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ABSTRACT

In this paper, a hyperchaotic system is presented as the chaotic carrier to encrypt information in secure communication. The
sensitivity to the system parameters and delay of the hyperchaotic system, i.e., its chaotic degree indicated by the number of
positive Lyapunov exponents, increases with its system parameter and delay, guaranteeing a large enough key space when one
selects its system parameter and delay as the secret key. Furthermore, we develop an intermittent impulsive synchronization
scheme (IISS) to achieve chaos synchronization, a crucial process in chaos-based secure communication. In our scheme,
impulsive control is only activated in the control windows, not during the whole time, which breaks through the limitation on the
upper bound of the impulsive intervals in the general impulsive synchronization scheme (GISS). Specifically, IISS improves the
security of the chaos-based secure communication scheme since the encrypted signal (cipher) is transmitted in the free windows,
different from the synchronization signal in the control windows. Finally, a secure communication scheme employing our
hyperchaotic system and IISS technique is proposed and numerical results are given to demonstrate the performance of this
scheme.
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I. INTRODUCTION

Hyperchaos has attracted a great deal of attention from
scholars over the past two decades due to its potential appli-
cation to secure communication [1,4,5,8,9,11,13,19,25,35]
and references therein. Hyperchaotic signal with extreme sen-
sitivity to initial conditions and noise-like dynamics is a
natural carrier utilized to mask information in cryptography.
Accordingly, how to generate hyperchaotic systems becomes
an active issue. Recently, some new multi-scroll attractors
and hyperchaotic systems have been presented in [7,17,20–
22,28–31,33,34]. Specifically, the delay differential equation
(DDE) has been used to generate chaos since the discovery of
the Mackey-Glass system, a physiological model that pos-
sesses chaotic behaviors. A few modified versions have been
reported [29,31], in which a piecewise nonlinearity is utilized
to substitute the original nonlinearity of the Mackey-Glass
system. Most recently, Yalçin and Özoguz [34] presented a
new DDE model to generate chaos and, employing a hard
limiter series, generalized it to three- , four-, and five-scroll
chaotic attractors. This system only possesses one positive

Lyapunov exponent, and is not hyperchaotic. Sprott [28]
found the simplest DDE for generating chaos, which is hyper-
chaotic, but unbounded. Because of its simple mathematical
structure and abundant dynamical behaviors, DDE is a poten-
tial candidate as the chaos generator in chaos-based secure
communication. Motivated by this, we construct a family of
novel chaotic/hyperchaotic systems from DDE. Different
from the above systems, our systems are bounded and very
sensitive to their parameter and delay, i.e., their chaotic
degree, indicated by the number of their positive Lyapunov
exponents, is directly controlled by their parameter and delay.
On keeping the system structure fixed, via parameter and
delay control, one can obtain various hyperchaotic attractors
with a desired number of positive Lyapunov exponents. This
property makes them a natural choice for secure communi-
cation. According to Kerckhoffs’s principle, a cryptosystem
should be secure even if everything about this system, except
the secrete key, is public knowledge. In the scheme based on
our attractors, one can keep the parameter and delay secret as
the key. Even though the system structure of our attractors is
known to the eavesdropper, he still can not discover the chaos
generator employed because of the sensitivity.

Chaos synchronization plays a critical role in chaos-
based secure communication, where the plain-text is
encrypted by the chaotic signal at the transmitter, and then the
cipher-text is transmitted to the receiver across a public
channel (unsafe channel). At the receiver, chaos synchroniza-
tion is usually expected to recover the plain-text, i.e., the
decryption of the cipher-text requires the receiver’s own copy
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of the chaotic signal which is synchronized with that of the
transmitter. Since the introduction of synchronizing two iden-
tical chaotic systems with different initial conditions by
Pecora and Carroll in 1990 [25], a variety of synchronization
techniques have been rapidly developed, including active
control between two Lorenz systems [2], a backstepping
approach between two Genesio systems [24], adaptive control
[26], delay feedback synchronization [3,16], a variable struc-
ture method [12], a sliding model control [36], nonlinear
feedback control [23], and intermittent feedback control [32].
Different from continuous feedback control, impulsive syn-
chronization only requires small synchronizing impulses.
These impulses are sampled from the state variables of the
master system (the drive system) at discrete moments and
then drive the slave system (the response system) at the same
time. When the attractivity of the error system between the
master and the slave systems is achieved, impulsive synchro-
nization is said to have been realized. A generalization of
impulsive synchronization with time-varying impulse inter-
vals is investigated in [18]. Impulsive synchronization subject
to delay and uncertain systems has been studied in [15]. The
robustness of impulsive synchronization coupled by linear
delayed impulses has been discussed in [14].

Impulsive synchronization technology has a good per-
spective in practice because of redundancy reduction of the
synchronization signal, compared to continuous feedback
control. However, there exists a restriction to limit its wide
application, which is the upper bound on impulsive intervals
(the time intervals between the impulses) during the synchro-
nization process [35]. Usually, the impulsive intervals are
small, i.e., the impulsive controller at the receiver needs to be
activated frequently. In some scenarios such as the orbital
transfer of a satellite, control of money supply in a financial
market, etc., the control windows (the time periods the con-
troller can work) are strictly restricted. Once the free windows
(the time periods the controller can not activate) are larger
than the upper bound of the impulsive intervals, GISS will not
function normally any more. To adress this problem, we
propose IISS to replace GISS and establish corresponding
synchronization criteria to achieve chaos synchronization,
based on the method of linear matrix inequalities (LMI) and
the Lyapunov-Razumikhin theory. In our synchronization
scheme, the impulsive controller is only activated in the
control windows, not during the entire time. This property
also provides a way to improve the security of chaos-based
secure communication schemes since one can separately
transmit the encrypted signal in free windows and the syn-
chronization signal in control windows, to avoid that the
eavesdropper derives the chaotic signal used to encrypt the
plain-text from the synchronization signal. To the best of our
knowledge, there is no existing work studying this challeng-
ing problem. Our analytic results may be used as a guideline
for some engineering applications.

The remainder of this paper is organized as follows. In
Section II, some basic definitions, assumptions, and lemmas
are introduced. In Section III, a family of novel hyperchaotic
attractors are constructed, which are sensitive to their param-
eter and delay. In Section IV, synchronization criteria are
established, based on Lyapunov-Razumikhin theory and LMI.
In Section V, a numerical example is given to demonstrate the
effectiveness of our synchronization results. In section VI, a
secure communication system, employing our hyperchaotic
systems and IISS technique, is proposed and a numerical
simulation exhibits its good security performance. Finally,
conclusions are given in Section VII.

II. PRELIMINARIES

In this section, we introduce some definitions, assump-
tions and preliminary lemmas, which will be used in the
proofs of later synchronization theorems. Let R denote the set
of real numbers, R+ the set of nonnegative real numbers and
Rn the n-dimensional Euclidean linear space equipped with
the Euclidean norm ||·||. Throughout this paper, P > 0 (<0, �0,
�0) denotes a symmetrical positive (negative, semi-negative,
semi-positive) definite matrix P, PT the transpose of P and
lM(m)(P) the maximum (minimum) eigenvalue of P. Let
ϕ ϕ( ) lim ( )t s

s t

+

→
=

+
, ϕ ϕ( ) lim ( )t s

s t

−

→
=

−
and j(t) = j(t+).

Let a, b ∈ R with a < b and S ⊂ Rn. Define PC([a, b],
Rn) = {j : [a, b] → S|j(t+) = j(t), "t ∈ [a, b); j(t-) exists in
S, "t ∈ (a, b] and j(t-) = j(t) for all but at most a finite
number of points t ∈ (a, b]}.

For t > 0, we equip the linear space PC([-t, 0], Rn) with
the norm ||·||t defined by ||j||t = sup-t�S�0||j(s)||. Throughout
this paper, we assume that f(t), (i = 1, 2, . . . , n) satisfies the
Lipschitz condition, i.e.,

H1. There exists a positive constant L such that

f x f y L x y x y Rn( ) ( ) , , .− ≤ − ∈for all

Chaos Synchronization. Let x(t) and y(t) be the solutions of
the master system and the corresponding slave system,
respectively. If lim ( ) ( )

t
x t y t

→∞
− = 0, then it is said that the

slave system is synchronized with the master system. Obvi-
ously, from the definition of synchronization, if the solution
of the error system e(t) = x(t) - y(t) satisfies lim ( )

t
e t

→+∞
= 0,

then chaos synchronization is achieved.

Lemma 1 [27]. For any vectors x, y ∈ Rn and positive
constant x, the following matrix inequality holds:

2
1

x y x x y yT T T≤ +ξ
ξ

.

Lemma 2 [10]. Suppose that function y(t) is nonnegative
when t ∈ (-t,•) and satisfies
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dy t

dt
k y t k y t t

( )
( ) ( ), ,≤ + − ≥1 2 0τ

where k1 and k2 are non-negative constants. Then, we have

y t y e tk k t( ) ( ) , .( )≤ ≥+0 01 2
τ

Lemma 3. Let t > 0 and V(t) ∈ C1[J, R+], where J = [a - t,
b), 0 < b - a � D. Suppose that there exist constants l > 0 and
b ∈ (0, 1) such that

′ ≤ ≥ + ∈ −V t lV t V t V t s s( ) ( ), ( ) ( ), [ , ];whenever β τ 0 (1)

and there exists constant h > 0 such that V(s) � h, s ∈ [a - t,
a), V(a) � bh, and

lΔ + <ln .β 0 (2)

Then there exists d, (exp{lD + lnb} < d < 1), such that
V(t) < dh for t ∈ [a, b).

Proof. Suppose that, for the sake of contradiction, there
exists a t* > a such that V(t*) = dh and V(t) < dh, t ∈ [a, t*).
Let t0 = sup{t ∈ [a, t*], V(t) � bh}. Then V(t0) = bh and
bh � V(t) � dh, t ∈ [t0, t*]. Thus for t ∈ [t0, t*], we have

β βη τV t s V t s( ) ( ), [ , ],+ ≤ ≤ ∈ − 0

which implies, by (1), V�(t) � lV(t), t ∈ [t0, t*]. Integrating
from t0 to t* gives

ln( ( *)) ln( ( )) ( ) .V t V t l t t l− ≤ − ≤0 0* Δ

Let d l= +exp{ ( ln )}1
2 Δ β . On the other hand, in terms

of (2), we have

ln( ( *)) ln( ( )) ln( ) ln( ) ln ln

( ln ) ln (

V t V t d d

l

− = − = −

= + − >

0

1

2

η βη β

β βΔ ll lΔ Δ+ − =ln ) ln ,β β

which is a contradiction. Thus the lemma is proved.

Remark 1. The condition (1) of Lemma 3 is used in the
contradiction argument in the proof, i.e., if the conclusion
of Lemma 3 was not true, then we would have this condition
V(t) � bV(t + s), s ∈ [-t, 0] satisfied for t ∈ [t0, t*], and
consequently we arrive at a contradiction. In other words,
V′(t) � lV(t) is necessary only when V(t) � bV(t + s), for all

s ∈ [-t, 0]. If there exists some s* ∈ [-t, 0] such that
V(t) < bV(t + s*) at time t, then V′(t) � lV(t) is not required in
Lemma 3.

III. HYPERCHAOTIC ATTRACTORS

DDE is a potential candidate as chaos generator in
engineering applications because of its simple structure with
abundant dynamical behaviors. We consider the following
equation [37]:

�x t ax t b cx t( ) ( ) sin( ( )),= − − + −τ τ (3)

where a, b and c are constants, and t > 0 is delay. Fix a = 0.16
and c = 1.8, and let b and t be variable. Fig. 1 shows the phase
portraits of (3). b and t increase their chaotic degree,
indicated by the number of positive Lyapunov exponents.
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Fig. 1. The phase portraits of x(t - t) - x(t) when (a) b = 0.8 and
t = 4, (b) b = 0.8 and t = 8, (c) b = 1.6 and t = 4, (d)
b = 1.6 and t = 8, (e) b = 2.4 and t = 4, and (f) b = 2.4
and t = 8.

1688 Asian Journal of Control, Vol. 15, No. 6, pp. 1686–1699, November 2013

© 2013 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society



Since more than one positive Lyapunov exponent
usually taken as an indication of hyperchaos (provided the
system is bounded), we calculate the positive Lyapunov expo-
nents and Lyapunov dimensions using the method in [6] and
the MATLAB LET toolbox.

For b = 0.8, (3) has seven equilibrium points (0,
�1.5681, �4.0071, �4.5899). Hopf bifurcation occurs at
four points (�1.5681, �4.5899). The system has one positive
Lyapunov exponent l = 0.0493 and Lyapunov dimension
d = 3.1035 when t = 4.0; and two positive Lyapunov expo-
nents l1 = 0.0718, l2 = 0.0189 and Lyapunov dimension
d = 5.0807 when t = 8.0. For b = 1.6, (3) has eleven equilib-
rium points (0, �1.6531, �3.7013, �4.9484, �7.4481,
�8.1932). Hopf bifurcation occurs at six points (�1.6531,
�4.9484, �8.1932). The system has two positive Lyapunov
exponents l1 = 0.0795, l2 = 0.0319 and Lyapunov dimension
d = 5.4147 when t = 4.0; and four positive Lyapunov expo-
nents l1 = 0.1061, l2 = 0.0705, l3 = 0.0339, l4 = 0.0078 and
Lyapunov dimension d = 10.0316 when t = 8.0. For b = 2.4,
(3) has fourteen equilibrium points (0, �1.6786, �3.6366,
�5.0317, �7.2854, �8.3706, �10.9723, �11.6698). Hopf
bifurcation occurs at eight points (�1.6786, �5.0317,
�8.3706, �11.6698). The system has three positive Lyapu-
nov exponents l1 = 0.0925, l2 = 0.0593, l3 = 0.0259 and
Lyapunov dimension d = 7.8487 when t = 4.0; and six
positive Lyapunov exponents l1 = 0.1210, l2 = 0.0927,
l3 = 0.0634, l4 = 0.0410, l5 = 0.0191, l6 = 0.0067 and Lya-
punov dimension d = 14.8941 when t = 8.0.

Remark 2. The dynamics of (3) are sensitive to parameter b
and delay t. The chaotic degree of the hyperchaotic attractors
increases with b and t increasing. It can also be observed that
the number of Hopf bifurcation points has a close relationship
with the chaotic degree. By increasing b, we can increase the
number of Hopf bifurcation points of (3). Therefore, we can
achieve hyperchaos with more positive Lyapunov exponents
and higher Lyapunov dimension.

IV. SYNCHRONIZATION CRITERIA

In this section, based on the Lyapunov-Razumikhin
theorem and LMI approach, we derive synchronization crite-
ria via general impulsive control and intermittent impulsive
control, respectively.

4.1 Problem formulation

First, we present impulsive synchronization schemes
including GISS and IISS. Consider a class of general DDEs
as the master system (drive system), described by

dx t

dt
Ax t Bx t Cf x t t

x t t

( )
( ) ( ) ( ( )), ,

( ) , ,

= + − + − >

= − ≤ ≤

⎧
⎨
⎪

⎩⎪

τ τ

φ τ

0

0
(4)

where x(t) ∈ Rn is the state variable, A, B and C are n ¥ n
constant matrices, f:Rn → Rn is continuous nonlinear function
satisfying f(0) = 0, t is the delay, and f ∈ PC([-t, 0], Rn) are
the initial conditions.

4.1.1 General Impulsive Synchronization Scheme (GISS)

In GISS, the corresponding slave system (response
system) is designed by

dy t

dt
Ay t By t Cf y t t T

y t U x t y t

k

k

( )
( ) ( ) ( ( )), ,

( ) ( ( ), ( )),

= + − + − ≠

=

τ τ

Δ tt Tk=

⎧
⎨
⎪

⎩⎪ ,

(5)

where Tk (k = 1, 2, . . . ) is the kth impulsive instant satisfying
0 = T1 < T2 < . . . < Ti < . . . with limk → •Tk = • and
Uk(x(t)) = Bk(x(t) - y(t)) is the impulsive control at the k-th
impulsive instant. {Tk, Uk} is called the impulsive control law
and define the impulsive interval Dk = Tk+1 - Tk. The initial
conditions of (5) are given by

y t t t( ) ( ), ,= − ≤ ≤ψ τ 0

where y ∈ PC([-t, 0], Rn).
Let e(t) = x(t) - y(t). The error system is given by

de t

dt
Ae t Be t Cf t t T

e t B e t t T

k

k k

( )
( ) ( ) ( ), ,

( ) ( ), ,

= + − + − ≠

= − =

⎧
⎨
⎪ τ τ�

Δ⎩⎩⎪
(6)

where �f t f x t f y t( ) ( ( )) ( ( ))= − .

4.1.2 Intermittent Impulsive Synchronization Scheme
(IISS)

In our intermittent impulsive synchronization scheme,
impulsive control is only activated in control windows, not
during the whole time. Define free windows [mw, mw + d]
and control windows [mw + d, (m + 1)w] where m = 0, 1, . . .
and 0 < d < w < •. The corresponding slave system (response
system) is designed as follows:

dy t

dt
Ay t By t Cf y t

t m m

dy t

dt
Ay t

( )
( ) ( ) ( ( )),

, ,

( )
( )

= + − + −

∈ +[ )

=

τ τ

ω ω δ

++ − + − ≠

= =

⎧ By t Cf y t t T

y t U x t y t t T

m l

m l m l

( ) ( ( )), ,

( ) ( ( ), ( )), ,

,

, ,

τ τ

Δ
⎨⎨
⎪

⎩⎪

∈ + +[ )

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪ t m mω δ ω, ( ) ,1

(7)

where m = 0, 1, . . . , l = 1, 2, . . . , Mm, Mm is a positive
integer related to m, Tm,l denotes the lth impul-
sive instant in the m + 1-th control window,
m T T T km m m Mmω δ ω+ = < < < ≤ +, , , ( )1 2 1… , and Um,l(x(t),
y(t)) = Bm,l(x(t) - y(t)) is the impulsive control. {Tm,l, Um,l} is
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called the intermittent impulsive control law. Let
T mm Mm, ( )+ = +1 1 ω and define the impulsive interval
Dm,l = Tm,l+1 - Tm,l. The principle diagram of IISS is shown in
Fig. 2.

Let e(t) = x(t) - y(t). Also, we obtain the following error
system:

de t

dt
Ae t Be t Cf t t m m

de t

dt
Ae t B

( )
( ) ( ) ( ), , ,

( )
( )

= + − + − ∈ +[ )

= +

τ τ ω ω δ�

ee t Cf t t T

e t B e t t T t m m

m l

m l m l

( ) ( ), ,

( ) ( ), , [ , (

,

, ,

− + − ≠

= − = ∈ + +

τ τ

ω δ

�

Δ 11) ),ω

⎧
⎨
⎪

⎩⎪

⎧

⎨

⎪
⎪

⎩

⎪
⎪

(8)

where �f t f x t f y t( ) ( ( )) ( ( ))= − .

4.2 General impulsive synchronization criterion

Theorem 1. In GISS, suppose that for an impulsive control
law {Tk, Uk}:

(i) there exist a positive definite matrix P and constants
a1 > 0, a2 > 0 and x > 0 such that

A P PA PCC P P PB

B P
L

I P

T T

T

+ + −

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
≤

ξ α

ξ
α

1

2

2

0; (9)

(ii) there exists a real number b ∈ (0, 1) such that

( ) ( ) ;I B P I B Pk
T

k− − − ≤β 0 (10)

(iii) there exists a positive number D (D � Dk) such that

Δ
β

βα α β( ) ln ,1 2 0+ + < (11)

where Dk = Tk+1 - Tk.

Then the slave system (5) can be synchronized with the
master system (4) by the impulsive control law {Tk, Uk}.

Proof. Define V(t) = e(t)TPe(t). For t ∈ (Tk, Tk+1), we have

′ = +
= + −
+

V t e t Pe t e t Pe t

e t PAe t e t PBe t

T T

T T

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

� �
2 2 τ

22e t PCf tT( ) ( )� − τ
(12)

In terms of Lemma 1 and H1, we obtain

′ ≤ + + −

+ +

V t e t PA A P e t e t PBe t

e t PCC Pe t

T T T

T T

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2

1

τ

ξ
ξ

�ff t f t

e t PA A P PCC P e t

e t PBe t
L

T

T T T

T

( ) ( )

( ) ( ) ( )

( ) ( )

− −

≤ + +

+ − +

τ τ

ξ

τ

�

2
2

ξξ
τ τ

ζ
ξ α

ξ
α

e t e t

A P PA PCC P P PB

B P
L

I P

T

T

T T

T

( ) ( )− −

=
+ + −

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1

2

2

ζζ

α α τ+ + −1 2V t V t( ) ( ),

(13)

where x = [e(t) e(t - t)]T.
By condition (i), we have

′ ≤ + −V t V t V t( ) ( ) ( ),α α τ1 2 (14)

which implies, if V(t) � bV(t + s), s ∈ [-t, 0], then

′ ≤ +V t V t( ) ( ) ( ).
1

1 2β
βα α (15)

When t = Tk, we get, by condition (ii)

V T e T I B P I B e T

e T Pe T V T
k

T
k k

T
k k

T
k k k

( ) ( )( ) ( ) ( )

( ) ( ) ( )

= − −
≤ = ≤

− −

− − −β β ββ τV Tk( ) ,
(16)

where V T V T sk
s

k( ) sup ( )τ
τ

= +
− ≤ ≤0

. Last in-equality follows

since V T V T sk
s

k( ) sup ( )−

− ≤ ≤
≤ +

τ 0

.

By (15), (16), condition (iii), and Lemma 3, we have

V t V T t T Tk k k( ) ( ) , ( , ),< ∈ +ρ τ 1 (17)

where exp ( ) ln
Δ
β

βα α β ρ1 2 1+ +⎧
⎨
⎩

⎫
⎬
⎭
< < . Define

DT T

DT T DT T DT

DT T DT

j
j j

i
j

j i

1 1

2 1 1

1

=
= + ≤ ≤ + +

= + ≤−

;

inf{ : };

inf{ :

τ τ

τ

Δ

�
TT DTj i≤ + +−1 τ Δ};

�

Fig. 2. The principle diagram of IISS.
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Obviously, by (16) and (17), when t = DTi we have

V DT V DTi i( ) ( ) ,≤ β τ (18)

and when t ∈ (TDi, TDi+1) we have

V t V DTi( ) ( ) .< ρ τ (19)

From the definition of DTi, we see DTi+1 - DTi � t,
which implies

V DT V DTi i( ) ( ) .+ <1 τ τρ (20)

Thus, by (18), (19), and (20), we obtain

V t V t DT DTi
i i( ) ( ) , [ , ].≤ ∈ +ρ τ0 1 (21)

On the other hand, since DTi � DTi-1 + (t + D) � . . .
� DT1 + (i - 1)(t + D), then t → • implies i → •. We have

lim ( ) lim
( )

( )
lim

( )

( )
.

t t
m

i

i

m

e t
V t

P

V

P→∞ →∞ →∞
≤ ≤ =

λ
ρ
λ

τ0
0 (22)

Therefore, from the definition of synchronization, the
slave system (5) is synchronized with the master system (4)
by impulsive control law {Tk, Uk}.

Remark 3. Conditions (i)–(ii) of Theorem 1 are related to the
impulsive controllers Uk and condition (iii) is the restriction for
the impulsive intervals Dk. If the controllers are strong enough
(i.e., Bk ª I) and the impulsive intervals are small enough (i.e.,
Dk ª 0), then all conditions are always satisfied. This implies
that, in theory, one can always achieve chaos synchronization
by GISS. In reality, sometimes impulsive control can be only
applied in some specific windows (controllable windows), not
during the whole time, due to some practical constraints.
Therefore, we present intermittent impulsive synchronization
criteria to extend our results as follows.

4.3 Intermittent impulsive synchronization criterion

Theorem 2. Suppose that for an intermittent impulsive
control law {Tm,l, Um,l}:

(i) there exist a positive definite matrix P and constants
a1 > 0, a2 > 0 and x > 0 such that

A P PA PCC P P PB

B P
L

I P

T T

T

+ + −

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
≤

ξ α

ξ
α

1

2

2

0; (23)

(ii) there exist real numbers bm,l ∈ (0, 1) such that

( ) ( ) ;, , ,I B P I B Pm l
T

m l m l− − − ≤β 0 (24)

(iii) there exists a real number d (bm,l < d < 1) such that for
each m, l,

Δm l

m l
m l m l d,

,
, ,( ) ln ln ,

β
β α α β1 2+ + ≤ (25)

where Dm,l = Tm,l+1 - Tm,l and T mm Mm, ( )+ = +1 1 ω ;
(iv) the time delay satisfies t � w - d - D and

d e
ω δ
τ α α δ
−
+

⎢
⎣⎢

⎥
⎦⎥ + <Δ ( ) ,1 2 1 (26)

where Δ Δ= max{ }
,

,
m l

m l and ⎣a⎦ denotes the nearest integer less
than or equal to a.

Then the slave system (7) is synchronized with the
master system (4) by the intermittent impulsive control
{Tm,l, Um,l}.

Proof. Define V(t) = e(t)TPe(t). When t ∈ [mw, mw + d], the
impulsive controller is not activated. Similar with (14), we
have

′ ≤ + −V t V t V t( ) ( ) ( ).α α τ1 2 (27)

In terms of Lemma 2, we have

V t V m e t m mt m( ) ( ) , , .( )( )≤ ∈ +[ )+ −ω ω ω δτ
α α ω1 2 (28)

When t ∈ [mw + d, (m + 1)w], the system runs in con-
trollable periods. Thus, the impulsive controller works. First,
considering t = Tm,1, we get by condition (ii)

V T e T I B P I B e T

e T P
m m

T
m

T
m m

m m
T

( ) ( ) ( ) ( ) ( )

( )
, , , , ,

, ,

1 1 1 1 1

1 1

= − −
≤

− −

−β ee T V T

V T
m m m

m m

( ) ( )

( ) .
, , ,

, ,

1 1 1

1 1

− −=
≤

β
β τ

(29)

When t ∈ (Tm,1, Tm,2), we have V�(t) �
a1V(t) + a2V(t - t), which implies, if V(t) � bm,1V(t + s),
s ∈ [-t, 0],

′ ≤ +V t V t
m

m( ) ( ) ( ).
,

,
1

1
1 1 2β

β α α (30)

By (29), (30), condition (iii), and Lemma 3, we have

V t d V T t T Tm m m( ) ( ) , , ., , ,< ∈[ )1 1 2τ (31)

Similarly, we have

V t V T t T

V t d V T t T T
m l m l m l

m l m l m l

( ) ( ) ,

( ) ( ) , , ,
, , ,

, , ,

≤ =
< ∈[ )

⎧
⎨
⎩ +

β τ

τ 1
(32)
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where l = 1, 2, . . . , Mm, and T mm Mm, ( )+ = +1 1 ω . Define

DT T

DT T DT T DT

DT

m m

m
j

m j m m j m

m i

, ,

, , , , ,

,

;

inf{ : };
1 1

2 1 1

=
= + ≤ ≤ + +

=

τ τ Δ

�
iinf{ : };, , , ,

j
m j m i m j m iT DT T DT− −+ ≤ ≤ + +1 1τ τ Δ

�

Let i i T DT TM m m i m Mm= ≤ ≤max{ : }, , ,1 and define
DT Tm i m MM m, ,+ +=1 1. Obviously, in terms of (32), when t = DTm,i

we have

V t d V DT t DT

V t d V DT t DT DT
m l m l

m l m l m l

( ) ( ) ,

( ) ( ) , , .
, ,

, , ,

≤ =
< ∈[ )

⎧
+

τ

τ 1
⎨⎨
⎩

(33)

From the definition of DTm,i, we see DTm,i+1 - DTm,i � t
for i (1 � i � iM - 1), which implies

V DT d V DT i ii i M( ) ( ) , .+ < ≤ ≤ −1 1 1τ τ (34)

Thus, by (33) and (34), we obtain

V t V m e t m m

V t d V m t DT Di
m i

( ) ( ) , , ,

( ) ( ) , ,

( )

,

≤ ∈ +[ )
≤ + ∈

+ω ω ω δ
ω δ
τ

α α δ

τ

1 2

TTm i, .+[ )
⎧
⎨
⎩ 1

By (28) and (29), we have

V m V m e( ) ( ) .( )ω δ ωτ τ
α α δ+ ≤ +1 2 (35)

Furthermore,

V t V m e t m m

V t d V m e ti

( ) ( ) , , ,

( ) ( ) ,

( )

( )

≤ ∈ +[ )
≤ ∈

+

+

ω ω ω δ
ω
τ

α α δ

τ
α α δ

1 2

1 2 DDT DTm i m i, ,, .+[ )
⎧
⎨
⎩ 1

(36)

From the definition of DTm,i, since

DT DT DT im i m i m, , ,( ) ( )( ),≤ + + ≤ ≤ + − +−1 1 1τ τΔ Δ�

we have i
DT DTm i m≥ −

+
+, ,1 1

τ Δ
. On the other hand, we have

DT T mm i m MM m, , ( ) .> − > + − −τ ω τ1 Δ

Then, i
DT DT

M
m i mM≥ −

+
+ > −

+
, ,1 1
τ

ω δ
τΔ Δ

, which implies

iM ≥ −
+

⎢
⎣⎢

⎥
⎦⎥
+ω δ

τ Δ
1.

By (36), we have

V m V m

d V m e

DT DT

i

m iM m iM

M

(( ) ) (( ) )

( )
, ,

( )

+ ≤ +

≤
+ −−

− +

1 1
1 1

1 21

ω ω

ω
τ

τ
α α δ

≤≤
−
+

⎢
⎣⎢

⎥
⎦⎥ +d V m e

ω δ
τ

τ
α α δωΔ ( ) .( )1 2

(37)

Let θ
ω δ
τ α α δ=
−
+

⎢
⎣⎢

⎥
⎦⎥ +d eΔ ( )1 2 . We have

V m Vm( ) ( ) .ω θτ τ≤ 0

Furthermore,

V t V e t m m

V t d V e

m

i m

( ) ( ) , , ,

( ) ( ) ,

( )

( )

≤ ∈ +[ )
≤

+

+

θ ω ω δ
θ

τ
α α δ

τ
α α δ

0

0

1 2

1 2 tt DT DTm i m i∈[ )
⎧
⎨
⎩ +, ,, .1

(38)

By condition (iv), we have lim ( )
t

V t
→∞

= 0. Therefore,

lim ( ) lim
( )

( )
lim

( )

( )
.

t t
m

i

i

m

e t
V t

P

V

P→∞ →∞ →∞
≤ ≤ =

λ
ρ
λ

τ0
0 (39)

The proof is complete.

Remark 4. In the proof of Theorem 2, V(t) converges expo-
nentially to zero along the trajectory of the error system (8).
Also, the synchronization error e(t) converges exponentially
to zero. This implies that chaos synchronization is achieved
very fast.

Corollary 1. Suppose that for an intermittent impulsive
control law {Tm,l, Um,l}:

(i) there exist a positive definite matrix P and constants
a1 > 0, a2 > 0 and x > 0 such that

A P PA PCC P P PB

B P
L

I P

T T

T

+ + −

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
≤

ξ α

ξ
α

1

2

2

0;

(ii) there exist real numbers bm,l ∈ (0, 1) such that

( ) ( ) ;, , ,I B P I B Pm l
T

m l m l− − − ≤β 0

(iii) there exists a real number d bm,l < d < 1 such that for
each m, l,

Δm l

m l
m l m l d,

,
, ,( ) ln ln ,

β
β α α β1 2+ + ≤

where Dm,l = Tm,l+1 - Tm,l and T mm Mm, ( )+ = +1 1 ω ;
(iv) the time delay satisfies w - d - D � t � w - d and

de( )α α δ1 2 1+ < , where Δ Δ= max{ }
,

,
m l

m l .

Then the slave system (7) is synchronized with the master
system (4) by the intermittent impulsive control {Tm,l, Um,l}.

Proof. Since conditions (i)–(iii) are same as those of
Theorem 2, we also have

V t V m e t m m

V t d V m e ti

( ) ( ) , , ,

( ) ( ) ,

( )

( )

≤ ∈ +[ )
≤ ∈

+

+

ω ω ω δ
ω
τ

α α δ

τ
α α δ

1 2

1 2 DDT DTm i m i, ,, .+[ )
⎧
⎨
⎩ 1
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By condition (iv), we have

V m V m

d V m e

(( ) ) (( ) )

( ) .( )

+ ≤ +
≤

−
+

1 1
1 2

ω ω
ω

τ ω δ

τ
α α δ

Then, ||V(mw)||t � mm||V(0)||t, μ α α δ= +de( )1 2 .
Furthermore,

V t V e t m m

V t d V e

m

i m

( ) ( ) , , ,

( ) ( ) ,

( )

( )

≤ ∈ +[ )
≤

+

+

μ ω ω δ
μ

τ
α α δ

τ
α α δ

0

0

1 2

1 2 tt DT DTm i m i∈[ )
⎧
⎨
⎩ +, ,, .1

By condition (iv), we have lim ( )
t

V t
→∞

= 0, which implies
lim ( )
t

e t
→∞

= 0. The proof is complete.

Corollary 2. Suppose that for an intermittent impulsive
control law {Tm,l, Um,l}:

(i) there exist a positive definite matrix P and constants
a1 > 0, a2 > 0 and x > 0 such that

A P PA PCC P P PB

B P
L

I P

T T

T

+ + −

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
≤

ξ α

ξ
α

1

2

2

0;

(ii) there exist real numbers bm,l ∈ (0, 1) such that

( ) ( ) ;, , ,I B P I B Pm l
T

m l m l− − − ≤β 0

(iii) there exists a real number d bm,l < d < 1 such that for
each m, l,

Δm l

m l
m l m l d,

,
, ,( ) ln ln ,

β
β α α β1 2+ + ≤

where Dm,l = Tm,l+1 - Tm,l and T mm Mm, ( )+ = +1 1 ω ;
(iv) the time delay satisfies t � D0 and

d eM − + <1 1 2 1( ) ,α α δ

where Δ Δ0 = min{ }
,

,
m l

m l and M M
m

m= min{ }.

Then the slave system (7) is synchronized with the
master system (4) by the intermittent impulsive control
{Tm,l, Um,l}.

Proof. Similarly, we also have

V t V m e t m m

V t d V m e ti

( ) ( ) , , ,

( ) ( ) ,

( )

( )

≤ ∈ +[ )
≤ ∈

+

+

ω ω ω δ
ω
τ

α α δ

τ
α α δ

1 2

1 2 DDT DTm i m i, ,, .+[ )
⎧
⎨
⎩ 1

Since t � D0, then

DT T i Mm i m i m, , , , , , .= = +1 2 1…

By condition (iv), we have

V m V m

d V m e

d

T T

M

m Mm m Mm

m

(( ) ) (( ) )

( )
, ,

( )

+ ≤ +

≤
≤

+ −−

− +

1 1
1 1

1 21

ω ω

ω
τ

τ
α α δ

MM V m e− +1 1 2( ) .( )ω τ
α α δ

Then, we obtain ||V(mw)||t � nm||V(0)||t, where
ν α α δ= − +d eM 1 1 2( ) .

Furthermore,

V t V e t m m

V t d V e

m

i m

( ) ( ) , , ,

( ) ( ) ,

( )

( )

≤ ∈ +[ )
≤

+

+

ν ω ω δ
ν

τ
α α δ

τ
α α δ

0

0

1 2

1 2 tt DT DTm i m i∈[ )
⎧
⎨
⎩ +, ,, .1

By condition (iv), we have lim ( )
t

V t
→∞

= 0, i.e.,
lim ( )
t

e t
→∞

= 0. The proof is complete.

V. NUMERICAL EXAMPLE

In this section, a numerical example is given to demon-
strate the effectiveness of our synchronization criteria. We
employ a fourth order Runge-Kutta method with step size
10-5 and consider a hyperchaotic system as the master system,
described by

dx t

dt
ax t b cx t

( )
( ) sin( ( )),= − − + −τ τ (40)

where a = 0.16, b = 2.4, c = 1.8 and t = 4. The initial
condition is f(s) = 2sin (6p(s + t)/t), s ∈ [-t, 0]. The
corresponding slave system is in the same form of the master
system with the initial condition y(s) = 3 cos (10p(s + t)/t),
s ∈ [-t, 0]. This hyperchaotic system has three positive
Lyapunov exponents: l1 = 0.0925, l2 = 0.0593 and l3 =
0.0259, as shown in Fig. 3.
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Fig. 3. Phase portrait x(t - 4) - x(t) of the hyperchaotic system
with a = 0.16, b = 2.4, c = 1.8 and t = 4.
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Comparing to (4) gives

A B C f x x L= = − = = =0 0 16 2 4 1 8 1 8, . , . , ( ) sin( . ), . .and

First, considering GISS, we choose impulsive control
parameters: Dk = 0.60 and Bk = 0.95I. Let P = I. Thus, condi-
tions (9)-(11) are satisfied. By Theorem 1, we know that the
corresponding slave system is synchronized with the master
system (4) by GISS. The state trajectories and the synchroni-
zation error are shown in Fig. 4. Our simulation results show
that when the impulsive intervals satisfy Dk � 0.70 the syn-
chronization can always be achieved. However, if Dk further
increases, GISS could not guarantee synchronization any
more. It can be clearly observed from Fig. 5 that GISS fails
when Dk = 0.72.

Assume that w = 20 and d = 10. Thus, the free windows
are [20m, 20m + 10] and the control windows are [20m + 10,
20m + 20]. Since the free window width is far larger than the
upper bound of impulsive intervals (0.70), GISS fails in this
scenario. Now, we consider IISS. Choose control parameters
Dm,l = 0.10 and Bm,l = 0.95I and let P = I. By Theorem 2, we
know that the corresponding slave system is synchronized
with the master system (40). The state trajectories and the
synchronization error are shown in Fig. 6. Simulation results
indicate that when impulsive intervals satisfy Dk � 0.21, the
synchronization can always be achieved.

Remark 5. In the above example, the control window width
w - d is a half of the whole period width w. The general

impulsive synchronization approach is not applicable any
more because the free window width d is larger than the
impulsive intervals.

Fixing the control parameter Bm,l = 0.95I, next we try to
find the relationship between impulsive intervals and the free
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Fig. 4. The state trajectories and synchronization error of GISS
with Dk = 0.50 and Bk = 0.95I.
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Fig. 5. The state trajectories and synchronization error of GISS
with Dk = 0.72 and Bk = 0.95I.
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Fig. 6. The state trajectories and synchronization error of IISS
with Dm,l = 0.10 and Bm,l = 0.95I when d = 10.
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window to guarantee synchronization. Simulation results are
shown in Fig. 7.

Remark 6. Fig. 7 shows that the upper bound of the free
window width decreases as the length of impulsive interval
increases. In other words, to guarantee synchronization, if
one wants to reduce the control window width, more frequent
impulsive controls are needed. Further simulation shows that
when t > w - d, the error system rapidly turns unstable, as
shown in Fig. 8.

VI. APPLICATIONS TO SECURE
COMMUNICATION

In this section, we shall establish a cryptosystem based
on our hyperchaotic systems and IISS technique. The frame-
work diagram is shown in Fig. 9, which consists of three
parts: the transmitter, the receiver and the public channel
(unsafe channel). The transmitter contains a hyperchaotic
system X. (a, c) of X is public. (b, t) of X is kept secret as the
secret key and sent to the receiver across the private channel
(safe channel) or across a public channel by public key cryp-
tography. At the receiver, an identical hyperchaotic system Y
is constructed by the public knowledge (a, c) and the secret
key (b, t). X and Y are the same hyperchaotic systems with
different initial conditions. Suppose that the eavesdropper
could never get the secret key. After the above configuration,
our cryptosystem works as follows. Firstly, at the transmitter,
one samples the synchronization signal x(Tm,l) from the
hyperchaotic signal x(t) (t ∈ [mw + d, (m + 1)w]) of X and
sends it to the receiver in the control windows. The informa-
tion signal m(t) is encrypted by encryption function E(m(t),

x(t)) (t ∈ [mw, mw + d]) and the cipher signal c(t) is sent to
the receiver in the free windows after the transient synchro-
nization region. At the receiver, one uses the synchronization
signal x(Tm,l) to synchronize Y to X, employing the IISS tech-
nique. Then he can decrypt c(t) by decryption function D(c(t),
y(t)) in the free windows, where y(t) is the state variable of Y
and obtain the decrypted signal �m t( ). The principle diagram
is shown in Fig. 10.

For instance, Alice wants to safely transmit the plain
text “chaos cryptography” to Bob by our cryptosystem.
The following encryption and decryption algorithms are
required.
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Fig. 7. The relationship between the maximum length of
impulsive intervals and the free window width to
guarantee synchronization.
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Fig. 8. The state trajectories and synchronization error of IISS
with Dm,l = 0.0001 and Bm,l = 0.95I when d = 16.1.

Fig. 9. The chaos-based secure communication.
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Encryption algorithm.

1. Alice selects suitable constants a, b, c and t. Keeps (b,
t) secret as the secret key and safely transmits it to Bob.
Then publishes (a, c);

2. Constructs a hyperchaotic system X with (a, b, c, t) and
samples the synchronization signal {x(Tm,l)} from the
state variable of the hyperchaotic system X;

3. Transfers the plain text PT to its corresponding binary
representation by ASCII conversion,

B PT( ) [= 0110001101101000011000010110

111101110011001000000110000110

11100100111100101110000011101

000110111101100111011100010011

00001011100000110100001111001].

For each letter, an 8-bit binary code is assigned. Each
bit B(PT)(i) (i = 1, 2, . . . , 144) is denoted by B(i). There
are totally 144 bits for the plain text “chaos
cryptography”. And then generates the information
signal by

m i
B i

B i
( )

. , ( ) ;

. , ( ) .
=

=
− =
⎧
⎨
⎩

0 01 1

0 01 0

4. Let ST = inf{t : e(s) < 0.01, s � t} and define
synchronization region: W1 = [ST, •) and encryption

region: W2 = W1 � [mw, mw + d]. Alice selects a
starting point Te = m0w ∈ W2 and encrypts B(i) by

c i x T i m ie( ) ( . ) ( ),= + +0 05

where Te + 0.05i ∈ [m0w, m0w + d].
5. Sends {Tm,l, x(Tm,l), Te, c(i)} to Bob across public

channel.

Decryption algorithm.

1. Bob firstly uses the secret key (b, t) and the public
knowledge (a, c) to set up the hyperchaotic system Y.

2. When {Tm,l, x(Tm,l), Te, c(i)} is received, he synchronizes
Y to X by the synchronization signal {Tm,l, x(Tm,l)} and
derives y(Te + 0.05i) (i = 1, 2, . . . , 144) from the state
variable of Y.

3. Decrypts c(i) to m1(i) by

m i c i y T i ie1 0 05 1 2 144( ) ( ) ( . ), , , , ,= − + = …

and transfers m1(i) to binary representation by

B i
m i

m i
1

1 1 0

0 1 0
( )

, ( ) ;

, ( ) .
=

>
<

⎧
⎨
⎩

4. Recovers the plain text from B1(i) by inverse ASCII
conversion.

Assume that the hyperchaotic systems, X and Y, are
with parameters a = 0.16 and c = 1.8, the secret key is
{b = 2.4, t = 4.0}, the intermittent impulsive controller is
with w = 20, d = 10, Dm,l = 0.10 and Bm,l = 0.95I, and the start-
ing point is Te = 80s. Fig. 11 shows the hyperchaotic signals
and the error signal, where the dashed rectangle is the encryp-
tion area. The information signal m(i), the encrypted signal
c(i) and the decrypted signal m1(i) are shown in Fig. 12.
When the secret key is mismatched with 1% error (i.e.,
b = 2.376 and t = 3.96 at the receiver) and other conditions
are the same, the eavesdropper obtains the decrypted signal
m2(i) as shown in Fig. 12.

Remark 7. Fig. 12 shows that m1(i) is almost the same as
m(i). Specifically,

m i m i x T i y T ie e1 0 05 0 05 0 01( ) ( ) ( . ) ( . ) . .− = + − + <

In terms of the filter in step (3) of decryption algorithm,
B1(i) = B(i) (i = 1, 2, . . . , 144) can be always achieved.
However, even though the eavesdropper guesses a key very
close to the secret key (with 1% error), the decrypted signal
m2(i) is totally different from the information signal m(i). It
verifies that our hyperchaotic system is very sensitive to the
secret key (b and t). This property guarantees that the key

Fig. 10. The principle diagram of encryption and decryption.
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space of our scheme is large enough. In other words, our
hyperchaotic systems are natural for secure communication.

VII. CONCLUSIONS

A hyperchaotic system from DDE has been introduced,
which is natural for secure communication because of its
sensitivity to parameter and delay. Furthermore, we have pro-
posed a new synchronization scheme, IISS, to achieve chaos
synchronization, which breaks through the limit of the upper
bound of impulsive intervals in GISS. A secure communica-
tion scheme, based on our hyperchaotic system and IISS
technique, has also been proposed. Simulation results have
demonstrated that our cryptosystem is more secure. To
further improve its performance, there are two outstanding
issues needing to be solved. One is concerned with the
robustness to channel noise and delay impulses, while the
other is concerned with synchronization rate and synchroni-
zation error. In future work, we will furthermore explore how
various factors, such as delay, disturbance, impulsive inter-
vals, synchronization signals, parameter mismatch, etc.,
impact the synchronization rate.
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