered since the PHEV is away from the home. When

, we have

(7)

where equals if and 0 otherwise,
represents the energy deficit in commute which needs to be com-
pensated for by using gasoline. In (7), there is no decision on
buying or selling of energy since the PHEV is not connected to
the grid.
For period , we consider that the PHEV battery should be

fully recharged during the off-peak hours overnight [3], based
on the assumption that all the energy can be used or sold during
the daytime. Otherwise, a battery with a smaller capacity and
lower cost should be equipped by the PHEV. Therefore, the
end-of-day cost function is proportional to the en-
ergy to be recharged according to the off-peak price , and is
given by

(8)

The daily energy cost minimization problem is defined as

(9)

where represents the class of all admissible
decisions for PHEV satisfying (3). Denote

as the decisions
made by PHEV from period to period with the
corresponding class of all admissible decisions given by .
Denote as the expected energy cost during
periods which is given by

(10)
where the expectation is taken with respect to the household en-
ergy demand and commute energy demand in (4) and
(7), respectively. Given for the first period under con-
sideration, the value of in (9) can be calculated
by letting in (10). Taking account of the self-discharge
effect, the energy level of period
evolves as

if or
otherwise

(11)

where denotes the remaining energy in the battery
after the commute in period .

B. Optimal Aggregator Operation

Suppose the optimal decisions of PHEV with respect to
problem P1 is given by . Accord-
ingly, denote as the optimal
decisions of PHEV from period to period . Then,
the output of the aggregator in period can be calculated as

, which is positive if the aggregator is dis-
charging, and vice versa. Since the aggregated output may vi-
olate the power system constraints, the decisions from period
should be adjusted such that the power system constraints

are satisfied and the incremental cost of PHEVs is minimized.
Therefore, the optimal aggregator design problem in period is
formulated as

(12)

(13)

(14)

where is the adjusted deci-
sions from period to period , while is the corre-
sponding class of all admissible decisions of PHEV satisfying
(3). In (12), the objective is to minimize the increment costs of
all PHEVs connected to the aggregator in period , in compar-
ison with the optimal decisions . Constraints (13) and (14)
correspond to the power system constraints with respect to the
recharging and discharging energy of the aggregator in period
, respectively.

V. ENERGY DELIVERY OPTIMIZATION

In this section, we first transform the original problem for-
mulation P1 into a dynamic programming formulation and show
the existence of an optimalMarkov policy. In order to reduce the
computational complexity, we further investigate the problem
and prove the optimality of a state-dependent policy for
the energy cost minimization of each PHEV. Due to space lim-
itation, we only present the key results with respect to the ex-
istence and optimality in Section V-A and Section V-B, respec-
tively. Details of the proofs are given in [7]. Based on the prop-
erties of the policy, we further investigate the optimal
aggregator operation problem P2. A policy adjustment scheme
is proposed for the aggregator to adjust the values of and
for each PHEV. Then, we prove that the original problem P2
can be transformed into a convex optimization problem based
on our proposed policy adjustment scheme and can be readily
solved efficiently by existing algorithms.

A. Existence of Optimal Markov Policy

For notational simplicity, letting and ,
we define the value function of PHEV within periods

as . For
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, the dynamic programming equation of the
value function is given by

if

if

if
(15)

where the values of are taken from a set as defined in (3), while
represents the expectation of . For , we have

(16)

A policy is a Markov policy if it depends only on the cur-
rent state for decision making and not on the past
states . The following
theorem shows the existence of an optimal Markov policy for
problem P1.
Theorem 1 [7]: There exists a function

, which provides the minimum of in (15)
for any and or . Moreover, the decision

is optimal for the problem P1, where
and evolves according to (11) with

respect to and .

B. Optimality of the State-Dependent Policy

Based on Theorem 1, the optimalMarkov policy exists. How-
ever, the computational complexity for the optimal policy is
prohibitive even for a small since function should
be optimized for each combination of and [25]. Therefore,
we further investigate the properties of the value functions, and
show that a state-dependent policy is optimal. An
policy is defined as follows:
Definition 1: Consider PHEV . Given constants and ,

, and the current energy level , an policy is
defined as

if
if
if
if
otherwise.

(17)

Note that the policy is essentially a double-threshold
policy by incorporating the limited recharging/discharging rates
of each PHEV. When the energy level is below (above ),
the battery is recharged (discharged) as much as possible up to
(down to ). When the energy level is between and ,

the battery is kept in an idle state. Moreover, the policy is user
specific which is reflected by the PHEV index .

For presentation clarity, we define a convex func-
tion , , with minimum value

. Since is a
convex set [26], we can define its boundary points as

(18)

(19)

In the following, we first denote the state-dependent and
as functions of by and , respectively, with
respect to state in period . Then, we show that and

are indeed independent of based on the properties of
the value function. The main result for the optimality of a state-
dependent policy is given by the following Theorem.
Theorem 2 [7]: Given state in period , a

state-dependent policy is optimal. The optimal policy
is given by (17) with and given

by (18) and (19), respectively, based on the following convex
function with respect to :

(20)
Based on (20), can be rewritten as

(21)

where

(22)

(23)

Obviously, and are convex with respect to
because of the convexity of the value function

and the fact that the convexity is preserved by the linear com-
bination in terms of conditional expectation [26]. Denote the
minimum of with respect to as

(24)

Since is a convex set, we define
the minimum and maximum values of to achieve as

(25)

(26)

Similarly, we can define and for .
Letting the two state-dependent thresholds be

(27)

(28)
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we can transform the optimal policy in Theorem 2 to
that in the following

if
if
if
if
otherwise.

(29)
As a result, the optimal policy can be simply denoted as a state-
dependent policy.
Based on the optimality of state-dependent policy,

we need to calculate only two parameters to obtain the optimal
policy with respect to each state and each period (instead of a
function with respect to ), which significantly re-
duces the computational complexity for practical applications.
The calculation of the optimal policy requires the daily statistics
of the PHEV mobility , average household energy
demand , and probability density function (PDF) of com-
mute energy demand , for
, and . With the statistics unknown a priori,

we can use the historic information to estimate the statistics. The
estimation is based on the fact that both commute pattern and
electricity demand are periodic in nature on a daily basis. In [7],
we propose an estimation algorithm to calculate the values of the
state-dependent thresholds ( and ), which is based
on a modified backward iteration algorithm for threshold calcu-
lation and an exponentially weighted moving average (EWMA)
algorithm [27] for statistical estimation.

C. Optimal Policy Adjustment by Aggregator

In order to adjust the recharging/discharging energy of each
PHEV in a period such that the power system constraints can be
satisfied, the policy adopted by each PHEV should be adjusted
by the aggregator. In the following, we first introduce a policy
adjustment scheme with one adjustable parameter for each
PHEV and prove that all admissible decisions can be achieved
based on the policy adjustment. Then, we transform problem
P2 into a convex optimization problem based on our proposed
policy adjustment scheme.
According to Theorem 1, the state-dependent policy

belongs to the class of Markov policies. Therefore, the policy
adjustment by the aggregator in period with respect to PHEV
does not affect the optimality of the policy in periods

. Therefore, we can rewrite in Problem
P2 as

(30)

where the value of each decision depends on the energy level of
the battery of PHEV and the state-dependent policy.
The policy adjustment is performed by adjusting the two thresh-
olds. Consider an adjusted policy for PHEV in pe-
riod , which is given by (29) with the two state-dependent
thresholds ( and ) being replacedwith and

, respectively, given by

(31)

(32)

Note that the policy adjustment in (31) and (32) is essentially
based on the adjustment parameter and then bound
the two new thresholds by the battery capacity of the PHEV (in

). In order to achieve all possible values of the energy
level of PHEV according to (3), should take a value
from the following set:

(33)
Note that the policy adjustment scheme may not be unique.
However, our proposed policy adjustment scheme relies on only
one parameter and can be easily implemented for the transfor-
mation of the optimal aggregator operation problem. For the
properties of the policy adjustment scheme, we first have the
following Lemma.
Lemma 1: Given an energy level , the

decision made by PHEV in period based on the state-depen-
dent policy with adjusted thresholds (31) and (32) can
achieve any point in the set defined in (3) by adjusting param-
eter .

Proof: Three cases should be considered for the ad-
missible decision . Case 1: ; Case 2:

; Case 3:
. For Case 1, let

, we have

(34)

Based on (29), we have . For Case 2, let
, we have

(35)

Since in Case 2, we have . Moreover,
for in Case 2, we have

. Taking account of (29), we have

(36)

For Case 3, let , we have

(37)

Since in Case 3, we have . More-
over, for in Case 3, we have

. Taking account of (29), we have
.

According to Lemma 1, all admissible decisions can be
achieved based on our proposed policy adjustment scheme for
any energy level of the PHEV battery. On the other hand, it
is straightforward to show that the decision made by PHEV
based on the adjusted state-dependent policy always
lies in the set defined by (3), provided that takes value
from (33). In other words, the optimal aggregator operation can
be achieved by adjusting with respect to each PHEV
in . Therefore, problem P2 can be transformed as follows:

(38)
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(39)

(40)

For problem P3, we have the following Theorem.
Theorem 3: Given and , the expected energy cost

is convex with respect to . The in-
equality constraint functions and

in (39) and (40), respectively, are
convex with respect to .

Proof: Given the domain of in (33), we consider
three cases for possible values of . Case 1:

; Case 2:
; Case 3:
. For Case 1, we have

. Based on (32), we have
since .

According to (29), we have

(41)

Similarly, for Case 3 is given by

(42)

For Case 2, we have . Therefore, the
value of is given by

(43)

We first investigate the inequality constraint function in (39),
while the proof with respect to the inequality constraint function
in (40) follows the same steps. Obviously, for both Case 2 and
Case 3, we have . For the boundary point
between Case 2 and Case 3 (i.e., ),
we have

(44)

That is, (thus, ) is con-
tinuous with respect to at the boundary point between
Case 2 and Case 3. Also, is convex with
respect to Case 2 (or Case 3) since it is a linear function. More-
over, at the boundary point between Case 2 and Case 3, we have

(45)

(46)

Since the derivative of on the
left side of the boundary is less than that on the right side of
the boundary, (thus, )
is convex with respect to for Case 2 and Case 3.
Similar proof can be done for Case 1 and Case 2. Further, the
summation (over ) of convex functions is also convex
[26], which completes the proof with respect to the convexity
of inequality constraint functions.
For the objective function, without loss of generality, con-

sider . The proof with respect to is identical,
taking account of an additional constant term according
to (15). Since the decisions in periods
follow the optimal policy according to (30), we can rewrite

as

(47)

Note that and are convex functions with
respect to and , respectively, based on our preliminary study
[7]. Therefore, the convexity of and

can be verified by checking the
continuity and convexity with respect to the boundary points of
Case 1, Case 2, and Case 3, similar to the proof of the inequality
constraint functions. The convexity is preserved with respect to
the linear combination in terms of the conditional expectation
and summation over . The detailed proof is omitted here
for conciseness.
Based on Theorem 3, problem P3 belongs to the class of

convex optimization problems and can be readily solved effi-
ciently by existing algorithms [26]. In order to solve problem
P3, the aggregator needs to acquire the statistics of PHEV mo-
bility and energy demand (via the information/control flow as
shown in Fig. 2) in terms of , , and , ,
for , , and . The
state-dependent thresholds ( and ) calculated by
each individual PHEV should be passed to the aggregator for
optimal policy adjustment. It is worth mentioning that, in order
to protect the privacy of PHEV owner, decentralized algorithms
can potentially be used based on the convexity of problem P3
[28], which needs further research.

VI. NUMERICAL RESULTS

The performance of our proposed schemes are evaluated by
simulation. The simulation is based on the ONE simulator [29]
version 1.4.1 with an additional implementation of the V2G
components. The simulator uses sample parameters and data
from a real-life scenario. Hourly household energy demand data
during the month of June 2011, obtained from volunteers of
two different households (John and Terry) subscribed to theWa-
terloo North Hydro, is used [7], [30]. The TOU pricing of Wa-
terloo North Hydro is in accordance with the Ontario electricity
time-of-use price of the summer schedule [31]. The on-peak,
midpeak, and off-peak electricity prices are 10.7 cent/kWh, 8.9
cent/kWh, and 5.9 cent/kWh, respectively. The on-peak and
off-peak hours are from 11:00 am to 5:00 pm and from 7:00
pm to next 7:00 am, respectively, while the remaining hours are
midpeak hours. Traces of vehicle mobility patterns of these in-
dividuals are generated using the ONE simulator based on the
survey information which includes the locations of their homes,
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Fig. 3. The topology of the main roads in Waterlo Region and the locations of
homes, workplaces, and points of interests of John and Terry.

workplaces, points of interests, and commute patterns. For ex-
ample, John usually leaves from home to work between 9:55
am and 10:05 am, works until 5:00 pm. About 3 times a week,
he goes to a grocery or a mall after work, and spends 30 to 60
minutes. Finally, he returns home and stays at home until the
next morning. The trace is generated considering a map based
mobility model where the vehicle follows main roads of theWa-
terloo Region as shown in Fig. 3. The energy cost during week-
days is considered since the TOU price is constant during week-
ends.
The default battery parameters are given in Table I, which is

based on a lithium-ion battery [32]. The round-trip efficiency of
lithium-ion battery is typically between 80% and 90% [33]. The
mean value 85% is used as the default parameter in our simu-
lation. High efficiency (97%) of lithium-ion battery is also re-
ported in literature [34]. We only use the value for comparison
purpose since experimental data for PHEV applications is not
available. The equivalent gasoline cost is based on the average
gasoline price in Waterloo Region in June 2011 (130.0 cent/L)
and the eletricity/gasoline efficiency reported by Chevrolet Volt
(0.125 kWh/km in all-electric mode and 6.4 L/100 km in gaso-
line-only mode) [19]. The battery value loss in recharging is
calculated based on the statistics of Chevrolet Volt with a 8000-
dollar battery pack (rated at 16 kWh and about 10 kWh available
for use) and a 10% capacity loss after 10 years of normal daily
use (i.e., two full recharging/discharging cycles for daily com-
mute). Since long-term statistics of battery replacement are not
available, we assume that the PHEV battery should be fully re-
placed after 15 years of use, with an average cost of 1.46 dollar
per day. Both level 1 and level 2 infrastructures are considered
for the recharging and discharging of PHEV battery in the sim-
ulation [35]. Level 1 infrastructure provides a small amount
of power and is intended to be an entry level infrastructure
during the introduction of electric vehicles. On the other hand,
level 2 infrastructure can provide a relatively larger amount of
power and is the primary infrastructure for both private and
public facilities. The typical recharging/discharging rates of in-
dividual PHEV based on level 1 and level 2 infrastructures are
1.2 kW and 3.3 kW, respectively. Level 2 infrastructure is used
as the default system configuration in the simulation. For per-
formance optimization, we consider 16 hours from 6:00 am to

TABLE I
DEFAULT BATTERY PARAMETERS

10:00 pm for the periods in with a period du-
ration . The commute energy demand is
quantized by a 0.5 kWh stepsize.

A. Recharging/Discharging Pattern

In order to demonstrate how a PHEV battery is managed ac-
cording to the optimal policy, we consider a specific day of
Terry and John, and assume that the PHEV mobility and energy
demand information is known a priori. Suppose John leaves
home and work at 10:00 am and 5:00 pm, respectively, with a
single-trip commute time 20 minutes and energy consumption 2
kWh. Terry leaves home and work at 8:00 am and 5:00 pm, re-
spectively, with a single-trip commute time 10 minutes and en-
ergy consumption 1 kWh. For comparison purpose, we assume
that the PHEV of Terry has a lower recharging/discharging rate
based on level 1 infrastructure and a higher round-trip energy
efficiency (97%).
The results are presented in Fig. 4 and Fig. 5 for John and

Terry, respectively, where the lower bound of discharging region
and the upper bound of idle region correspond to , while the
lower bound of idle region and the upper bound of recharging
region correspond to . The midnight off-peak periods (which
only include a recharging region) are not shown. We can see
that, the round-trip energy efficiency has a critical impact on
the optimal policy. For Terry, since the round-trip energy effi-
ciency is high (97% as compared with 85% of John’s PHEV),
energy is bought as much as possible during the midpeak pe-
riods, and sold during the on-peak periods. On the contrary, John
buys energy during the midpeak periods only for commute use
since no benefit can be gained by selling the “mid-peak energy”
during the on-peak periods, taking account of the energy loss
in recharging and discharging. For instance, Terry buys energy
at 9:30 am (which is a midpeak hour) as much as possible by
setting a large , while John buys energy at the same time only
for commute use with a small . Moreover, due to the self-dis-
charge effect, energy for selling or commute is bought as late as
possible with the maximum recharging rate.

B. Performance Evaluation of Individual PHEV

We evaluate the performance of the proposed scheme in com-
parison with three other schemes: i)W/OV2G—Without a V2G
system, the energy drawn from the grid can only be used for
daily commute, and the battery should be fully recharged during
the off-peak periods to minimize the cost [20]; ii) SD—The en-
ergy store-and-deliver scheme utilizes commute statistics [3].
The PHEV battery is fully recharged during off-peak periods
and a certain amount of energy is reserved for average daily
commute demand. The remaining energy is used to compensate
for the household demand during the on-peak and midpeak pe-
riods when the PHEV is at home. The benefit of the SD scheme
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Fig. 4. The values of and at different times of a day (John).

Fig. 5. The values of and at different times of a day (Terry).

is the same as feeding energy back to the grid, but the amount of
energy is bounded by the household demand; iii) OPT—As our
proposed scheme uses estimated statistics, we also show the per-
formance of a schemewith a priori knowledge of the PHEVmo-
bility and energy demand information, which provides the best
performance but cannot be realized in practical applications.
The average energy cost per day versus battery capacity is

shown in Fig. 6. The energy cost is averaged over 20 days. The
trace of John is used as an example. With a constant cost of
household demand every day, we only consider the cost of op-
erating the PHEV, the value loss of the PHEV battery, and the
benefit of feeding energy back to the grid. We can see that, the
cost without V2G is the highest since the energy in the PHEV
battery cannot be used by the household demand or fed back
to the grid. By compensating for the household demand during
on-peak and midpeak periods, the SD scheme can reduce the
energy cost. But the reduction is not as significant as in with our
proposed scheme, since most on-peak periods are not consid-
ered for energy feedback when the PHEV is at the workplace.
Our proposed scheme using estimated statistics (with estima-
tion errors) achieves slightly higher cost than the scheme with a

Fig. 6. Average energy cost per day versus battery capacity.

priori knowledge. In terms of battery capacity, the cost without
a V2G scheme increases as the battery capacity increases since
the self-discharge effect gradually decreases the level of the un-
used energy in battery. The cost achieved by the SD scheme de-
creases as the battery capacity increases since more battery en-
ergy can be used by household appliances. However, the decre-
ment is saturated from 20 kWh because of the limited house-
hold demand. For all battery capacities, the cost achieved by
our proposed scheme is close to that of the scheme with a priori
knowledge. As compared with the SD scheme, the cost reduc-
tion of our proposed scheme is more evident for a larger battery
capacity.

C. Performance Evaluation of Aggregator

For performance evaluation of aggregator operation, we con-
sider an aggregator with 30 PHEVs, which corresponds to the
scale of a suburban residential area [21]. The average commute
distance is 8.7 km with a distribution given by the data from
the 2006 census of Waterloo Region [36]. The starting time
of morning commute for each PHEV owner is randomly se-
lected from 8:00 am to 10:00 am. Each PHEV owner spends
9 hours at work (including breaks) and commutes back home.
The PHEV battery capacity and energy loss are
randomly selected from [6, 12] kWh and [0.8, 0.95], respec-
tively. Consider two tagged periods begin at 11:00 am and 4:00
pm, respectively. Without loss of generality, we set the con-
straints on recharging and discharging energy of the aggregator
to be the same, i.e., . Both level 1 and
level 2 infrastructures are considered. All other parameters of
the PHEV batteries follow the default settings in Table I. For
comparison, we consider a recharging/discharging energy ad-
justment scheme (denoted by Uniform) such that the output of
the PHEVs is adjusted by the same amount to compensate for
the mismatch in recharging/discharging energy in a period. For
instance, if the aggregated discharging energy in period ex-
ceeds by 2 kWh and there are 5 PHEVs discharging
their batteries, the discharging energy of each PHEV is reduced
by 0.4 kWh to meet the power system constraint. The scheme
is similar to the generation and load curtailment scheme [15]



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON SMART GRID

Fig. 7. Incremental cost in a period begins at 4:00 pm.

when considering the PHEVs as domestic electric devices with
the same priorities in curtailment.
The incremental cost in a period that begins at 4:00 pm is

shown in Fig. 7. The cost is scaled by multiplying the number
of periods of a day for the consistency of results. The initial
battery level of each PHEV is randomly selected from [1, 6]
kWh. In this period, the recharging demand is dominating since
the PHEVs will commute back home shortly and the PHEVs
without enough energy for commute need to be recharged im-
mediately. We can see that, the incremental cost decreases as the
recharging/discharging energy limit increases as more electric
power can be used to recharged the PHEV batteries. Thus, the
commute back home relies less on gasoline which is a more ex-
pensive energy source than electricity. Our proposed policy ad-
justment scheme achieves lower incremental cost than the uni-
form policy adjustment scheme by taking into account the op-
timal energy delivery policy adopted by each individual PHEV.
The incremental cost of level 2 infrastructure is low since the av-
erage commute distance in Waterloo Region is relatively short
(8.7 km). Even the recharging energy of the aggregator is lim-
ited for one period begins at 4:00 pm, the batteries of PHEVs
can be sufficiently recharged in other periods before commuting
back home by level 2 infrastructure which has a relatively high
recharging power (3.3 kW). The incremental cost in the period
begins at 11:00 am is shown in Fig. 8. The initial battery level
of each PHEV is randomly selected from [4, 6] kWh. In this
period, the discharging demand is dominating since the elec-
tricity is at the on-peak price. The incremental cost of level 2
infrastructure is higher than that of the level 1 infrastructure. As
the average commute distance in Waterloo Region is relatively
short, each PHEV has more energy to feed back to the grid for
energy cost reduction. Without a constraint on aggregator dis-
charging energy, the energy cost reduction is more obvious for
level 2 infrastructure because of a higher discharging power of
each PHEV. On the other hand, when the discharging energy of
the aggregator is limited as shown in Fig. 8, the negative impact
on level 2 infrastructure (corresponding to the incremental cost)
is larger since the high discharging power of each PHEV cannot

Fig. 8. Incremental cost in a period begins at 11:00 am.

be exploited under the constraint of aggregated output. Still, our
proposed policy adjustment scheme achieves lower incremental
cost than that of the uniform policy adjustment scheme.

VII. CONCLUSIONS

In this paper, we have studied a V2G system with load
shaving services by taking into account the randomness in
vehicle mobility. The energy cost minimization problem of
individual PHEV has been investigated under TOU electricity
pricing and a realistic battery model. A state-dependent
policy has been proved to be optimal. For practical applications,
we have also proposed an estimation algorithm to calculate the
values of and based on the estimations of the statistics
of PHEV mobility and energy demand. Furthermore, we have
investigated the optimal operation problem of a multi-vehicle
aggregator and transformed the original problem into a convex
optimization problem based on our proposed policy adjustment
scheme which is evaluated based on real data collected from
Canadian utilities, households, and commuters, and the results
are compared with other existing schemes.
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