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Abstract—In this paper, we propose an efficient data-driven
particle PHD filter for real-time multi-target tracking of
nonlinear/non-Gaussian system in dense clutter environment.
In specific, the input measurements are first classified into
two sets, namely survival measurements and spontaneous birth
measurements, after eliminating clutters by using existing historic
state data of targets. Since most clutters do not participate in the
complex weight computation of particle PHD filter, better real-
time performance can be achieved. The tracking performance
is also improved because the survival measurements are used
for survival targets and the spontaneous birth measurements are
used for spontaneous birth targets, resulting in less interference
from each other and from clutters. Extensive simulations validate
the improvement of both the real-time performance and tracking
performance of the proposed data-driven particle PHD filter in
comparison with the traditional particle PHD filter.

Index Terms—Data-Driven Mechanism, Particle PHD Filter,
Real Time Performance, Tracking Performance

I. I NTRODUCTION

M ULTIPLE target tracking (MTT) is a very important
technology for many industrial applications, such as

automated surveillance [1], wireless sensor networks [2],[3],
[4], mobile robots [5], traffic monitoring [6], etc. Recently,
the so-called Probability Hypothesis Density (PHD) filter and
Cardinalized PHD (CPHD) filter which avoid explicit asso-
ciations between measurements and targets have been widely
studied for MTT problems. The idea of PHD/CPHD filter is
to represent the targets and measurements as Random Finite
Sets (RFSs) and use finite set statistics (FISST) to solve MTT
problems under Bayesian framework.

For the PHD filter [7], it propagates the intensity of the RFS
of states in time, the advantage of which is that it operates
only on the single-target state space and completely avoids
any data association computation. For the CPHD filter [8],
[9], it propagates the intensity of the RFS and the entire
probability distribution of the target number in time, which
relaxes the Poisson distribution assumption on the number
of targets in the PHD filter at the cost of much higher
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computational complexity than that of the PHD filter [10].
From implementation perspective, a full sequential Monte
Carlo (SMC) implementation of PHD filter, also called particle
PHD filter, was proposed in [11], and closed form solutions to
the PHD/CPHD recursions were derived for linear Gaussian
multi-target models in [12] and [13], respectively.

In addition to the PHD/CPHD filter, Mahler has proposed
the Multi-Target Multi-Bernoulli (MeMBer) recursion as a
tractable approximation to the Bayes multi-target recursion un-
der low clutter density scenarios [14]. Unlike the PHD/CPHD
recursions, the MeMBer recursion propagates (approximately)
the multi-target posterior density, and it allows reliableand
inexpensive extraction of state estimates without clustering in
the PHD/CPHD filter.

The demands of “real-time” MTT have been increasing [15],
[16], [17], [18], [19], [20]. Since the CPHD filter propagates
both the intensity of the RFS and the posterior cardinality
distribution [13], its real-time characteristic is intrinsically
not as good as the PHD filter. Although GM-PHD/CPHD
has closed-form solution which makes it easy for real-time
implementation, its application scenario is constrained to linear
Gaussian system. When comparing the PHD filter with the
MeMBer filter, according to the modeling assumptions on the
PHD filter [11] and the MeMBer filter [21], the PHD filter is
more suitable for denser clutter environments. Thus, we con-
sider particle PHD filter as a good candidate for nonlinear/non-
Gaussian MTT problems in dense clutter scenarios with high
real-time requirements. However, since the particle PHD filter
is a kind of Sequential Monte Carlo approach, its computa-
tional complexity is very high. Therefore, we are interested
in improving the real-time performance of the particle PHD
filter.

Similar to the particle filter [22], [23], [24], the particle
PHD filter mainly consists of three steps, namely, Generation
of Particles (Prediction), Weight Computation (Update) and
Resampling (Resample). Specifically, Weight Computation
consists of a mass of complicated mathematical computations
and forms a major bottleneck of the traditional particle PHD
processing. Since the measurements act as the only input
in the particle PHD filter, it is possible to use data-driven
approach to accelerate the filtering speed. In this paper, we
propose an efficient data-driven particle PHD filter, where
the novelty lies in the way of employing the data-driven
mechanism in particle PHD filtering, to distinguish the survival
measurements, spontaneous birth measurements and clutters
for Weight Computation. The main contributions of this paper
are summarized as follows.
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• First, we present a systematic analysis on the time delay
of the traditional particle PHD filter iteration. It is found
that the participation of clutters in Weight Computation
not only causes significant computation consumption but
also incurs tracking performance degradation. In addition,
we also analyze the computational complexity of the
proposed particle PHD filter.

• Second, we propose an efficient data-driven particle PHD
filter where all input measurements are classified into
two categories of survival measurements and spontaneous
birth measurements respectively after eliminating the par-
ticipation of clutters. Both the real-time performance and
the tracking performance are improved, in comparison
with the traditional particle PHD filter.

• Third, extensive simulations show that the data-driven
particle PHD filter has much better real-time performance
and tracking performance in a progressive way.

The remainder of this paper is organized as follows. Section
II presents a systematic time delay analysis of traditional
particle PHD filter iteration. In Section III, we present our
data-driven particle PHD filter, followed by the performance
evaluation in Section IV. We also discuss the real-time perfor-
mance improvement and tracking performance improvement
under different clutter density environments in Section V.
Finally, we draw our conclusions in Section VI.

II. T IME DELAY ANALYSIS OF PARTICLE PHD FILTER

A. Particle PHD Filter [11]

As an approximate implementation of PHD filter, particle
PHD filter is considered as a promising filter for MTT prob-
lems.

For anyk ≥ 1, letLk andJk denote the number of survival
particles and spontaneous birth particles at timek, respectively.
Let {x(i)

k , w
(i)
k }Lk

i=1 denote a particle approximation of PHD
at time k. The traditional particle PHD filter procedure can
be described as following three steps which are conducted in
an iterative way, where details of parameter notation can be
referred to [11].

Step 1: Prediction
For i = 1, ..., Lk−1, sample x̃

(i)
k ∼ qk(·|ξ̃

(i)
k−1,Zk) and

compute the weights of survival particles,

w̃
(i)
k|k−1 =

φk|k−1(x̃
(i)
k ,x

(i)
k−1)

qk(x̃
(i)
k |x

(i)
k−1,Zk)

w
(i)
k−1 (1)

For i = Lk−1 + 1, ..., Lk−1 + Jk, samplex̃
i
k ∼ pk(·|Zk)

and compute the weights of spontaneous birth particles,

w̃
(i)
k|k−1 =

1

Jk

γk(x̃
(i)
k )

pk(x̃
(i)
k |Zk)

(2)

Step 2: Update
For eachz ∈ Zk, compute

Ck(z) =

Lk−1+Jk
∑

j=1

ψk,z(x̃
(j)
k )w̃

(j)
k|k−1 (3)

For i = 1, ..., Lk−1 + Jk, update weights

w̃
(i)
k =

[

1 − PD +
∑

z∈Zk

ψk,z(x̃
(i)
k )

κk(z) + Ck(z)

]

w̃
(i)
k|k−1 (4)

Step 3: Resample
Compute the total mass̃Nk =

∑Lk−1+Jk

i=1 w̃
(i)
k and es-

timate the number of targetŝNk = round(Ñk), resam-
ple {x̃

(i)
k , w̃

(i)
k /Ñk}

Lk−1+Jk

i=1 to get {x(i)
k , w

(i)
k /Ñk}

Lk

i=1, and
rescale (multiply) the weights bỹNk to get{x(i)

k , w
(i)
k }Lk

i=1.

B. Analysis of Time Delay

Fig. 1 shows the timing of operations for one particle PHD
filter iteration. In the figure,Npredict, Nupdate andNresampleare
the number of cycles required for Generation of Particles,
Weight Computation and Resampling in the particle PHD
iteration, respectively. The total cycle time of one particle PHD
iteration is thenTPHD = (Npredict + Nupdate+ Nresample)Tclk,
whereTclk is the system clock.

Generation of 
particles(k)

Weight computation(k)

Resampling(k)

Generation of 
particles(k+1)

resampleNupdateNpredictN

PHDT

Fig. 1. Timing of operations in the traditional particle PHDfilter

From Fig. 1, both the Weight Computation and the Resam-
pling are the bottlenecks in the particle PHD iteration. Since
the traditional resampling can not be pipelined with other oper-
ations due to its sequential nature, it significantly occupies the
processing time. Hence, the development of faster and more
efficient resampling algorithms is vital to the implementation
of the particle PHD filter in high-speed applications. Since
it is a distinguishing feature of all PHD filters that the total
weight of particles equals the total number of targets at each
Weight Computation, it is possible to develop a threshold-
based resampling mechanism to break the bottleneck of the
sequential nature of traditional resamplings.

For the bottleneck of the PHD Weight Computation, the
complicated computations in it limit the processing. The
Weight Computation is separated into three sub-steps. First,
the likelihood function between the position of each particle
and each input measurement is computed. Second, the prod-
uct accumulation between the likelihoods and the predicted
weights is computed to get the Eq. (3). Third, update the
weights of all predicted particles to get the updated weights
according to the Eq. (4). In other word, the Weight Compu-
tation step consists of a series of complex mathematical com-
putations including multiplication, division and accumulation,
and so forth. The computation time of each sub-step depends
on both the number of all particles and the number of all input
measurements.

Since the particle PHD filter exploits the idea of particle
filter as a feasible solution to solve PHD filtering, the tracking
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performance of the particle PHD filter is proportional to the
number of particles that is used to characterize the multi-target
posterior probability. However, the real-time performance of
the filter is inversely proportional to the number of particles
used. Therefore, there is a trade-off between the tracking per-
formance and the processing time by choosing an appropriate
numerical value of the number of particles before the particle
PHD filter is used to tracking multiple targets, i.e., the proper
values ofLk andJk should be determined. We introduce the
criterion “lost tracking ratio” for determining the numberof
particles, which is exactly defined as the ratio of the number
of tracking lost runs and the total number of Monte Carlo
(MC) simulation runs. Herein, one tracking lost run means,
in a single MC simulation run, the number of targets is
wrongly estimated for6 consecutive moments. Generally the
lost tracking ratio decreases rapidly with the increase of the
number of particles. However, it tends to decrease gradually
with the increase of the number of particles when the number
of particles becomes large enough. In our example,2048 of
the total number of particles are available, i.e.,Lk = 1024 and
Jk = 1024.

On the other hand, several measurements may be available
at each time step, and each measurement may be generated
by survival targets or spontaneous birth targets or clutters. For
the traditional particle PHD filter, obviously the participation
of clutters in the Weight Computation will not only lead
to a high processing delay, but also inevitably has some
negative effects on the estimation results of the survival targets
and the spontaneous birth targets. Also, the measurements of
spontaneous birth targets in the update of survival targetsmay
dramatically decrease the estimate quality of survival targets,
and vice versa. Hence, we present an efficient data-driven
mechanism to solve the above problems and speed up the
particle PHD filtering.

III. D ATA -DRIVEN PARTICLE PHD FILTER

In this section, we describe our data-driven particle PHD
filter in detail. Concretely, we first give the target tracking
model, present our data-driven mechanism, and then apply the
data-driven mechanism in the particle PHD filter together with
analysis of time delay and computational complexity.

A. Bearing and Range Tracking Model

For most tracking systems, the target state is modeled in
Cartesian coordinates and maintained in a reference frame that
is stabilized relatively to the location of the platform. The
dynamical equation that is commonly used to represent the
motion of the target relative to the platform is given by

xk+1 = Fkxk + Γξk (5)

where

Fk =









1 ∆T 0 0
0 1 0 0
0 0 1 ∆T
0 0 0 1









is the dynamical constraint for nearly constant velocity motion
at timek. ∆T denotes the sample period.

Γ =









∆T 2/2 0
0 ∆T 2/2

∆T 0
0 ∆T









is the input matrix.xk = [x vx y vy]Tk is the target state
vector at timek. (x, y)k and (vx, vy)k represent the position
and the velocity of the target in Cartesian coordinates at timek,
respectively.ξk = (ξx, ξy)T

k is the vector of input white noise
with zero mean in Gaussian distribution withξk ∼ N(0, Qk).

The measurements originate from either targets or clutters.
The target-originated measurement equations are

rk =

∥

∥

∥

∥

Hxk −

[

xs

ys

]∥

∥

∥

∥

+ w1,k (6)

θk = arctan

(

[

0 0 1 0
]

xk + ys
[

1 0 0 0
]

xk + xs

)

+ w2,k (7)

whereH =

[

1 0 0 0
0 0 1 0

]

.

The sensor is located at[xs, ys]
T , and the measurement

noisesw1,k andw2,k are zero-mean Gaussian white noise with
mutually independent standard deviations.

B. Data-Driven Mechanism with Gating Technique

For our tracking task, the measurement at timek is not a
single measurementzk but a measurement setZk. Each mea-
surement may be generated by survival targets or spontaneous
birth targets or clutters. In the traditional particle PHD filter,
we usually make use of all input measurements into the Weight
Computation to update the weights of each particle. However,
it will incur heavy computational time delay because of the
participation of all input measurements. In addition, whenthe
spontaneous birth measurements are taken into account in the
update of survival targets, it may dramatically decrease the
estimate quality of survival targets, and vice versa. Therefore,
we present a data-driven mechanism to improve the processing
time by classifying the input measurements.

To solve the challenge of distinguishing measurements of
survival targets from spontaneous birth targets, the validation
gating technology is designed. The validation region is used
to reduce the number of candidate measurements to a value
that can be reasonably associated with the predicted target
state. The validation window based on the concept of statistical
distance is given by

d2
statistical = Z̃

T
k S

−1
k Z̃k (8)

where Z̃k is the measurement residual vector (i.e., the dif-
ference between the measurement and the predicted location)
at time k and Sk is the residual covariance matrix. The
residual covariance matrix is the sum of the covariance matrix
of the measurement error and the covariance matrix of the
predicted measurement. A measurement is accepted as a valid
measurement if

d2
statistical ≤ λ (9)
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The parameterλ denotes an appropriate threshold. Each
measurement satisfying the expression is assumed to be the
reasonable candidate for association with the given track.

As a result, a reasonable measurement associated with the
i-th survival target’s predicted position is defined as follows:

z̃
i
k+1 = (zk+1,s :

min
s ((zk+1,s − HFx

i
k)T ×

∑−1

v
(zk+1,s − HFx

i
k)))

(10)

whereHFx
i
k is the predicted location for the particlexi

k+1,
and zk+1,s is the s-th measurement in the setZk+1. The
measurement set of survival targets is defined as the union
of all survival measurements, i.e.,

Z̃k+1 =

N̂k
⋃

i=1

z̃
i
k+1 (11)

Then, the residual measurement setZk+1 for spontaneous birth
targets is defined by drawing the survival measurements out
of the setZk+1:

Zk+1 = Zk+1 − Z̃k+1 (12)

When no spontaneous birth target appears at timek + 1, the
setZk+1 consists of all clutters. On the contrary, when there
is a spontaneous birth target in the scene, the corresponding
measurement is included in the setZk+1.

Under the assumption that only one target appears spon-
taneously at each time step, letzk+1,j be the measurement
which is the nearest one to the position of the mean of the
spontaneous birth targets, i.e.,

zk+1,j = (zk+1,s : min
s (|zk+1,s − Hx|)) (13)

where|zk+1,s−Hx| is the Euclid distance betweenzk+1,s and
Hx. zk+1,s is thes-th measurement in the setZk+1. The mean
of the initial state distribution of spontaneous birth target is
x = (xnew, vnew

x , ynew, vnew
y )T

k . The superscript “new” denotes
spontaneous birth targets.

Note that the above data-driven mechanism can be applied
when the two assumptions hold: (1) the target maneuvering is
not too abrupt; and (2) the sample period∆T is not too large.

C. Data-Driven Particle PHD Filter

With the above data-driven mechanism, our proposed data-
driven particle PHD filter is described as follows.

For a set of arriving measurements in the particle PHD
iteration at timek, the first step is to derive the survival
measurements and the spontaneous birth measurements re-
spectively from all the input measurements.

Step 1: Data-driven Mechanism
a). Obtain the survival measurementsZ̃k according to Eq.

(10): the survival measurements are extracted by comparing
each input measurement with the predicted position of each
target. At timek = 1, no survival target is considered, i.e.,
only one spontaneous birth measurementz1,j is obtained at
the first time step according to Eq. (13).

b). By substracting the survival measurements from all input
measurements, the possible measurements for the spontaneous
birth targets are obtained according to Eq. (12).

c). Obtain the spontaneous birth measurementzk,j ac-
cording to Eq. (13): the spontaneous birth measurements
are extracted by comparing each possible spontaneous birth
measurement with the initial position of the spontaneous
birth targets, and the remaining measurements are regarded
as clutters, which will not participate in the update of the
particles. While no spontaneous birth target appears, onlythe
survival measurements̃Zk are obtained.

Step 2: Prediction
For i = 1, ..., Lk−1, samplex̃

(i)
k ∼ qk(·|x̃

(i)
k−1,Zk) and

compute the predicted weights

w̃
(i)
k|k−1 =

φk|k−1(x̃
(i)
k ,x

(i)
k−1)

qk(x̃
(i)
k |x

(i)
k−1,Zk)

w
(i)
k−1 (14)

For i = Lk−1 + 1, ..., Lk−1 + Jk, samplex̃(i)
k ∼ pk(·|Zk)

and compute the predicted weights

w̃
(i)
k|k−1 =

1

Jk

γ(x̃
(i)
k )

pk(x̃
(i)
k |Zk)

(15)

Step 3: Update
For survival targets, for eachz ∈ Z̃k, compute

Ck(z) =

Lk−1+Jk
∑

j=1

ψk,z(x̃
(j)
k )w̃

(j)
k|k−1 (16)

For i ∈ survival particles, update weights

w̃
(i)
k = [1 − PD +

∑

z∈Z̃k

ψk,z(x̃
(i)
k )

κk(z) + Ck(z)
]w̃

(i)
k|k−1 (17)

At time stepk = 1, this sub-step can be ignored.
For spontaneous birth targets, forz = zk+1,j , compute

Ck(z) =

Lk−1+Jk
∑

j=1

ψk,z(x̃
(j)
k )w̃

(j)
k|k−1 (18)

For i ∈ spontaneous birth particles, update weights

w̃
(i)
k = [1 − PD +

∑

z=zk+1,j

ψk,z(x̃
(i)
k )

κk(z) + Ck(z)
]w̃

(i)
k|k−1 (19)

When no spontaneous birth target appears, this sub-step can
be ignored.

Step 4: Resample
Compute the total mass̃Nk =

∑Lk−1+Jk

i=1 w̃
(i)
k and es-

timate the number of targetŝNk = round(Ñk), resam-
ple {x̃

(i)
k , w̃

(i)
k /Ñk}

Lk−1+Jk

i=1 to get {x(i)
k , w

(i)
k /Ñk}

Lk

i=1, and
rescale (multiply) the weights bỹNk to get{x(i)

k , w
(i)
k }Lk

i=1.

D. Analysis of Time Delay and Computational Complexity

In the traditional particle PHD filter, all the input measure-
ments in the setZk+1 and all particles have to be considered in
the Weight Computation of all predicted particles. In the data-
driven particle PHD filter, since targets are modeled into two
categories: survival targets and spontaneous birth targets, thus
all the measurements are classified into survival measurements
and spontaneous birth measurements correspondingly. Hence,
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the PHD weight computation is carried out on survival mea-
surements and spontaneous birth measurements, respectively.
For survival targets, the processing time depends only on the
number of survival particles and the number of the survival
measurements. At time stepk = 1, this sub-step is ignored. For
spontaneous birth targets, the processing time depends only on
the number of spontaneous birth particles and the number of
spontaneous birth measurements. When no spontaneous birth
target appears, this sub-step is ignored. The further results of
the quantitative analysis on the improved computational time
are presented in the Discussion and Extension Section.

According to the analysis, the computational complexity of
data-driven mechanism step in the data-driven particle PHDfil-
ter at timek+1 isO(N̂k|Yk+1|), which is much lower than that
of an earlier data-driven mechanismO((Lk +Jk+1)|Yk+1|) in
[25] that is carried out by designing the importance functions
and correspondent weight functions for survival and sponta-
neous birth targets.

IV. PERFORMANCE EVALUATION

A. Simulation Setup

To validate the proposed data-driven particle PHD filter,
scenarios are generated according to [11], and targets can
appear or disappear in the scene at any time. The probability
of target survival isek|k−1(·) = 0.95 and no spawning is
considered for simplicity.

Each spontaneous birth target has initial state distribution
according to a Gaussian distribution with mean and covariance

x = [100m 3m/s 100m − 3m/s]T (20)

Qx = diag([10m2 1(m/s)2 10m2 1(m/s)2]) (21)

The number of target births follows a Poisson distribution
with an average rate of0.2 target per scan.

For comparison, the results of tracking three maneuvering
trajectory using the traditional particle PHD filter are pre-
sented to evaluate the performance. For simulation parameters,
the sampling interval is∆T = 1; the process noises are
σξx

= 0.8, σξy
= 0.08, respectively; the probability of

detection isPD(xk) = 0.98; the measurement errors are
σwx

= 2.5, σwy
= 0.005, respectively. Clutters are uniformly

distributed over a300m×100m rectangle region. The number
of clutter points per scan is Poisson distribution with an
average rate ofr = 10.

B. Simulation Results

The true trajectories of3 tracks over40 scans are plotted
in Fig. 2.

Fig. 2 also shows the positions of the estimated targets
superimposed on the tracks over 40 time steps at the meantime.
The individualx andy coordinates of the tracks and estimated
targets for each time step are shown in Fig. 3. It can be seen
that estimated positions based on the traditional particlePHD
filter and the data-driven particle PHD filter are similar and
they are all close to the true tracks at a single MC trial.

Fig. 4 plots the estimated measurements superimposed on
both the input measurements and the true tracks over 40 time
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Fig. 2. Estimated trajectories and true trajectories
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Fig. 3. Estimated positions and true positions in thex andy directions

steps. It is clearly seen that the estimated measurements are
closely related to the true tracks, and most of the clutters are
eliminated which will benefit a lot to the tracking performance.
From Fig. 4, it can be incurred that the proposed data-driven
mechanism is very effective to distinguish the survival mea-
surements and spontaneous birth measurements from clutters.
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Fig. 4. Estimated measurements superimposed on the tracks and all input
measurements

It was proposed in [26] to use the Optimal Sub-Pattern
Assignment (OSPA) as a multi-target miss-distance metric,
i.e., the error between the estimated and true state. Compared
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with the former Wasserstein distance metric [27], the OSPA
distance jointly captures differences in cardinality and indi-
vidual elements between two finite sets in a mathematically
consistent yet intuitively meaningful way.

The OSPA metric d
(c)

p is defined as follows. Let
d(c)(x, y) := min(c, ‖x − y‖) for x, y ∈ χ, andΠk denotes
the set of permutations on{1, 2, ..., k} for any position integer
k. Then, for p ≥ 1, c > 0, and X = {x1, ..., xm} and
Y = {y1, ..., yn} in ̥(χ), if m ≤ n,

d
(c)

p (X,Y) :=

(

1

n

(

min
π∈Πn

m
∑

i=1

d(c)(xi, yπ(i))
p + cp(n−m)

))
1
p

(22)
and ifm > n, d

(c)

p (X,Y) := d
(c)

p (Y,X) ; and ifm = n = 0,

d
(c)

p (X,Y) = d
(c)

p (Y,X) = 0 . This distance is interpreted
as ap-th order per-target error, comprising ap-th order per-
target cardinality error. The order parameterp determines the
sensitivity to outliers, and the cut-off parameterc determines
the relative weighting of the penalties assigned to cardinality
and localization errors. According to the analysis in [26],we
choose the parametersp = 2 andc = 20 in our simulation.
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Fig. 5. Estimated number of targets and multi-target miss distance of the data-
driven particle PHD filter implemented in MATLAB: (a) Estimated number
of targets versus the true number of targets, (b) Multi-target miss distance

Fig. 5 plots the estimated targets against ground truth in
terms of target number and OSPA multi-target miss-distance
at each time step. It can be seen that the data-driven particle
PHD filter has better tracking performance than the traditional
particle PHD filter. And multi-target miss-distance exhibits
peaks at the instances where the estimated number is incorrect.
When the estimated number of targets is correct, the OSPA
miss-distance is relatively small.

Fig. 6 shows the 5000 MC average of the OPSA distance
for p = 2 andc = 100, which provides a natural and intuitive
interpretation of the OSPA metric in terms of localization and
cardinality error. Note that in terms of cardinality error,the
OSPA distance demonstrates a small pulse once the number
of targets varies. From the figure, it is clear that the data-driven
particle PHD filter achieves a lower error than the traditional
particle PHD filter.

Table I gives the 5000 MC average OSPA distance and the
5000 MC average computational time in MATLAB R2007b
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Fig. 6. 5000 MC average OSPA distance versus time

TABLE I
COMPARISON BETWEEN THE TRADITIONAL PARTICLEPHD FILTER AND

PROPOSED PARTICLEPHD FILTER

Filter algorithm Average OSPA Comput. time (s)
Traditional PHD 4.3052 2.8231
Proposed PHD 2.1709 1.5145

on a Core 4 Duo 2.40-GHz workstation with 24GB RAM for
both filters with the clutter density ofr = 10.

From Table I, the average OSPA distance of the data-driven
particle PHD filter is2.1709, and that of the traditional particle
PHD filter 4.3052. It is proved that the tracking performance
of the data-driven particle PHD filter is much better than that
of the traditional particle PHD filter in terms of localization
and cardinality error. From the theory aspect, it is because
that all input measurements are explicitly classified into two
categories of survival measurements and spontaneous birth
measurements after eliminating most of the clutters, so the
survival measurements are only used for updating the survival
particles and spontaneous birth measurements are only used
for updating the spontaneous birth particles in data-driven
particle PHD filtering.

On the other hand, for the average computational time, both
filters run 5, 000 MC trials and their computational time are
recorded. Then the average time is computed. From Table I,
it can be found that compared with the traditional particle
PHD filter, the data-driven particle PHD filter has faster
processing rate, that is(2.8231 − 1.5145)/2.8231 = 46.4%.
The main reason is that the data-driven particle PHD filter
discards most clutters in the Weight Computation. Moreover,
the processing time of data-driven particle PHD filter will gain
more improvements when the clutters become denser in the
scene, which will be discussed later.

V. DISCUSSION AND EXTENSION

A. Real-Time Performance Improvement

To evaluate the real-timeness, we define the Real-Time Per-
formance Improvement (RTPI) between the traditional PHD
filter and the data-driven particle PHD filter as:

RTPI =
t̄TRA − t̄DD

t̄TRA
× 100% (23)
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wheret̄TRA and t̄DD are the5, 000 MC average computational
time in the traditional particle PHD filter and the data-driven
particle PHD filter, respectively. The RTPI of the data-driven
particle PHD filter is plotted in Fig. 7. It can be seen that the
proposed data-driven particle PHD filter gains better real-time
performance with higher clutter density. The reason is thatthe
Weight Computation is simplified as most of the clutters are
eliminated from all the measurements. Even when the clutter
density is at an average rate ofr = 0, the data-driven particle
PHD filter can gain7.3% real-time performance improvement,
since all the measurements are treated separately. Becausethe
participation of clutters occupies much processing time inthe
Weight Computation, the proposed data-driven mechanism can
benefit the real-time industrial applications.
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Fig. 7. Real-time performance improvement versus clutter density

B. Tracking Performance Improvement

In Fig. 8, the 5000 MC average of the OPSA distance (time-
averaged over the whole tracks) for the traditional particle
PHD filter and the data-driven particle PHD filter are shown
versus clutter densities from 0 to 50. As expected, the OSPA
distance increases with the increment of clutter density. From
the figure, it appears that the proposed data-driven particle
PHD filter has much better performance than that of the tradi-
tional particle PHD filter. That is because that the data-driven
mechanism tries to distinguish the survival measurements and
spontaneous birth from all measurements in the scene.
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Fig. 8. Time-averaged OSPA distances for varying clutter density

VI. RELATED WORKS

In recent years, there are some related works on improving
the computation efficiency of PHD filter by using gating
techniques. In Ref. [25], Wang et al proposed a data-driven
mechanism for imaging MTT problem by designing the im-
portance functions and corresponding weight functions where
gating technique is used for classify the particles. In Ref.[10],
Zhang et al. developed a method of reducing the computational
cost of Gaussian mixture CPHD filter by incorporating the
elliptical gating technique, where a gating validation region is
proposed and evaluated. In Ref. [28], Swain et al. presenteda
first-moment recursion for a single-group filter and an closed-
form solution under linear-Gaussian assumptions, where a
gating technique is used to select the parental targets. In
Ref. [29], Macagnano et al. studied multitarget tracking with
the Gaussian mixture PHD and CPHD filter and proposed a
novel weighted gating strategy that is adaptive to environmen-
tal settings.

The main idea of gating in these works are similar, i.e.,
classify either the particles [25] or the measurements [10],
[28], [29] for different types of targets based on differences
between measurements and state estimates. For our paper, the
main differences are described as follows.

• To the best of our knowledge, it’s the first time that we
proposed how to use data-driven mechanism with gating
technique to improve the real-time performance of par-
ticle PHD filter for multi-target tracking nonlinear/non-
Gaussian system in dense clutter environment.

• The process of selecting measurements for survival and
spontaneous birth targets is different: first, we select
the measurements for the survival measurements; then,
from the remaining measurements, we select the proper
measurements for the spontaneous birth targets; mean-
while, the clutters are also eliminated. Another difference
between the proposed method and existing ones is: be-
cause we select the measurements that are nearest to the
expected positions, and consequently no specific gating
level is required.

• In existing gating related techniques for multiple target
tracking, the reduction of the computational complexity
depends on the volume of the validating gate. In the
proposed method, the reduction of the computational
complexity is independent on the gating threshold and
the clutter density. Thus, the real-time performance can be
significantly improved, especially in case of dense clutter
environment.

• In the proposed data-driven particle PHD filter, because
of the weight update scheme proposed, the tracking
performance are also improved, especially in dense clutter
environment. This is different from other gating based
techniques which will generally degrade the tracking
performance to some extent.

VII. CONCLUSION

In this paper, we have proposed an efficient data-driven
particle PHD filter for real-time multi-target tracking appli-
cations. The novelty lies in the data-driven mechanism, by
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which the input measurements are classified in the Weight
Computation. Since the participation of clutters is elimi-
nated, the data-driven particle PHD filter gains better real-
time performance with higher clutter density. The tracking
performance can be improved as either survival measurements
are used for updating the weights of survival particles, or the
spontaneous birth measurements for updating the weights of
spontaneous birth particles. The data-driven particle PHDfilter
has been demonstrated to be feasibly adapted to eliminate
clutters generated by common targets detectors and dense
clutter environment. In addition, it is possible to extend the
proposed measurement-driven mechanism to CPHD filtering
and MeMBer filtering, which will be discussed in the future
work.
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