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Abstract—In this paper, we study the performance of Device-
to-Device (D2D) communications with dynamic interference. In
specific, we analyze the performance of frequency reuse among
D2D links with dynamic data arrival setting. We first consider
the arrival and departure processes of packets in a non-saturated
buffer, which result in varying interference on a link based on the
change of its backlogged state. The packet-level system behavior
is then represented by a coupled processor queuing model, where
the service rate varies with time due to both the fast fading
and the dynamic interference effects. In order to analyze the
queuing model, we formulate it as a Discrete Time Markov
Chain (DTMC) and compute its steady-state distribution. Since
the state space of the DTMC grows exponentially with the
number of D2D links, we use the model decomposition and some
iteration techniques in Stochastic Petri Nets (SPNs) to derive its
approximate steady state solution, which is used to obtain the
approximate performance metrics of the D2D communications in
terms of average queue length, mean throughput, average packet
delay and packet dropping probability of each link. Simulations
are performed to verify the analytical results under different
traffic loads and interference conditions.

Index Terms—Device-to-device communication; performance
analysis; coupled processor model; stochastic petri nets.

I. INTRODUCTION

DEVICE-TO-DEVICE (D2D) communications are com-
monly referred to as the type of the technologies that en-

able devices to communicate directly with each other without
the infrastructure, e.g, access points or base stations. Bluetooth
and WiFi-Direct are two most popular D2D techniques in
the market, bothing working in the unlicensed 2.4 GHz ISM
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bands. Cellular networks, on the other hand, do not sup-
port direct over-the-air communications between user devices.
However, with the emergence of context-aware applications
and the accelerating growth of Machine-to-Machine (M2M)
applications, D2D function plays a more and more important
role since it facilitates the discovery of geographically close
devices and reduce the communication cost between these
devices. To seize the emerging market that requires D2D
function, the mobile operators and vendors are exploring the
possibilities of introducing D2D function in the cellular net-
works to develop the network assisted D2D communications
technologies [1]–[4]. The most significant difference between
the cellular network assisted D2D communications and the
traditional D2D technologies such as WiFi-direct is that the
former works in the licensed band of cellular networks with
more controllable interference and the base station or the
network can assist the D2D user equipments (UEs) in various
functions, such as new peer discovery methods, physical layer
procedures, and radio resource management algorithms.

In the emerging new cellular networks such as 3rd Genera-
tion Partnership Project (3GPP) Long Term Evolution (LTE),
orthogonal time-frequency resources are allocated to different
users within a cell to eliminate intracell interference. The
introduction of D2D function may bring two categories of
potential intracell interference into cellular networks: interfer-
ence between different D2D users and interference between
a cellular user and one or multiple D2D users. The former
category of interference arises when the radio resources are
reused by multiple D2D users, while the latter arises when the
radio resources allocated to a cellular user are reused by one
or more D2D users. The latter category of interference can
be avoided by statically or semi-statically allocating a group
of dedicated resources to all the D2D users at the cost of re-
duced spectrum efficiency. Most of the existing work on D2D
communications focus on the design of optimized resource
management algorithms using a static interference model,
where each D2D link or cellular link is assumed to be saturated
with infinite backlogs and constantly cause interference to the
other D2D links or cellular links [5]–[11]. The base station
can either centrally determine the radio resource allocation
of D2D connections along with the cellular connections [4],
[5] or let the users perform distributed resource allocation
by themselves [3], [6]. In this paper, we focus on the first
category of interference (i.e., interference between D2D links)
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with centralized resource allocation and study the performance
of D2D communications using a dynamic interference model,
where the finite amount of data arrives to the links at each
time slot. Thus, the links do not always have data to transmit
and cause interference to the other links. In order to focus
on the dynamic interference, we consider the Full Reuse (FR)
resource sharing strategy in this paper, where all the available
resources are reused by all the D2D links with non-empty
queues in each time slot.

In the queuing model for such system, the service rate at
each queue varies with time due to two factors: the fast fading
effect of the wireless channel and the dynamic arrival and
departure of packets which results in the dynamic variation
of interference from a link when its status changes from
busy to idle or vice versa. When only the second factor is
considered, the system can be modeled as a coupled-processor
server, where the service rates at each queue vary over time
as governed by the backlogged state of the other queues. The
complex interaction between the various queues renders an
exact analysis intractable in general and steady-state queue
length distributions are known only for exponentially dis-
tributed service in two-queue systems [12]–[14]. In [15], [16],
the flow-level performance in wireless networks with multiple
base stations is investigated, which can be formulated as a
coupled-processor model in the single user class scenario. Due
to the complex nature of the coupled-processor model, [15]
derives bounds and approximations for the key performance
metrics by assuming maximum and minimum interference in
neighbours of the reference cell and [16] studies the perfor-
mance gains of intercell scheduling in a two-cell network and a
simplified symmetric network, respectively. In [17], the upper
and lower bounds on the moments of the queue length of
the coupled-processor model are obtained by formulating a
moments problem and solving a semidefinite relaxation of
the original problem. This analysis method is applied in [18]
to study the impact of user association policies on flow-
level performance in interference-limited wireless networks.
Although the semidefinite relaxation method can be applied
to study the coupled-processor model with more than two
queues, the size of the formulated optimization problem scales
exponentially as the number of queues increases.

In this paper, we consider both the fast fading and dynamic
interference effects to better depict the variations of the
service rate in the practical D2D system. The Finite-State
Markov Channel (FSMC) model with respect to the Signal
to Interference and Noise Ratio (SINR) is constructed for
each link, which not only captures the fast fading effect of
the wireless channel as in the traditional FSMC model based
on Signal to Noise Ratio (SNR) partition [19], [21], but also
considers the dynamic variation of interference due to the
changing backlogged states of the other active links. Based
on the above FSMC model, we formulate a coupled processor
queuing model for such a system with time-varying service
rates and propose an analytical method to derive the state
transition probability matrix and steady-state distribution of
the underlying Markov process. However, the scalability of
proposed analytical method with large number of links is
limited by the exponentially increasing state space of the
Markov process. Therefore, we use the model decomposition

and iteration approach in Stochastic Petri Nets (SPN) [22],
[23] to deal with the coupling between the service rates of
the different links. Specifically, we formulate the SPN model
for the above queuing system with multiple D2D links and
decompose it into multiple “near-independent” subnets, where
each subnet corresponds to a queuing system with a single link
and is solved separately. Because the subnets are correlated,
after solving the problem in each subnet to get its steady-state
statistics, the distributions are exported to other subnets to
derive their approximate state transition probability matrices
and steady-state distributions, and this is conducted iteratively.
Finally, performance metrics such as throughput and packet
dropping probability can be obtained from the steady-state
distribution of the Markov process.

In recent years, SPN has been used for the performance
analysis of wireless networks by some work [24]–[27]. Perfor-
mance evaluation of resource management has been conducted
in cellular networks [25], multihop networks [26], and IEEE
802.16 networks [27] using SPN. In [24], we have used
the model decomposition and iteration approach [22], [23]
to analyze the performance of opportunistic scheduling in
cellular networks. However, the interaction between different
subsystems is due to scheduling instead of interference as
in this paper. This model decomposition approach has been
improved in [28] to deal with the following two potential
limits: (1) proofs of convergence are usually difficult to obtain;
(2) “spurious” states might be introduced, which do not exist
in the exact model. Moreover, [29] eliminates the need for a
Kronecker consistent model decomposition. Since our model
in this paper is a Kronecker-consistent model, and we can
prove the convergence of the fixed-point iteration while no
“spurious” states are introduced due to the decomposition, we
stick to the decomposition method in [22], [23] due to its
simplicity. To the best of our knowledge, this work is the first
one which addresses the problem of subnets interaction due
to dynamic interference in D2D communications.

In [30], the performance of D2D communications in cellular
networks with dynamic packet arrivals is analyzed using SPN.
However, the transition probabilities of the channel states
under dynamic interference are obtained by Monte-Carlo
simulation due to the computation complexity of the numerical
method. We extend the work by developing an analytical
approach based on level crossing rate of the wireless channel
to derive the transition probabilities of the channel states,
which greatly reduce the computation complexity. Moreover,
we perform extensive numerical analysis and simulation with
varying number of D2D links to evaluate the performance
metrics such as throughput, delay and dropping probability. In
addition, we also consider the Batch Bernoulli arrival process.

The remainder of the paper is organized as follows. In
Section II, the system model of D2D communications is first
introduced, followed by the formulation of a coupled processor
queuing model based on the system model. In Section III, the
transition probabilities of the Markov process underlying the
queuing model are analyzed in order to derive the steady-state
probabilities. In Section IV, we formulate the corresponding
SPN model, and use the model decomposition and iteration
method in SPN to approximate the system performance. The
analytical results are verified by simulation under different
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Fig. 1. Cellular wireless networks with D2D communications capability (a) resource sharing between two D2D links; (b) queuing model of (a).

traffic loads and interference conditions in Section V. Finally,
conclusion is given in Section VI. As many symbols are used
in this paper, Table I summarizes the important ones.

II. THE COUPLED PROCESSOR QUEUEING SYSTEM

Consider a cellular wireless network with D2D commu-
nication capability. Fig.1(a) illustrates the case where two
D2D links share radio resources with each other. A D2D link
consists of a source D2D UE transmitting to its destination
D2D UE. Potential interfering link exists for D2D link 1 (resp.
D2D link 2) from the transmitter of source D2D UE2 (resp.
source D2D UE1) to the receiver of destination D2D UE1
(resp. destination D2D UE2). Since there are two categories
of links, i.e., D2D links and potential interfering links, all links
mentioned are referred to the D2D links by default in the rest
of the paper. We consider that each source D2D UE maintains
a queue with finite capacity to buffer the dynamically arriving
data. An interfering link is ‘potential’ since it only exists when
the queue of the source D2D UE associated with its transmitter
is non-empty. The transmission rate of each link is determined
by its own SINR, which varies with time due to the fast fading
effects of its own wireless channel, and also the fast fading
effects and changing on-off status of its potential interfering
link. Moreover, the transmission rates of different links vary
asynchronously over time. Therefore, Fig.1(a) can be modeled
as a queuing system as illustrated in Fig.1(b), where there are
two queues and each one is served by a private single-server,
whose service rate is determined by the transmission rate of
the corresponding link.

Let D = 1, . . . , D denote the set of non-overlapping links.
Each link maintains a queue at the source D2D UE, and each
queue has a finite capacity of K < ∞ packets, where packets
are assumed to be of the same size B bits. For each queue i,
packets arrives according to Poisson distribution with average
rate λi packets/sec. The transmission in the time is slot-by-slot
based and each slot has an equal length ΔT . In each time slot,
the resource can be allocated to one or more links, depending
on the resource sharing and scheduling strategies. Although
there are various resource sharing strategies between the links,
there are two extreme cases which incur the maximum and
minimum interference, respectively:

• Full Reuse (FR): The links reuse all the available re-
sources, causing interference to each other. However, the

links get the largest amount of resources to use.
• Orthogonal Sharing (OS): The links use orthogonal re-

sources with each other where no interference exists.
However, each link gets the least amount of resources
to use.

In this paper, we focus on the performance of FR strategy
with dynamic interference. This resource sharing strategy is
not a practical one, since it may cause excessive amount of
interference between D2D links. However, it is an extreme
case which incurs the maximum interference but achieves the
best frequency reuse. On the other hand, the queuing perfor-
mance of the other extreme case, i.e., the OS strategy, can be
analyzed using the method in our earlier work [24]. Since the
practical resource allocation strategies try to achieve the best
tradeoff between frequency reuse and interference control, the
performance of the two extreme cases provide lower bounds
for the performance of practical resource allocation strategies.
Moreover, the packet-level performance evaluation method of
other practical resource allocation methods can be developed
based on those of FR and OS strategies.

Assume that the instantaneous channel gains of the D
transmitters Txi on the source D2D UEs of links i ∈ D with
the D receivers Rxj on the destination D2D UEs of links
j ∈ D remain constant within a time slot, the value of which
at time slot t can be represented by a D-by-D channel gain
matrix Gt, where item Gij,t denotes the channel gain between
the transmitter Txi of link i and the receiver Rxj of link j.
The channel gain matrices Gt and Gt′ in different time slots
t �= t′ can be different due to the fast fading effects of the
wireless channel. Let Ii := {Iji}j∈D\{i} denote the set of
potential interfering links of link i, where Iji is the potential
interfering link from the transmitter of link j ∈ D\{i} to the
receiver of link i. Note that the channel gain of link i is Gii,t,
while the channel gains of set of potential interfering links
Ii are {Gji,t}j∈D\{i}. Let P = {Pi}i=1,...,D be the D-by-1
power matrix that determines the transmission power of every
link i.

In this paper, we assume that a link does not always have
data to transmit, and its transmitter first examines whether the
queue is empty or not at the beginning of every time slot t.
Only when the queue is non-empty shall it move the packets
out of the queue for transmission and thus cause interference to
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TABLE I
SUMMARY OF IMPORTANT NOTATIONS

Category Symbol Definition

Constant D The number of D2D links

K The buffer (queue) capacity in terms of packets

B Packet length

ΔT Time slot duration

L The number of channel states of a single D2D link in FSMC

χl The SINR threshold between the l-th state and (l + 1)-th state of a D2D link in FSMC

Rl The transmission rate of any D2D link in the l-th state of the FSMC model

Set D The set of D2D links i, i = 1, . . . ,D

Ii The set of potential interfering links of D2D link i

Ji,t The subset of D2D links excluding link i with non-zero queue length at the beginning of time slot t

Variable λi The mean packet arrival rate of the Poisson arrival process of D2D link i

Iji The potential interfering link from the transmitter of D2D link j to the receiver of D2D link i where j is other than i

ri,t The instantaneous data rate of D2D link i at time slot t

Qi,t The queue length of D2D link i at the beginning of time slot t

Θi,t The queue status (empty or non-empty) of the D2D link i at the beginning of time slot t

SINRi,t The SINR value for each D2D link i at time slot t

γii,t The SNR value of D2D link i at time slot t

γji,t The virtual SNR value of potential interfering Iji at time slot t

Hi,t The channel state of the FSMC model of D2D link i at time slot t

Ai,t The number of packets arrived to link i during time slot t

Ĥi,t+1 The virtual channel state of the FSMC model of D2D link i at time slot t+ 1, which assumes that

the queue status of all the other links j ∈ D\{i} is the same at time slots t and t+ 1

Vector �Qt D-dimensional, where the ith element is Qi,t, i = 1, . . . , D
�Θt D-dimensional, where the ith element is Θi,t, i = 1, . . . ,D
�Ht D-dimensional, where the ith element is Hi,t, i = 1, . . . ,D

�γi,t D-dimensional, where the jth element is γji,t , j = 1, . . . ,D

Probability p
(�n,�h)

(�l,�k)
Pr.{ �Qt+1 = �h, �Ht+1 = �n| �Ht = �l, �Qt = �k}

p
�h
(�l,�k)

Pr.{ �Qt+1 = �h| �Ht = �l, �Qt = �k}
p�n
(�l,�k,�h)

Pr.{ �Ht+1 = �n| �Ht = �l, �Qt = �k, �Qt+1 = �h}
p
hi
li,ki

Pr.{Qi,t+1 = hi|Hi,t = li, Qi,t = ki}
pni

(li,�k,�h)
Pr.{Hi,t+1 = ni|Hi,t = li, �Qt = �k, �Qt+1 = �h}

pni
(li,θv ,θw)

Pr.{Hi,t+1 = ni|Hi,t = li, {Θj,t}j∈D\{i} = θv, {Θj,t+1}j∈D\{i} = θw}
p
(li,ni)
(θv ,θw)

Pr.{Hi,t = li, Hi,t+1 = ni|{Θj,t}j∈D\{i} = θv, {Θj,t+1}j∈D\{i} = θw}
p̂ni
(li,θv ,θw)

Pr.{Hi(t + 1) = ni|Ĥi(t + 1) = li, {Θ̂j,t+1}j∈D\{i} = θv, {Θj,t+1}j∈D\{i} = θw}
p̂
li,ni
(θv ,θw)

Pr.{Ĥi(t + 1) = li,Hi(t + 1) = ni|{Θ̂j,t+1}j∈D\{i} = θv, {Θj,t+1}j∈D\{i} = θw}
p̃
ni
(li,ki,hi)

Approximate probability of Pr.{Hi,t+1 = ni|Hi,t = li, Qi,t = ki, Qi,t+1 = hi}
p̃
li,ni
(ki,hi)

Approximate probability of Pr.{Hi,t = li, Hi,t+1 = ni|Qi,t = ki, Qi,t+1 = hi}
pliθv Pr.{Hi,t = li|{Θj,t}j∈D\{i} = θv}
π�l,�k Steady state probability, limt→∞ Pr.{ �Ht = �l, �Qt = �k}
πi
li,ki

Steady state probability, limt→∞ Pr.{Hi,t = li, Qi,t = ki}
πkj,hj

Steady state probability, limt→∞ Pr.{Qj,t = kj , Qj,t+1 = hj}
Performance Qi The average queue length of link i

Metrics T i The mean throughput in terms of packets/s of link i

Di The average packet delay of link i

pid The packet dropping probability of link i
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the other links. We consider the transmission capability of link
i during time slot t as � ri,tΔT

B �, where ri,t is its instantaneous
data rate in terms of bits/s and �·� is the integer no bigger than
·. Here, we assume that if a packet could not be transmitted
completely due to time-slot expiration at the end of time-slot
t, which can be foreseen at the beginning of this time slot,
the entire packet is not transmitted in this time slot but at the
next time-slot (t+1). Although a packet can be truncated for
transmission in a realistic scenario, for example, by the RLC
protocol in the LTE systems, assuming the realistic scenario
will make the queue length a real number instead of an integer,
which will result in the infinite state space of the Markov
chain. Therefore, we make this approximation in our analysis,
while keeping the approximation under control by adjust the
packet size B. This approximation has also been used in
existing work in literature [21], [31], where the service rate
is given in terms of packets/s instead of bits/s. If the number
of packets in the queue of link i at the beginning of time slot
t is less than its transmission capability during time slot t,
padding bits shall be transmitted along with the data according
to the LTE standard. Arriving packets are placed in the queue
throughout the time slot t and can only be transmitted during
the next time slot t+1. If the queue length reaches the buffer
capacity K , the subsequent arriving packets will be dropped.
Let �Qt = {Qi,t}i∈D denote the queue length of every link i
in terms of packets at the beginning of time slot t, and Ai,t

denote the number of packets arrived to link i during the time
slot t, which is a Poisson distributed stationary process with
mean λiΔT . According to the above assumption, the queuing
process evolves following

Qi,t+1 = min[K,max[0, Qi,t − �ri,tΔT

B
�] +Ai,t]. (1)

From the above discussion, the SINR of every link i de-
pends on the subset of other links in the system with non-zero
queue length at the beginning of time slot t, which is denoted
as Ji,t. Let �Θt = {Θi,t}i∈D, where Θi,t = 1(Qi,t > 0)
denotes the queue status (empty or not) of the link i at the
beginning of time slot t. Note that �Θt can take 2D possible
values θv, v = 1 . . . , 2D. Therefore, we have Ji,t := {j ∈
D\{i} : Θj,t = 1}. The SINR value for each link i at time
slot t is given by the following formula:

SINRi,t =
PiGii,t

Ni +
∑

j∈D\{i} PjGji,tΘj,t
(2)

=
γii,t

1 +
∑

j∈D\{i} γji,tΘj,t
,

where γii,t :=
PiGii,t

Ni
is the SNR value of link i, and Ni is the

noise power on link i. Similarly, γji,t :=
PjGji,t

Ni
, j ∈ D\{i}

can be referred to as the ‘virtual SNR’ value of the link Iji,
where it is ‘virtual’ since Iji is an interference link instead
of a link and it is in fact the ‘interference to noise ratio’
considering the physical meaning.

The corresponding instantaneous data rate ri,t is a function
of SINRi,t. In this paper, we assume that adaptive modulation
and coding (AMC) is used, where the SINR values are divided
into L non-overlapping consecutive regions and if the SINR

TABLE II
SINR THRESHOLD AND RATES

channel state index l SINR Threshold χ(l−1) (dB) ≥ Rates Rl (Kbs)

2 -4.46 213.3

3 -3.75 328.2

4 -2.55 527.8

5 -1.15 842.2

6 1.75 1227.8

7 3.65 1646.1

8 5.2 2067.2

9 6.1 2679.7

10 7.55 3368.8

11 10.85 3822.7

12 11.55 4651.2

13 12.75 5463.2

14 14.55 6332.8

15 18.15 7161.3

16 19.25 7776.6

value SINRi,t of link i falls within the l-th region [χl−1, χl),
the corresponding data rate ri,t of link i is a fixed value Rl,
i.e., ri,t = Rl, if SINRi,t ∈ [χl−1, χl). Table II gives the
AMC scheme in 3GPP LTE systems where L = 16 [20].
As an example, l = 2 if SINRi,t ∈ [−4.46dB,−3.75dB),
and R2 = 213.3Kbs. Since the AMC function can select
the appropriate coding and modulation schemes according to
the instantaneous SINR of the wireless channel guaranteeing
that the packet error rate is above an acceptable value, we
do not consider the transmission errors. Although it is an
interesting and challenging research problem to study the
transmission errors due to factors such as imperfect Channel
State Information (CSI), it is outside the scope of this paper.

In order to achieve AMC, we assume that the BS has
knowledge of the channel gain matrix Gt and the queue
status �Θt of all the D2D links at each time slot t, so that
it can determine the modulation and coding schemes for
each D2D link with non-empty queues and inform the source
and destination D2D UEs with downlink control signaling.
Since network assisted D2D communications have not been
standardized in 3GPP, there is currently no specific signaling
protocols for resource allocations of D2D connections. In [1],
we have proposed a candidate signaling procedure.

Since the SINR value SINRi,t of any link i ∈ D can be
derived according to (2), the wireless channel for each link i
can be modeled as a FSMC with total L states, where Hi,t

represents the channel state of the FSMC model of link i
at time slot t. Each state of FSMC corresponds to one non-
overlapping consecutive SINR region and a fixed transmission
rate determined by the AMC algorithm. From (2), it can
be seen that the SINR value SINRi,t and thus the channel
state Hi,t of link i depends on the SNR value γii,t of link
i and the ‘virtual SNR’ values γji,t of its interfering links
Iji, j ∈ D\{i}, and also the queue status Θj,t of the links
j ∈ D\{i}. For any link i ∈ D, since both the (virtual) SNR
values γji,t, j ∈ D and the queue status Θj,t, j ∈ D\{i}
remain constant within a time slot t, the SINR value SINRi,t

also remains constant within a time slot.
There has been a lot of research on the finite state Markov
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modeling of wireless fading channels, where interference is
not considered. Compared with these work, our FSMC has two
additional complicating factors: (1) the fading of the potential
interfering links of link i; (2) the variation of the set of
interfering links of link i due to changing backlog status of the
other links. For factor (1), the channel gain of an interfering
link in time slot t can be considered as only dependent on its
channel gain in time slot t− 1 due to the time correlation as
assumed in the existing first-order FSMC models. For factor
(2), the queue length of a link at time slot t only depends on
its queue length at time slot t−1 and the channel state Hi,t−1

at time slot t− 1, as will be discussed later and calculated in
(4). Therefore, the channel state Hi,t of link i at time slot t
only depends on the channel gains of link i and its potential
interfering links at time slot t − 1 and the queue length of
the other links at time slot t− 1, which obeys the Markovian
property.

The above D2D communications system can be formulated
by a coupled processor queuing model as follows. The defined
queuing system consists of a finite number, D, of queues
indexed by i = 1, 2, . . . , D, each of which has a server
i corresponding to a D2D link i. For any i, there is a
Poisson distributed packet arrival process with mean λiΔT
fixed length packets of B bits, and a finite and discrete-
time Markov chain Hi,t with total L states representing the
evolution of the channel states of D2D link i. Associated with
the l-th (l ∈ {1, . . . , L}) state of the FSMC model of any link
i is a fixed service rate Rl bits/sec of server i, which is a
non-negative integer and the same for all the links. Since the
wireless channels vary with time asynchronously for different
links, the transitions of the channel states are link dependent
and the channel states Hi,t and Hj,t of any two different links
i �= j at time slot t are not necessarily the same. If at time slot
t the queue i is non-empty with Hi,t in the l-th state, the queue
i is served at a deterministic rate Rl, i.e., the queue is served
according to an L-state MMDP. For any link i ∈ D, since
SINRi,t depends on {Θj,t}j∈D\{i} and thus {Qj,t}j∈D\{i},
the state of Hi,t depends on the set of queues in the system
with non-zero queue length, which corresponds to a coupled
processor server.

III. STEADY-STATE SOLUTION OF THE QUEUEING SYSTEM

Let �Ht := {Hi,t}i∈D denote the channel states for every
link at time slot t. Let �Qt as defined in Section II rep-
resent the queue states for every link at time slot t. The
(2 × D)-dimensional discrete-time Markov chain (DTMC)
{( �Ht, �Qt), t = 0, 1, ...} can be used to represent the system
behavior of the above queuing system. The state number of
the DTMC is ((K + 1) × L)D, which grows exponentially
with the increasing number D of D2D links. In this section,
we focus on the derivation method of the exact transition
probabilities and steady-state solution of the DTMC and leave
the state space explosion problem to the next section, where
the model decomposition and iteration method in SPN is used
to decompose the DTMC with ((K + 1) × L)D number of
states to D DTMCs each with (K +1)×L number of states.
Based on the exact method discussed in this section, the
approximate transition probabilities and steady-state solution
of the decomposed DTMCs can be derived.
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Fig. 2. The computation of p
(�n,�h)

(�l,�k)
, which mainly consists of two com-

ponents. The first component p
�h
(�l,�k)

represents the transition probability of

the queue state, and the second component p�n
(�l,�k,�h)

represents the transition

probability of the server state.

Let p(�n,
�h)

(�l,�k)
be the transition probability from state (�l,�k) to

state (�n,�h) of the Markov chain, where �l := {li}i∈D , �k :=
{ki}i∈D, �n := {ni}i∈D and �h := {hi}i∈D. Note that li, ni ∈
{1, . . . , L}, and ki, hi ∈ {0, . . . ,K}. We can first decompose

p
(�n,�h)

(�l,�k)
into two components as

p
(�n,�h)

(�l,�k)
=Pr.{ �Qt+1 = �h| �Ht = �l, �Qt = �k}× (3)

Pr.{ �Ht+1 = �n| �Ht = �l, �Qt = �k, �Qt+1 = �h}
=p

�h
(�l,�k)

p�n
(�l,�k,�h)

,

where the first component p�h
(�l,�k)

is the transition probability

of the queue state from �Qt = �k to �Qt+1 = �h, given the
channel state �Ht = �l; and the second component p�n

(�l,�k,�h)
is

the transition probability of the channel state from �Ht = �l to
�Ht+1 = �n, given the queue states �Qt = �k and �Qt+1 = �h.

In the rest of Section III, we will first discuss the com-
putation method of p

�h
(�l,�k)

and p�n
(�l,�k,�h)

, respectively, to get

the state transition probability p
(�n,�h)

(�l,�k)
of the Markov chain

of {( �Ht, �Qt), t = 0, 1, ...} according to (3). The framework

of computing p
(�n,�h)

(�l,�k)
in the following part is illustrated in

Fig.2. Then, we will derive the steady-state distribution of
the Markov chain from its state transition probability matrix
and prove that the steady-state distribution exists and is unique
under certain conditions in Theorem 3.

A. Transition Probability of the Queue State p
�h
(�l,�k)

According to (1) and given ri,t = Rli , we have

phi

li,ki
= Pr.{Qi,t+1 = hi|Hi,t = li, Qi,t = ki} (4)

=

⎧⎪⎪⎨⎪⎪⎩
Pr.(Ai,t = hi − ki + ηi) if ki > ηi, hi �= K
Pr.(Ai,t = hi) if ki ≤ ηi, hi �= K
Pr.(Ai,t ≥ K − ki + ηi) if ki > ηi, hi = K
Pr.(Ai,t ≥ K) if ki ≤ ηi, hi = K

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.



LAI et al.: PERFORMANCE ANALYSIS OF DEVICE-TO-DEVICE COMMUNICATIONS WITH DYNAMIC INTERFERENCE USING STOCHASTIC PETRI NETS 7

where ηi = �Rli
ΔT

B �, and Pr.(Ai,t = a) = (λiΔT )a

a! e−λiΔT

due to Poisson assumptions.
Since the transition probability phi

li,ki
of each link i depends

only on its own server and queue states, we have

p
�h
(�l,�k)

=

D∏
i=1

phi

li,ki
. (5)

B. Transition Probability of the Server State p�n
(�l,�k,�h)

According to eq.(2), the value of SINRi,t is determined
by the (virtual) SNR vector �γi,t := {γji,t}j∈D and the queue
status vector {Θj,t}j∈D\{i}. Therefore, we have the following
theorem.

Definition 1: Denote the set of all possible values of Qi

as SQi , the set of all possible values of �Q as SQ :=∏D
i=1 SQi , which is the Cartesian product of SQi , i ∈ D,

and the set of all possible values of {Qj}j∈D\{i} as S ī
Q :=∏

j∈D\{i} SQj . Partition S ī
Q into 2D−1 non-overlapping re-

gions S ī
θv
, v = 1, . . . , 2D−1, such that the subset of queues

with non-zero queue length is identical within each region,
i.e., if {Qj}j∈D\{i} ∈ S ī

θv
, then {Θj}j∈D\{i} = θv .

Theorem 1: ∀ �Qt = �k ∈ SQi × S ī
θv

and ∀ �Qt+1 = �h ∈
SQi × S ī

θw
, the values of pni

(li,�k,�h)
are the same and can be

denoted as pni

(li,θv,θw).
The proof of Theorem 1 is straightforward from (2). There-

fore, we try to derive the value of pni

(li,θv,θw), which equals

pni

(li,θv,θw) =
p
(li,ni)
(θv,θw)

pliθv
(6)

where

p
(li,ni)
(θv,θw) = Pr.{Hi,t = li, Hi,t+1 = ni|{Θj,t}j∈D\{i} = θv,

{Θj,t+1}j∈D\{i} = θw} (7)

pliθv = Pr.{Hi,t = li|{Θj,t}j∈D\{i} = θv} (8)

1) Derivation of pliθv : Since Hi,t = li, we have
SINRi,t ∈ [χ(li−1), χli). Therefore, according to (2),
�γi,t at time slot t belongs to the convex polyhedron
Υli := {�γi|γii − χ(li−1)

∑
j∈D\{i} γjiΘj,t ≥ χ(li−1), γii −

χli

∑
j∈D\{i} γjiΘj,t < χli , �γi ≥ 0}. The (virtual) SNR

regions corresponding to the channel state li and li + 1 are
separated by the hyperplane γii−χli

∑D
j=1,j �=i γjiΘj,t = χli .

Assume there are two links in the system, an illustration
of the SINR regions and its equivalent (virtual) SNR vector
regions of link 1 when the channel state H1,t = 1, 2, 3 and
{Θ2,t} = {1} is shown in Fig.3. Therefore, the steady-state
probability that Hi,t = li given that {Θj,t}j∈D\{i} = θv can
be derived as

pliθv =

∫
Υli

f(�γi)d�γi =

∫
Υli

∏
j∈D

(f(γji)dγji). (9)

where f(�γi) is the joint probability distribution function (pdf)
of the stationary random process {γji,t}j∈D , and f(γji) is the
pdf of γji,t. The second equality is due to the independence
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Fig. 3. (Virtual) SNR regions corresponding to the channel states and possible
transitions of Hi from li into ni when v = w.

between the r.v. elements in the set {γji}j∈D . For a Rayleigh
fading channel with additive white Gaussian noise, the re-
ceived instantaneous SNR, γji, is exponentially distributed
with mean γ̄ji.

Therefore, pliθv can be derived by the integration of a
multivariate exponential function over a convex polyhedron,
which can be equivalently written as

pliθv =

∫
· · ·

∫ ∞

0

( ∫ ub(li,Jt)

lb(li,Jt)

f(γii)dγii
) ∏
j∈Jt

f(γji)dγji,

(10)
where ub(li,Jt) = χli + χli

∑
j∈Jt

γji, lb(li,Jt) = χli−1 +
χli−1

∑
j∈Jt

γji. Therefore, the integration limits of γii can be
written as affine functions of γji, j ∈ Jt, while the integration
limits of γji, j ∈ Jt are all from 0 to ∞. Therefore, the closed-
form expression for pliθv can be written as

pliθv =
∏
j∈Jt

1

γ̄ji
(

exp(−χ(li−1)/γ̄ii)∏
k∈Jt

(1/γ̄ki + χ(li−1)/γ̄ii)

− exp(−χli/γ̄ii)∏
k∈Jt

(1/γ̄ki + χli/γ̄ii)
). (11)

2) Derivation of p
(li,ni)
(θv,θw): The transition of channel state

Hi from li to ni can be due to two categories of factors:
(1) the fading of link i and its potential interfering links; (2)
the variation of the set of interfering links of link i from θv
to θw due to the changing backlog status of the other links.
Therefore, we consider that v = w and v �= w, respectively,
and derive the value of p

(li,ni)
(θv,θw) under each scenario. In the

former scenario, factor (2) doesn’t exist and we can focus on
the SINR variation due to the fading effects.

a) When v = w: the values of {Θj,t}j∈D\{i} and
{Θj,t+1}j∈D\{i} remain the same during two consecutive time
slots, and thus the set of interference links {Iji}j∈Jt and
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{Iji}j∈Jt+1 remain the same in time slot t and t+1. Therefore,
the transition of Hi,t in state li to Hi,t+1 in state ni can
only be due to the variations of the (virtual) SNR vector
{γji}j∈{i}⋃Jt

in time slot t and t + 1. In [19], in order to
derive the transition probability of the FSMC based on SNR
partition, the product of the SNR level crossing rate and the
time slot interval is used to approximate the joint probability
that the channel states are in adjacent states in time slot t
and t+ 1, respectively. Furthermore, it assumes that the joint
probabilities that the channel states are in different and non-
adjacent states in two consecutive time slots are zero. In this
paper, we use a similar method to approximate the transition
probabilities of the FSMC based on SINR partition. However,
since the state transition of the SINR-based FSMC can be due
to the variations of any of the (virtual) SNR elements in the
(virtual) SNR vector {γji}j∈{i}⋃Jt

, the derivation method is
much more complicated. We first use a similar assumption
as in the SNR-based FSMC that the state transition of Hi,t

can only occur between adjacent states, i.e., p(li,ni)
(θv,θw) = 0, if

|ni− li| > 1. Then, we try to derive the transition probabilities
between adjacent states as

p
(li,li+1)
(θv,θw) ≈ NI(χli)ΔT, (12)

p
(li,li−1)
(θv,θw) ≈ NI(χ(li−1))ΔT,

where NI(χli) is “level crossing rate” in terms of the SINR,
i.e., the expected number of times per second the SINR passes
downward across the threshold χli . This approximation is
similar to the method in [19]. NI(χli)ΔT , whose value is
smaller than one, can be explained as the probability that the
SINR passes downward across the threshold χli in a time slot
interval ΔT .

In order to derive the value of NI(χli)ΔT , we consider
a small time interval Δt → 0. Therefore, NI(χli)Δt can be
explained as the probability that the SINR passes downward
across the threshold χli in a small interval Δt.

Theorem 2: We find the SINR value of link i crosses
downward the threshold χli in a small time interval Δt if
one of the mutually exclusive and exhaustive eventualities in
the set {Ej}j∈{i}⋃Jt

occurred, where Ej is defined as the
event that the (virtual) SNR γji passes downward (or upward)
across a threshold Γj,li , which equals

Γj,li =

{
1

χli
(γii − χli(1 +

∑
k∈D\{i,j} γkiΘj,t)), if j �= i,

χli(1 +
∑

k∈D\{i} γkiΘj,t), if j = i,

(13)

while the other (virtual) SNR values in the set {γki}k∈{i}⋃Jt

remain unchanged. The probability of event Ej can be calcu-
lated as

Pr.(Ej) =

∫
· · ·

∫
Nj(Γj,li)Δt

∏
k∈{i}⋃Jt\{j}

f(γki)dγki,

(14)
where Nj(Γ), j = 1, . . . , D is the level crossing rate of the
(virtual) SNR γji at Γ, which is the expected number of times
per second the (virtual) SNR γji passes downward (or upward)
across the threshold Γ, and can be calculated according to the
Doppler shift fm and the normalized threshold Γ/γ̄ji [19].

Proof: Due to the equivalence between the SINR region
[χ(li−1), χli) and the (virtual) SNR region Υli when the
channel state Hi,t = li, (li = 1, . . . , L), the SINR value
of link i crosses downward the threshold χli if and only
if the (virtual) SNR vector �γi passes across the hyperplane
γii−χli

∑
j∈D\{i} γjiΘj,t = χli from the convex polyhedron

Υli+1 to Υli in a small interval Δt. Consider a (virtual)
SNR γji for j ∈ {i}⋃Jt, given the values of the rest
of the (virtual) SNR elements in the set {γki}k∈{i}⋃Jt

,
we can derive the (virtual) SNR threshold Γj,li according
to (13) so that if γji crosses downward (or upward) Γj,li

then the (virtual) SNR vector �γi crosses the hyperplane
γii −χli

∑D
j=1,j �=i γjiΘj,t = χli from the convex polyhedron

Υli+1 to Υli . Since Nj(Γ)Δt is the probability that the
(virtual) SNR γji passes downward (or upward) across the
threshold Γ in a small interval Δt, and the values of the rest
of the (virtual) SNR elements in the set {γki}k∈{i}⋃Jt

can
be taken over the field of non-negative real numbers as long
as Γj,li > 0 with the pdf function f(γki), the probability of
event Ej can be derived as (14).

Note that the probability of multiple simultaneous varia-
tions of the (virtual) SNR elements in the vector �γi in a
small interval Δt are prohibited in the sense that each such
multiple event is of order o(Δt). Therefore, we will find the
SINR value of link i crosses downward the threshold χli , or
equivalently the (virtual) SNR vector �γi crosses the hyperplane
γii−χli

∑
j∈D\{i} γjiΘj,t = χli from the convex polyhedron

Υli+1 to Υli in a time interval Δt, if one of the mutually
exclusive and exhaustive eventualities Ej , j ∈ {i}⋃Jt

occurred.

Example 1: As illustrated in Fig.3 where there are two links
and three channel states of Hi,t, i = 1, 2, we consider the link
1 and assume that {Θ2,t} = {Θ2,t+1} = θv = {1}, i.e., link
1 suffers interference from link 2 in both time slots t and
t+1. SINRi,t crosses downward across threshold χ1 so that
H1,t = 2 and H1,t+1 = 1. This is equivalent to {γ11,t, γ21,t}
crosses across the hyperplane γ11,t

1+γ21,t
= χ1 from Υ2 to Υ1,

which can only happen when γ11,t crosses downward across
threshold a while γ21,t = a/χ1 − 1 remains unchanged or
γ21,t crosses upward across threshold γ21,t = a/χ1 − 1 while
γ11,t = a remains unchanged, where a takes values over the
region [χ1,∞).

According to Theorem 2, we have

NI(χli)Δt =
∑
j∈D

Pr.(Ej). (15)

Let both sides of (15) be divided by Δt, we can derive
the level crossing rate NI(χli) of the SINR value of link i.
Combining (15) with (12), we have
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Fig. 4. Possible transitions of Hi from li into ni when v �= w.

p
(li,li+1)
(θv,θv)

≈
D∑
j=1

∫
· · ·

∫ ∞

0

Nj(Γj,li)ΔT∏
k∈{i}⋃Jt\{j}

f(γki)dγki,

p
(li,li−1)
(θv,θv)

≈
D∑
j=1

∫
· · ·

∫ ∞

0

Nj(Γj,(li−1))ΔT∏
k∈{i}⋃Jt\{j}

f(γki)dγki. (16)

b) When v �= w: the values of {Θj,t}j∈D\{i} and
{Θj,t+1}j∈D\{i} are different during two consecutive time
slots. Therefore, the transition of Hi,t from state li to Hi,t+1

in state ni can be due to not only the variations of the (virtual)
SNR vector {γji}j∈{i}⋃Jt

in time slot t and t+1, but also the
change of interference link set from {Iji}j∈Jt to {Iji}j∈Jt+1 .
Therefore, we can no longer assume that the state transition
of Hi,t can only occur between adjacent states. Given θv and
θw, we find the channel state Hi,t in li and Hi,t+1 in ni,
respectively, if one of the three following (mutually exclusive
and exhaustive) eventualities occurred:

1) that due to (virtual) SNR variations from γ̄i,t to γ̄i,t+1,
we would have found the channel state Hi,t in state li
and Ĥi,t+1 in state li+1 at the beginning of time slot t
and t+ 1, respectively, if the value of {Θ̂j,t+1}j∈D\{i}
remains unchanged as {Θj,t}j∈D\{i}, which equals θv;
however, since {Θj,t+1}j∈D\{i} changes to θw at the
beginning of time slot t + 1, Hi,t+1 is in state ni

instead of state li + 1 with the same set of underlying

(virtual) SNR vector values γ̄i,t+1; the multi-transition
path described above is denoted as Hi,t = li →
Ĥi,t+1 = li + 1 → Hi,t+1 = ni;

2) that similar to event 1), except that Ĥi,t+1 = li−1, i.e.,
Hi(t) = li → Ĥi,t+1 = li − 1 → Hi,t+1 = ni;

3) that similar to event 1), except that Ĥi,t+1 = li, i.e.,
Hi(t) = li → Ĥi,t+1 = li → Hi,t+1 = ni.

Example 2: As illustrated in Fig.4 where there are two links
and three channel states of Hi,t, i = 1, 2, we consider the link
1 and assume that {Θ2,t} = θv = {0} and {Θ2,t+1} = θw =
{1}, i.e., link 1 suffers no interference from link 2 in time slot
t, but it receives interference in time slot t+ 1. We consider
that H1,t is in state 3 and H1,t+1 is in state 1 as shown in the
upper part of Fig.(4) and examine the events that can cause
this to happen as shown in the lower part of Fig.(4), which
maps the SINR regions corresponding to the three states of
H1,t to the (virtual) SNR regions. The solid lines mean that
there is a change in the (virtual) SNR or the queue status,
while the dotted lines mean no change has happened. First,
assume that {Θ̂2,t+1} is unchanged as {Θ2,t} = {0}, and
Ĥ1(t + 1) can transit to the adjacent state 2 or remain in
the same state 3 as H1(t). The (virtual) SNR region �γ1,t+1

corresponding to both states are shown in Fig.(4) as light gray
and medium gray areas. Second, since {Θ2,t+1} is {1} instead
of {0}, H1,t+1 is in state 1 instead of state 2 or state 3, and its
corresponding (virtual) SNR region �γ1,t+1 falls in the region
surrounded by the bold lines, i.e., the overlapping regions of
the horizontal stripped area with the light gray and medium
gray areas. The multi-transition paths of the above two events
are H1,t = 3 → Ĥ1,t+1 = 3 → H1,t+1 = 1 and H1,t = 3 →
Ĥ1,t+1 = 2 → H1,t+1 = 1.

Therefore, we have

p
(li,ni)
(θv,θw) =p

(li,li+1)
(θv,θv)

× p̂ni

(li+1,θv,θw) + p
(li,li−1)
(θv,θv)

× p̂ni

(li−1,θv,θw)

+ p
(li,li)
(θv,θv)

× p̂ni

(li,θv,θw), (17)

where p
(li,li)
(θv,θv)

(resp. p
(li,li+1)
(θv,θv)

, p
(li,li−1)
(θv,θv)

) is the conditional

joint probability that Hi,t is in state li and Ĥi,t+1 is in
state li (resp. li + 1, li − 1), given that {Θ̂j,t+1}j∈D\{i} =
{Θj,t}j∈D\{i} = θv , whose value can be derived from (16).
On the other hand, p̂ni

(li,θv,θw) (resp. p̂ni

(li+1,θv,θw), p̂
ni

(li−1,θv,θw))
represents the conditional probability that Hi,t+1 is in state ni,
given that {Θ̂j,t+1}j∈D\{i} = θv , Ĥi,t+1 is in state li (resp.
li + 1, li − 1), and {Θj,t+1}j∈D\{i} = θw, i.e.,

p̂ni
(li,θv ,θw) =Pr.{Hi(t+ 1) = ni|Ĥi(t+ 1) = li, {Θ̂j,t+1}j∈D\{i}

= θv, {Θj,t+1}j∈D\{i} = θw}. (18)

Given that Ĥi(t + 1) = li and {Θ̂j,t+1}j∈D\{i} =
θv , the (virtual) SNR vector �γi,t+1 belongs to the convex
polyhedron Υli := [�γi|γii − χ(li−1)

∑
j∈D\{i} γjiΘ̂j,t+1 ≥

χ(li−1), γii − χli

∑
j∈D\{i} γjiΘ̂j,t+1 < χli , �γi ≥ 0}. Sim-

ilarly, given Hi(t + 1) = ni and {Θj,t+1}j∈D\{i} =
θw, �γi,t+1 also belongs to the convex polyhedron Υni :=
{�γi|γii − χ(ni−1)

∑
j∈D\{i} γjiΘj,t+1 ≥ χ(ni−1), γii −

χni

∑
j∈D\{i} γjiΘj,t+1 < χni , �γi ≥ 0}. Therefore, the
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(virtual) SNR vector �γi,t+1 should belong to the convex
polyhedron Υli

⋂
Υni , and

p̂ni

(li,θv,θw) =
p̂li,ni

(θv,θw)

pli+1
θv

, (19)

where

p̂
(li,ni)
(θv,θw) =Pr.{Ĥi(t+ 1) = li, Hi(t+ 1) = ni|

{Θ̂j,t+1}j∈D\{i} = θv, {Θj,t+1}j∈D\{i} = θw}
=

∫
Υli

⋂
Υni

f(�γi,t+1)d�γi,t+1, (20)

pli+1
θv

= Pr.{Ĥi(t+ 1) = li|{Θ̂j,t+1}j∈D\{i} = θv}. (21)

The denominator of (19) can be derived according to (11).
Similar to (10), the numerator of (19) is also the integration of
a multivariate exponential over a convex polyhedron according
to (20). However, since

γii ∈
[
max{lb(li,Ji,t), lb(ni,Ji,t+1)},
min{ub(li,Ji,t), ub(ni,Ji,t+1)}

]
, (22)

the integration limits of γii cannot be written as affine func-
tions of γji, j ∈ D\{i}. Since integration over an arbitrary
convex polyhedron is a non-trivial problem, and it has been
shown that computing the volume of polytopes of varying
dimension is NP-hard, we present a relatively simple method
to calculate the integration of (20) in the appendix A.

Similar to (19), we can derive the values of pni

(li+1,θv,θw)

and pni

(li−1,θv,θw). Taking these values into (17), we can derive

the value of p
(li,ni)
(θv,θw) when v �= w.

Now we have derived both the values of the denominator
(by (11)) and numerator (by (16) when v = w and by (17)
when v �= w) in (6), we can finalize the calculation of
pni

(li,θv,θw) and thus pni

(li,�k,�h)
.

Finally, we have

p�n
(�l,�k,�h)

=
D∏
i=1

pni

(li,�k,�h)
. (23)

C. Steady-State Probability of Markov chain { �Ht, �Qt}
Define the transition probability matrix P = [p

(�n,�h)

(�l,�k)
] and

the steady-state probability matrix π = [π�l,�k], where π�l,�k ≡
limt→∞ Pr.{ �Ht = �l, �Qt = �k}. Each element of the transition
probability matrix P can be derived from (3) combining with
(5) and (23).

Theorem 3: The stationary distribution of the Markov chain
( �Ht, �Qt) exists; π is unique, and π > 0.

Theorem 3 is proved in Appendix B. Then, the stationary
distribution of the ergodic process { �Ht, �Qt} can be uniquely
determined from the balance equations

π = πP, πe = 1. (24)

where e is the unity vector of dimension (L × (K + 1))D

and π can be derived as the normalized left eigenvector of P
corresponding to eigenvalue 1.
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Fig. 5. The DSPN Model of FR strategy. (a) The service process in SPN,
(b) The queue process in DSPN.

IV. MODEL DECOMPOSITION AND PERFORMANCE

APPROXIMATION USING DSPN

A. The DSPN Model

The analytical method in the previous section for the multi-
user system faces the challenge of the exponentially enlarged
state space, which makes it unacceptable for a large number
of links. Since directly solving the queuing model suffers the
high computational complexity, in this section, we formulate
the SPN model of the above queuing system and use the model
decomposition and an iteration procedure of SPN to simplify
the analysis.

The (2 × D)-dimensional discrete-time Markov chain
{( �Ht, �Qt), t = 0, 1, ...} can be seen as a sampled-time Markov
chain of a continuous-time semi-Markov process sampled at
every ΔT interval, while the continuous-time semi-Markov
process can be modeled as a Deterministic Stochastic Petri
Nets (DSPN). The DSPN consists of a SPN for representing
service processes and a DSPN for representing queuing pro-
cesses. The SPN, as shown in Fig.5(a), is composed of D
subnets and each subnet i corresponds to the L-state Markov
modulated service process of link i. Each subnet is described
by places ({hil}Ll=1) and transitions {tr(l,n)i }Ll,n=1

l�=n

. The DSPN,

as shown in Fig. 5(b), models the queuing behavior of the
links and can be characterized by places {qi}i∈D, and transi-
tions {ci}i∈D , {si}i∈D. The meanings of all the places and
transitions are described as follows.

hil: a place for the l-th channel state of link i.
tr

(l,n)
i : exponentially-distributed timed transitions for the

channel state transitions of link i. When tr
(l,n)
i

fires, the channel state transits from l to n. The
firing rate of tr

(l,n)
i can be derived as ρ

(l,n)
i =

pn
(l,�k,�h)

/ΔT , where pn
(l,�k,�h)

can be obtained by (6).

Therefore, ρ(l,n)i depends on the queue states of the
other links before and after hil transits to hin, i.e.,
whether M(qj), (j ∈ D\{i}), is equal to or larger
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than zero, where M(·) is a mapping function from
a place to the number of tokens assigned to it. Note
that transitions from any channel state hil, l ∈
{1, . . . , L} to any other channel states hin, n ∈
{1, . . . , L}\{i} are possible as proved in Lemma
1.

qi: a place for the queue state of link i.
ci: an exponentially-distributed timed transition de-

noting new packet arrivals from link i, with firing
rate λi. When it fires, one packet arrives at the
queue place qi.

si: a deterministic timed transitions for service pro-
cess. When it fires, one packet is transmitted from
the queue place qi. Its firing rate μi depends on
the marking of the places {hil}Ll=1, i.e.,

μi = �RlΔT

B
�/ΔT, if M(hil) = 1, l = 1, . . . , L,

(25)
where M(hil) is either 1 or 0, which represents
whether link i is in its l-th channel state or not.

B. Model Decomposition and Iteration

According to [22], the original DSPN can be decomposed
into a set of “near-independent” subnets. By decomposition,
the original multiuser system is represented by D subsystems,
each of which consists of one subnet in Fig. 5(a) and one
subnet in Fig. 5(b). Obviously, if each subsystem can be
analyzed separately, the model decomposition can significantly
reduce the size of the state space in the analysis and achieves
better performance in computational complexity. However,
unfortunately, such model decomposition is not ‘clean’, i.e.,
there exist interactions among subsystems. Specifically, for
any subsystem i ∈ D, the firing rate of transition si depends on
the marking of the places {hil}Ll=1, which in turn depends on
the markings of the queue places qj of those links j ∈ D\{i}.
As a consequence, the markings of all other subsystems have
to be available at the same time in order to solve the i-th
subsystem, which is not possible in the decomposed model. In
order to solve this dilemma, we use the fixed point iteration
method in Stochastic Petri Nets [23]. First, the steady-state
probabilities of the markings instead of the instant markings
of the other subsystems are used as the input of subsystem i in
order to derive its steady-state probabilities of the markings.
Next, fixed point iteration is used to deal with the cycles in
the model solution process.

Let {Hi,t, Qi,t} denote the the sampled-time Markov chain
for the i-th DSPN subsystem. Let πi := [πi

li,ki
] denote the

steady-state probabilities of {Hi,t, Qi,t} , where πi
li,ki

≡
limt→∞ Pr.{Hi,t = li, Qi,t = ki}. In order to derive the
steady-state probabilities πi of subsystem i, we have to first
derive the transition probability matrix Pi = [p

(ni,hi)
(li,ki)

]. First,

phi

(li,ki)
can be derived according to (4). Next, we try to analyze

the transition probability of the channel state from li to ni

given the queue states (ki, hi). According to (6), we can derive
the value of pni

(li,�k,�h)
. However, since only the queue state

(ki, hi) of subsystem i is given instead of (�k,�h), we assume
that the steady state probabilities of all the other subsystems

{πj}Dj∈D\{i} are known and derive the approximate transition
probability p̃ni

(li,ki,hi)
as follows:

p̃ni

(li,ki,hi)
=

∑
{kj}j∈D\{i}∈S ī

Q

{hj}j∈D\{i}∈S ī
Q

pni

(li,�k,�h)

∏
j∈D\{i}

πkj ,hj . (26)

where πkj ,hj ≡ limt→∞ Pr.{Qj,t = kj , Qj,t+1 = hj} is the
joint steady-state probability that the queue length of link j
is kj in time slot t and hj in time slot t + 1. Therefore, we
have,

πkj ,hj =

L∑
lj=1

p
hj

lj ,kj
πj
lj ,kj

, (27)

where p
hj

lj ,kj
can be obtained by (4).

Finally, we have

p̃
(ni,hi)
(li,ki)

= phi

(li,ki)
p̃ni

(li,ki,hi)
, (28)

which gives the transition probability matrix Pi, and the
steady state probabilities πi can be derived similar to (24).

Define xj := {πkj ,hj}Kkj,hj=0. According to (26), the solu-
tion πi for the i-th subsystem can be obtained only when the
measure {xj}j∈D\{i} are known so that the transition matrix
Pi can be derived, and the value of {xj}j∈D\{i} depends
on the solutions of all the other subsystems {πj}j∈D\{i}
according to (27). Obviously, if the D subsystems are solved
sequentially by index, the above requirement cannot be sat-
isfied since only {xj}i−1

j=1 are known when solving the i-th
subsystem. In the following, the fixed point iteration method
is used to solve this problem.

Let {x1, . . . ,xD} be the vector of iteration variables of the
fixed point equation

{x1, . . . ,xD} = z({x1, . . . ,xD}), (29)

where the function z is realized by solving the D subsystems
successively with the subsystem solution method as described
in the previous subsection. That is, the function z can be
decomposed into D independent functions zi, i ∈ D, with
zi representing the derivation of the solution πi from the
measure {x1, . . . ,xD}, and the calculation of the measure xi

as a function z′i of πi according to (27), i.e.,

xi = z′i(πi({x1, . . . ,xD})) (30)

= zi({x1, . . . ,xD}).
Obviously, the vector of measures of the D subsystems
{x1, . . . ,xD} satisfies (29), which is referred to as the fixed
point of this equation.

The fixed point can be derived by successive substitu-
tion [23]. Let the initial vector of iteration variables be
{x0

1, . . . ,x
0
D}. Each element of x0

i (i ∈ D) can be set to
an arbitrary value between 0 and 1. In the u-th iteration, we
have

{xu
1 , . . . ,x

u
D} = z({πu−1

1 , . . . ,πu−1
D }), (31)

where the iteration variables are determined by the func-
tion z based on the values of the last iteration, and the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.



12 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, ACCEPTED FOR PUBLICATION

function z is realized by solving the D subsystems succes-
sively using the solution method as described above. Specif-
ically, in solving the i-th subsystem in the u-th iteration,
{xu

1 , . . . ,x
u
i−1,x

u−1
i , . . . ,xu−1

D } is used as the input to derive
the value of xu

i . After that, xu−1
i is replaced by xu

i as input
in solving the rest of the subsystems (from the (i + 1)-th to
the D-th subsystems) during the u-th iteration.

The iteration is terminated when the differences between the
iteration variables of two successive iterations are less than a
certain threshold value. The convergence of the fixed point
iteration is proved in the Appendix C.

Given π, the performance metrics such as the average queue
length, the mean throughput, the average packet delay and the
packet dropping probability can be derived as in [24].

• The average queue length of link i equals

Qi =

K∑
ki=0

L∑
li=1

πi
li,ki

ki, (32)

where
∑L

li=1 π
i
li,ki

is the probability that Qi,t = ki.
• The mean throughput of link i in terms of packets/s can

be expressed as

T i =

L∑
li=1

K∑
ki=1

Tli,kiπ
i
li,ki

, (33)

where

Tli,ki =

{
� ri,tΔT

B �/ΔT if ki ≥ � ri,tΔT
B �

ki

ΔT if ki < � ri,tΔT
B � (34)

is the service rate of link i in terms of packets/s when
Hi,t = li and Qi,t = ki. It depends on the minimum
value of the channel transmission capability and the
amount of packets in the queue of link i. Note that
the service rate is 0 when queue i is empty (ki = 0).
Therefore, T i is the sum over the whole system state
space of the product between the service rate of link i
in state (li, ki) and the probability that the system is in
state (li, ki).

• The average packet delay of link i can then be calculated
according to Little’s Law as

Di = Qi/T i, (35)

which is the average amount of time between the arrival
and departure of a packet for link i. Note that the mean
throughput T i equals the effective arrival rate of link i,
which is the average rate at which the packets enter queue
i.

• Let Bi
li,ki

be the random variable which represents the
number of dropped packets of link i when Hi,t = li and
Qi,t = ki. Since K + b = Ai,t + max[0, k − � ri,tΔT

B �],
where b is the number of packets dropped during the t-th
slot,

Pr.(Bi
li,ki

= b) = Pr.(Ai,t = K+b−max[0, ki−�ri,tΔT

B
�]).
(36)

Then, the packet dropping probability pid of link i can be
estimated as

pid =
Average # of packets dropped in a time slot

Average # of packets arrived in a time slot

=

∑L
li=1

∑K
ki=0

∑∞
b=0 bPr.(Bli,ki = b)πi

li,ki

λiΔT
. (37)

V. PERFORMANCE EVALUATION

In this section, we verify our analytical model under dif-
ferent interference conditions by tuning the length of the
potential interfering links as shown in Fig.6. We consider
the path loss channel model 28 + 40 log10 d [32] for all the
D2D links and potential interfering links, where d is the
distance between the transmitter and receiver in meter. We
normalize the distance between a transmitter and a receiver
with mean SNR equals 0dB to be 1. The distance between
a transmitter and a receiver of a link is denoted as α. Note
that we do not require the length of the links to be the same
in our analytical model, and this assumption in our network
topology is only to facilitate us to focus on the variation of
the potential interfering link length. Assume that the distances
between the pair of transmitters (resp. receivers) of link i and
i + 1 are β + Δβ(i − 1) (i = 1, . . . , D − 1). Therefore, the
length of the potential interfering link Iji of link i, where

j > i (resp. j < i), is
√
α2 +

(∑j−1
k=i(β +Δβ(k − 1))

)2
(resp.

√
α2 +

(∑i−1
k=j(β +Δβ(k − 1))

)2
). In this way, we

can increase (resp. decrease) the length of all the potential
interfering links of link i by increase (resp. decrease) the value
of β. We add Δβ(i − 1) to β in the distance between the
transmitters of link i and i+1 to ensure that the mean virtual
SNR values γ̄ji and γ̄ki of any two potential interfering links
Iji and Iki (k �= j ∈ D\{i}) of link i are different, as required
in (39).

The FSMC model has 16 states in total, and the SINR
thresholds and the corresponding transmission rates in
1.4MHz bandwidth for each service process are given in Table
II as defined in the LTE system. The carrier frequency f
and the time slot duration ΔT are set to 2GHz and 1ms,
respectively. The velocity of the terminals is set to be 3km/h
so that the Doppler frequency becomes 5.56Hz. We let the
buffer size K = 50 packets, where the packet length B = 50
bits.

We numerically solve the decomposed Markov model using
fixed point iteration and compare the performance measures
with those obtained by discrete-event simulations of a D2D
communications system with dynamic packet arrivals and full
frequency reuse between D2D links. Both numeric method and
simulation are implemented in Matlab and all experiments are
run on 1.93GHz PC with 1.87GHz RAM. We increase the
link number D from 2 to 4 and the state space of Markov
models before and after decomposition are shown in Table III.
In the simulation, we generate Rayleigh fading channels by the
Jakes Model using a U-shape Doppler power spectrum [33]
for every pair of transmitter and receiver. In each simulated
time slot, packets arrive to every queue according to Poisson
distribution with mean λΔT . For those D2D links with non-
empty queues, we derive their respective SINR values in this
time slot according to (2), where the channel gains of the D2D
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TABLE III
STATE SPACE, ITERATIONS, AND RUNTIME WITH DIFFERENT NUMBER OF

D2D LINKS

D State space Iters Runtime (s)

original decomposed Numerics Simulation

2 1.632e3 816 4 18 334 (λ = 1k)

970 (λ = 100k)

3 1.332e6 816 4 25 657 (λ = 1k)

1738 (λ = 100k)

4 1.086e9 816 5 34 1136 (λ = 1k)

2400 (λ = 100k)

1

2

D

1

2

D

... ...

D2D link
interference link

α

β

β β+ Δ

( )2Dβ β+ Δ −

D-1 D-1

...

α

α

α

α

3 3

Fig. 6. The Network Topology. The distance between the transmitter and
receiver of a link is denoted as α. The distance between the pair of transmitters
(resp. receivers) of link i and i+ 1 is β +Δβ(i− 1).

links and interfering links are generated by the Jakes Model.
The corresponding transmission rates for the derived SINR
values in this time slot can thus be derived according to Table
II. The simulations are run over 105 time slots and the time-
average performance measures of every D2D link are obtained.
The simulation runtime is given in Table III which varies with
both packet arrival rate λ and D2D link number D. In the
numerical method, we set the initial steady-state probability
vector πi of every link i to be { 1

(K+1)×L , . . . ,
1

(K+1)×L},
and the initial vector of iteration variables {x0

1, . . . ,x
0
D} can

be derived from (27). The number of iterations and runtime
for convergence are given in Table III. It can be observed that
the runtime for the iterative numerics is much shorter than the
simulation runtime.

Fig.7(a)-7(d) show the mean queue length, mean through-
put, mean delay and dropping probability averaged over all
D2D links with varying arrival rates for D2D communications
systems consisting of different numbers of links D, respec-
tively. We choose α = 0.5, β = 0.3 and Δβ = 0.01. It can be
seen that the numerical results match well with the simulation
results under every configuration. As expected, the system
performance in terms of all the above four measures degrade
with the increasing number of links due to the growing amount
of interference to every link. Fig.7(a) reveals that the mean
queue length increases with the packet arrival rate and reaches
the maximum buffer size 50 when the arrival rate reaches
100k packets/s. The variations of the mean throughput and
dropping probability have a similar trend. Fig.7(b) shows that
the difference in mean throughput when the numbers of links
D are different grows larger with the increasing arrival rate.

This is because the chances that the potential interfering links
have data to transmit grow larger and thus the interference op-
portunities are increased for every link. The increase in mean
throughput becomes insignificant when the arrival rate reaches
100k packets/s for every D. This is not surprising since it
has almost reached the maximum transmission capacity of the
system and the increasing arrival rate only results in increasing
dropping probability. In Fig.7(d), it can be observed that the
dropping probability is related to the maximum transmission
capability of the system. Take D = 4 for example, the
dropping probability reaches approximately 84% when the
arrival rate is 100k packets/s, which means the system is
overload by a factor of 5.2 (i.e., dropping probability/(1-
dropping probability)). On the other hand, Fig.7(b) shows that
the maximum transmission capability or the maximum mean
throughput is 16k packets/s when D = 4, and 100k packets/s
is indeed 5.2 times more than the maximum transmission
capability of the system. Note that even in this saturated case,
the amount of instantaneous interference received by a link
can still be smaller than that under the infinite backlog traffic
model, since the probability that the queue of any other link
being empty cannot be zero as the Markov chain underlying
the queuing system is irreducible. Fig.7(c) shows that the delay
increases sharply when arrival rate increases from 1k packets/s
to 20k packets/s, and then remains roughly the same when
the arrival rate further increases. This is because when the
arrival rate becomes larger than the maximum transmission
capability of the system as discussed above, the system would
have become overload if not for the packet dropping mech-
anism. Therefore, both the mean queue length and the mean
throughput quickly reach their respective maximum values as
revealed by Fig.7(a) and Fig.7(b). By Little’s Law, the mean
delay also remains the same after that.

Fig.8(a)-8(d) show the performance metrics with varying
interference link length, where β ranges from 0.1 to 0.7 and
the values of α and Δβ remain the same as above. The
arrival rate is assumed to be 20K packets/s. The analytical
results and the simulation results are very close, both of
which improve with the increasing interference link length
and decreasing interference from the other links. Note that
when the interference link length is large, the performance
gap between the scenarios with different numbers of links
become small, since the difference in the amount of received
interference is small in these topologies.

In the above numerical and simulation experiments, we
assume that the packets arrive one at a time (as opposed to
arriving in batches) following the Poisson process. However,
we can extend the presented queuing model with the Batch
Bernoulli arrival process by setting Pr.(Ai,t = a) in (4) to
be the probability mass function of a Binomial distribution.
We illustrate the numerical and simulation results with respect
to dropping probability for D2D communications systems
consisting of different numbers D of D2D links under Batch
Bernoulli arrival process in Fig.9 with varying mean packet
arrival rate and in Fig.10 with varying interference link length.
We observe that the numerical results match well with the
simulation results. Moreover, comparisons between Fig.9 and
Fig.7(d) and between Fig.10 and Fig.8(d) show that the
dropping probability under Poisson arrival process and Batch
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(a) mean queue length (b) mean throughput (packets/s)

(c) mean delay (ms) (d) dropping probability

Fig. 7. Performance metrics versus packet arrival rate for D2D communications systems consisting of different numbers D of D2D links (α = 0.5, β = 0.3,
and Δβ = 0.01).

Bernoulli arrival process are quite similar.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have developed a numerical method to
investigate the performance of D2D communications with
frequency reuse between D2D links and dynamic data arrival
with finite-length queuing. The system behavior is formulated
by a coupled processor queuing model, where the service
process is characterized by a FSMC with each state cor-
responding to a certain SINR interval. We first construct
the underlying DTMC of the queuing model and compute
the state transition probabilities of the DTMC to derive its
steady-state distribution. Since the state space of the DTMC
grows exponentially with link number, we next formulate
a DSPN model of the queueing system and use the model
decomposition and iteration techniques in SPN to derive the
approximate steady-sate distribution of the DTMC with low
complexity. Finally, we obtain the performance metrics of
the D2D communications from the steady-state distribution of
the DTMC, whose accuracy has been verified by simulation
results.

In this paper, we focus on the narrowband communications
scenario with flat fading wireless channels. When considering

broadband communications scenario with frequency-selective
fading channels, since the frequency-selective fading channels
can be turned into multiple parallel flat fading channels by the
Orthogonal Frequency Division Multiplex (OFDM) technique,
the channel state space in our FSMC model may grow expo-
nentially with the increasing number of flat fading channels
corresponding to increasing system bandwidth. Therefore, we
will expand our numerical method for frequency-selective
fading channels using colored Stochastic Petri Nets for state
aggregation. Furthermore, since we have provided both numer-
ical methods for the two extreme cases of resource sharing
between D2D links, i.e., full reuse and orthogonal sharing,
we will develop efficient interference management schemes.
In addition, we will study two cases in D2D communications
system without making the assumption that a pair of source
and destination D2D UEs always communicate via the same
direct over-the-air link. The first case is that the D2D UEs
support multi-hop transmission capability. Therefore, since
there can be multiple routes for a flow with a fixed pair of
source and destination UEs, the transmitting node has the
option to select the channel on which the flow should be
transmitted. The second case is when the dynamic D2D mode
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(a) mean queue length (b) mean throughput (packets/s)

(c) mean delay (ms) (d) dropping probability

Fig. 8. Performance metrics versus interference link length for D2D communications systems consisting of different numbers D of D2D links (α = 0.5,
Δβ = 0.01, mean arrival rate is 20K packets/s. Since the length of the potential interfering link Iji of link i, where j > i (resp. j < i) and i, j ∈ D, is√

α2 +
(∑j−1

k=i(β +Δβ(k − 1))
)2 (resp.

√
α2 +

(∑i−1
k=j(β +Δβ(k − 1))

)2), the interference link length varies with β on the x-axis).

selection is considered, where the traffic between a pair of
source and destination D2D UEs can be transmitted either via
the D2D link or via the cellular uplink to the base station and
then relayed via the cellular downlink to the destination UE.
The research on both cases are interesting and challenging.
Although we assume that the packets arrive one at a time
following the Poisson process, only minor revision is needed
to our numerical method if the packets arrive according to the
Batch Bernoulli process as validated by simulation in Section
V. Extension of our numerical method to more sophisticated
arrival processes such as the Batch Markovian arrival process
(BMAP) will be studied. Finally, it is interesting in applying
our numerical method to the performance evaluation of other
dynamic interference scenarios, e.g., wireless networks with
multiple base stations.

APPENDIX

A. Calculation of the integration in (20)

Given {Θ̂j}j∈D\{i} = θv , {Θj}j∈D\{i} = θw and v �= w,
we define Iv

i := {Iji|j ∈ D\{i} : Θ̂j = 1} as the subset of

interfering links Iji with Θ̂j = 1, and Iw
i := {Iji|j ∈ D\{i} :

Θj = 1} as the subset of interfering links Iji with Θj = 1.
Furthermore, we define Ivw

i := Iv
i

⋂ Iw
i , which could be an

empty set ∅. Finally, we define Ivw̄
i := Iv

i \Ivw
i and I v̄w

i :=
Iw
i \Ivw

i , which are the difference of subsets Iv
i and Iw

i and
the difference of subsets Iw

i and Iv
i , respectively. Since Iv

i �=
Iw
i , the relationship between Iv

i and Iw
i can be divided into

the following four mutually exclusive and exhaustive cases, as
shown in Fig.(11):

1) Iv
i = ∅ or Iw

i = ∅, and in both subcases, Ivw
i = ∅;

in the former subcase, we have Ivw̄
i = ∅, while in the

latter subcase, we have I v̄w
i = ∅; in the following three

cases, we implicitly assume that Iv
i �= ∅ and Iw

i �= ∅;
2) Iv

i ⊂ Iw
i or Iw

i ⊂ Iv
i , and in the former subcase, we

have Ivw
i = Iv

i , Ivw̄
i = ∅, while in the latter subcase,

we have Ivw
i = Iw

i , I v̄w
i = ∅;

3) Iv
i

⋂ Iw
i = Ivw

i = ∅, and in this case, we have Ivw̄
i =

Iv
i and I v̄w

i = Iw
i ;

4) Iv
i �⊆ Iw

i , Iw
i �⊆ Iv

i , and Ivw
i �= ∅, and in this case, we

have Ivw̄
i �= ∅ and I v̄w

i �= ∅.
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Fig. 9. Dropping probability versus packet arrival rate for D2D communi-
cations systems consisting of different numbers D of D2D links under Batch
Bernoulli arrival process (α = 0.5, β = 0.3, and Δβ = 0.01).

Fig. 10. Dropping probability versus interference link length for
D2D communications systems consisting of different numbers D of
D2D links under Batch Bernoulli arrival process (α = 0.5, Δβ =
0.01, mean arrival rate is 20K packets/s. Since the length of the po-
tential interfering link Iji of link i, where j > i (resp. j <

i) and i, j ∈ D, is
√

α2 +
(∑j−1

k=i(β +Δβ(k − 1))
)2 (resp.√

α2 +
(∑i−1

k=j(β +Δβ(k − 1))
)2), the interference link length varies

with β on the x-axis).

Denote the index set of Ivw
i as J 1, i.e., Ivw

i = {Iji}j∈J 1 .
Similarly, denote the index sets of Ivw̄

i and I v̄w
i as J 2 and

J 3, respectively. In (19), the integration region of �γi needs to
obey the following constraints.

χ(li−1) ≤ γii
1 +

∑
j∈J 1 γji +

∑
j∈J 2 γji

< χli , (38)

χ(ni−1) ≤ γii
1 +

∑
j∈J 1 γji +

∑
j∈J 3 γji

< χni ,

�γi ≥ 0.

Let γs1 :=
∑

j∈J 1 γji, γs2 :=
∑

j∈J 2 γji, and γs3 :=∑
j∈J 3 γji, which are all sum of independent exponential

random variables. The pdf of γsid, id = 1, 2, 3 has closed
form expression as

fγsid(x) = [
∏

j∈J id

1

γ̄ji
]
∑

j∈J id

exp(−x/γ̄ji)∏
k∈J id\{j}(1/γ̄ki − 1/γ̄ji)

,

(39)

if {γji}j∈J id have pairwise distinct mean γ̄ji.
Remark 1: Since the D2D terminals are randomly dis-

tributed in the cell in practical communications system, the
probability that two D2D links have exactly the same mean
SNR value is small. Therefore, the assumption that {γji}j∈J id

have pairwise distinct mean γ̄ji is reasonable. Even if two
D2D links do have the same mean SNR, we can add a very
small number to one of the SNR to make the two values
different, which will not have much impact on the performance
evaluation results.

Now we try to calculate the integration in (20) under each
of the four cases listed above.

1) Case 1: We consider that Iv
i = ∅, while the subcase of

Iw
i = ∅ can be dealt with by a similar method. In this case,

the polyhedron in (38) is equivalent to

χ(li−1) ≤γii < χli , (40)

χ(ni−1) ≤ γii
1 + γs3

< χni ,

γii ≥ 0, γs3 ≥ 0.

which in turn is equivalent to

χ(li−1) ≤γii < χli , (41)

max{0, γii
χni

− 1} ≤γs3 <
γii

χ(ni−1)
− 1,

2) Case 2: We consider that Iv
i ⊂ Iw

i , while the subcase
of Iw

i ⊂ Iv
i can be dealt with by a similar method. In this

case, the polyhedron in (38) is equivalent to

χ(li−1) ≤
γii

1 + γs1
< χli , (42)

χ(ni−1) ≤
γii

1 + γs1 + γs3
< χni ,

γii ≥ 0, γs1 ≥ 0, γs3 ≥ 0.

which in turn is equivalent to

χ(li−1) ≤γii, (43)

max{0, γii
χli

− 1} ≤γs1 <
γii

χ(li−1)
− 1,

max{0, γii
χni

− γs1 − 1} ≤γs3 <
γii

χ(ni−1)
− γs1 − 1.

3) Case 3: In this case, the polyhedron in (38) is equivalent
to

χ(li−1) ≤ γii
1 + γs2

< χli , (44)

χ(ni−1) ≤ γii
1 + γs3

< χni ,

γii ≥ 0, γs2 ≥ 0, γs3 ≥ 0.

which in turn is equivalent to

max{χ(li−1), χ(ni−1)} ≤γii, (45)

max{0, γii
χli

− 1} ≤γs2 <
γii

χ(li−1)
− 1,

max{0, γii
χni

− 1} ≤γs3 <
γii

χ(ni−1)
− 1.
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Fig. 11. The interfering link set.

4) Case 4: In this case, the polyhedron in (38) is equivalent
to

χ(li−1) ≤ γii
1 + γs1 + γs2

< χli ,

χ(ni−1) ≤
γii

1 + γs1 + γs3
< χni ,

γii ≥ 0, γs1 ≥ 0, γs2 ≥ 0, γs3 ≥ 0. (46)

which in turn is equivalent to

max{χ(li−1), χ(ni−1)} ≤γii,

max{0, γii
χli

− γs1 − 1} ≤γs2 <
γii

χ(li−1)
− γs1 − 1,

max{0, γii
χni

− γs1 − 1} ≤γs3 <
γii

χ(ni−1)
− γs1 − 1,

0 ≤γs1 < min{ γii
χ(li−1)

− 1,
γii

χ(ni−1)

− 1}.
(47)

In all the above cases, we try to have the integration limits
of γii, γs1, γs2, and γs3 as affine functions. Since Case 4 is
the most complex one and the other cases can be considered
as special circumstances of Case 4, we will only discuss
the integration of (20) under Case 4 in details due to space
limitation.

1) If li = ni,

• and if χ(li−1) ≤ γii < χli , we have A1 equals

∫ χli

χ(li−1)

f(γii)dγii

∫ γii
χ(li−1)

−1

0

fγs1(γs1)dγs1∫ γii
χ(li−1)

−γs1−1

0

fγs2(γs2)dγs2

∫ γii
χ(li−1)

−γs1−1

0

fγs3(γs3)dγs3, (48)

• and if γii ≥ χli , γs1 ≥ γii

χli
−1, we have A2 equals∫ ∞

χli

f(γii)dγii

∫ γii
χ(li−1)

−1

γii
χli

−1

fγs1(γs1)dγs1

∫ γii
(χli−1)

−γs1−1

0

fγs2(γs2)dγs2

∫ γii
(χli−1)

−γs1−1

0

fγs3(γs3)dγs3,

(49)

• else if γii ≥ χli , γs1 <
γii

χli
−1, we have A3 equals∫ ∞

χli

f(γii)dγii

∫ γii
χli

−1

0

(50)

2) If li > ni,

• and if χ(li−1) ≤ γii < χli , we have A1 equals∫ χli

χ(li−1)

f(γii)dγii

∫ γii
χ(li−1)

−1

0

fγs1(γs1)dγs1∫ γii
χ(li−1)

−γs1−1

0

fγs2(γs2)dγs2

∫ γii
χ(ni−1)

−γs1−1

γii
χni

−γs1−1

fγs3(γs3)dγs3, (51)

• and if γii ≥ χli , γs1 ≥ γii

χli
−1, we have A2 equals∫ ∞

χli

f(γii)dγii

∫ γii
χ(li−1)

−1

γii
χli

−1

fγs1(γs1)dγs1

∫ γii
χ(li−1)

−γs1−1

0

fγs2(γs2)dγs2

∫ γii
χ(ni−1)

−γs1−1

γii
χni

−γs1−1

fγs3(γs3)dγs3,

(52)
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• else if γii ≥ χli , γs1 < γii

χli
−1, we have A3 equals

∫ ∞

χli

f(γii)dγii

∫ γii
χli

−1

0

fγs1(γs1)dγs1∫ γii
χ(li−1)

−γs1−1

γii
χli

−γs1−1

fγs2(γs2)dγs2

∫ γii
χ(ni−1)

−γs1−1

γii
χni

−γs1−1

fγs3(γs3)dγs3. (53)

3) If li < ni,

• and if χ(ni−1) ≤ γii < χni , we have A1 equals∫ χni

χ(ni−1)

f(γii)dγii

∫ γii
χ(ni−1)

−1

0

fγs1(γs1)dγs1∫ γii
χ(li−1)

−γs1−1

γii
χli

−γs1−1

fγs2(γs2)dγs2

∫ γii
χ(ni−1)

−γs1−1

0

fγs3(γs3)dγs3, (54)

• and if γii ≥ χni , γs1 ≥ γii

χni
−1, we have A2 equals

∫ ∞

χni

f(γii)dγii

∫ γii
χ(ni−1)

−1

γii
χni

−1

fγs1(γs1)dγs1∫ γii
χ(li−1)

−γs1−1

γii
χli

−γs1−1

fγs2(γs2)dγs2

∫ γii
χ(ni−1)

−γs1−1

0

fγs3(γs3)dγs3, (55)

• else if γii ≥ χni , γs1 < γii

χni
−1, we have A3 equals

∫ ∞

χni

f(γii)dγii

∫ γii
χni

−1

0

fγs1(γs1)dγs1∫ γii
χ(li−1)

−γs1−1

γii
χli

−γs1−1

fγs2(γs2)dγs2

∫ γii
χ(ni−1)

−γs1−1

γii
χni

−γs1−1

fγs3(γs3)dγs3.

(56)

Therefore, p̂li+1,ni

(θv,θw) = A1+A2+A3 when li = ni, li > ni,
and li < ni, respectively. Combining (39) with the above
integrations, and after mathematical manipulation, we have:

1) if li = ni,

p̂li,ni

(θv,θw) =
1

γ̄ii
[
∏

j∈J 1

1

γ̄ji
][

∏
j′∈J 2

1

γ̄j′i
][

∏
j′′∈J 3

1

γ̄j′′i
]
∑
j∈J 1∑

j′∈J 2

∑
j′′∈J 3

γ̄j′iγ̄j′′i(F (χ(li−1))− F (χli))∏
k∈J 1\{j}

[
1

γ̄ki
− 1

γ̄ji
]

∏
k′∈J 2\{j′}

[
1

γ̄k′i
− 1

γ̄j′i
]

1∏
k′′∈J 3\{j′′}

[
1

γ̄k′′i
− 1

γ̄j′′i
]
, (57)

where

F (a) =
exp(−a

γ̄ii
)γ̄4

iiγ̄ji(2aγ̄j′iγ̄j′′i + γ̄ii(γ̄j′i + γ̄j′′i))

(γ̄ii + aγ̄ji)(γ̄ii + aγ̄j′i)(γ̄ii + aγ̄j′′i)
×

1

(aγ̄j′iγ̄j′′i + γ̄ii(γ̄j′i + γ̄j′′i))
; (58)

2) if li > ni,

p̂li,ni

(θv,θw) =
1

γ̄ii
[
∏
j∈J 1

1

γ̄ji
][

∏
j′∈J 2

1

γ̄j′i
][

∏
j′′∈J 3

1

γ̄j′′i
]

∑
j∈J 1

∑
j′∈J 2

∑
j′′∈J 3

γ̄j′iγ̄j′′i exp(
1

γ̄j′′i
)∏

k∈J 1\{j}
[
1

γ̄ki
− 1

γ̄ji
]

∏
k′∈J 2\{j′}

[
1

γ̄k′i
− 1

γ̄j′i
]

1∏
k′′∈J 3\{j′′}

[
1

γ̄k′′i
− 1

γ̄j′′i
]
(F ′(χni , χ(li−1))−

F ′(χ(ni−1), χ(li−1))− F ′(χni , χli)

+ F ′(χ(ni−1), χli)), (59)

where

F ′(a, b) =
exp(−b( 1

aγ̄j′′i
+ 1

γ̄ii
))a3γ̄3

iiγ̄jiγ̄
3
j′′i

(γ̄ii + aγ̄j′′i)(aγ̄iiγ̄j′′i + bγ̄j′i(γ̄ii + aγ̄j′′i))

× 1

(bγ̄iiγ̄ji + a(bγ̄jiγ̄j′′i + γ̄ii(γ̄j′′i − γ̄ji)))
(60)

3) if li < ni, p̂li,ni

(θv,θw) can be derived according to (59)
except that χ(ni−1) (resp. χni ) and χ(li−1) (resp. χli)
switch places with each other.

Although we will not discuss the integration of (20) in case
1, 2 and 3 in detail, we will prove the following Lemma, which
will be used in Appendix B for the prove of Theorem 3.

Lemma 1: In Case 1 and Case 2, p̂li,ni

(θv,θw) > 0 for any
li, ni ∈ {1, . . . , L} satisfying li ≥ ni (resp. li ≤ ni) when
Iv
i ⊂ Iw

i (resp. Iw
i ⊂ Iv

i ); In Case 3 and Case 4, p̂li,ni

(θv,θw) > 0

for any li, ni ∈ {1, . . . , L}.
Proof: In order to prove p̂li,ni

(θv,θw) > 0, we need to show
that the integration region Υli

⋂
Υni is non-empty according

to (20).

• In case 1, since (41) defines the integration region when
Iv
i ⊂ Iw

i , we need to verify that for any li, ni ∈
{1, . . . , L} satisfying li ≥ ni, the upper limit of integra-
tion for γs3 is not always smaller than its lower limits
when γii ∈ [χ(li−1), χli). In (41), if li ≥ ni, we have
γii ≥ χ(li−1) ≥ χ(ni−1). Therefore, the upper limits of
integration for γs3, i.e., γii

χ(ni−1)
− 1 is larger than zero

when γii > χ(ni−1), and thus larger than the lower limits
of integration for γs3, i.e., max{0, γii

χni
−1}. The scenario

when Iw
i ⊂ Iv

i can be proved in a similar way.
• In case 2, since (43) defines the integration region when

Iv
i ⊂ Iw

i , we need to verify that for any li, ni ∈
{1, . . . , L} satisfying li ≥ ni, the upper limits of inte-
gration for γs1 and γs3 are not always smaller than their
corresponding lower limits when γii ∈ [χ(li−1),∞). In
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(43), the upper limit of γs1, i.e, γii

χ(li−1)
− 1 is larger

than zero when γii > χ(li−1), and thus larger than the
lower limits of integration for γs1, i.e., max{0, γii

χli
−1}.

Furthermore, since li ≥ ni and γs1 < γii

χ(li−1)
− 1, the

upper limits of integration for γs3, i.e., γii

χ(ni−1)
−γs1−1

is larger than zero, and thus larger than the lower limits
of integration for γs3, i.e., max{0, γii

χni
− γs1 − 1}. The

scenario when Iw
i ⊂ Iv

i can be proved in a similar way.
• In case 3, since (45) defines the integration region, we

need to verify that for any li, ni ∈ {1, . . . , L}, the upper
limits of integration for γs2 and γs3 are not always
smaller than their corresponding lower limits when γii ∈
[max{χ(li−1), χ(ni−1)},∞). In (45), the upper limits of
integration for γs2 and γs3, i.e, γii

χ(li−1)
−1 and γii

χ(ni−1)
−1

are larger than zero when γii > max{χ(li−1), χ(ni−1)},
and thus larger than their corresponding lower limits of
integration, i.e., max{0, γii

χli
− 1} and max{0, γii

χni
− 1}.

• In case 4, since A1, A2 and A3 are all larger than zero
when li > ni, li < ni and li = ni, p̂

li,ni

(θv,θw) = A1+A2+

A3 > 0 for any li, ni ∈ {1, . . . , L}.

B. Proof of Theorem 3

We first prove the following lemmas.
Lemma 2: The Markov chain ( �Ht, �Qt) is irreducible, if

K ≤ RLΔT .
Proof: We can prove Lemma 2 by showing that for each

transition from state (�l,�k) to (�n,�h), there exists a multi-
transition path with non-zero probability, which is denoted
as (�l,�k) −→ (�n,�h). Now we shall verify the following cases:

1) (�l,�k) −→ (�l∗, �k), for any �l∗ = {l∗i ∈ {1, . . . , L} :
Rl∗i ΔT ≥ ki}i∈D.

• First, we will prove that p
{li+1}i∈D
(�l,�k,�k)

> 0,

p
{li−1}i∈D
(�l,�k,�k)

> 0 and p
�l
(�l,�k,�k)

> 0. From (23), we only

need to prove that p(li+1)

(li,�k,�k)
> 0, p(li−1)

(li,�k,�k)
> 0, and

pli
(li,�k,�k)

> 0. According to Theorem 1, this is equiv-

alent to proving that p(li+1)
(li,θv,θv)

> 0, p(li−1)
(li,θv,θv)

> 0,

and pli(li,θv,θv) > 0, where �k ∈ SQi × S ī
θv

. This

is true from (6), since pliθv > 0, and we have

p
(li,li+1)
(θv,θv)

> 0, p(li,li−1)
(θv,θv)

> 0, and p
(li,li)
(θv,θv)

> 0 based
on (16).

• Then, we will prove that p
�k
�l,�k

> 0. Since Ai,t =

ki −max[0, ki − RliΔT ] ≥ 0, we have pki

li,ki
> 0

from (4) and p
�k
�l,�k

> 0 from (5).

• Therefore, we have p
({li+1}i∈D ,�k)

(�l,�k)
> 0,

p
({li−1}i∈D ,�k)

(�l,�k)
> 0 and p

(�l,�k)

(�l,�k)
> 0 from (3),

and there exists a multi-transition path from (�l,�k)
to (�l∗, �k) as (�l,�k) → ({li + 1}i∈D, �k) →
. . . → ({l∗i − 1}i∈D, �k) → (�l∗, �k) or
(�l,�k) → ({li − 1}i∈D, �k) → . . . →
({l∗i + 1}i∈D, �k) → (�l∗, �k), where the probability
of each transition is non-zero.

2) (�l∗, �k) −→ (�l∗,�h).

• First, we will prove that p
�h
�l∗,�k

> 0. Since Ai,t =

hi −max[0, ki − Rl∗i ΔT ] ≥ 0 when Rl∗i ΔT ≥ ki,

we have phi

l∗i ,ki
> 0 from (4) and p

�h
�l∗,�k

> 0 from
(5).

• Then, we will prove that p
�l∗
�l∗,�k,�h

> 0. From (23),

we only need to prove that pl
∗
i

(l∗i ,�k,�h)
> 0. According

to Theorem 1, this is equivalent to proving that
p
l∗i
(l∗i ,θv,θw) > 0, where �k ∈ SQi × S ī

θv
and �h ∈

SQi ×S ī
θw

. Since πl∗i |θv > 0 and from (6), we need

to prove that pl
∗
i ,l

∗
i

(θv,θw) > 0. According to (17), since

we have proved that p(l
∗
i ,l

∗
i +1)

(θv,θv)
> 0, p(l

∗
i ,l

∗
i −1)

(θv,θv)
> 0,

and p
(l∗i ,l

∗
i )

(θv,θv)
> 0 in the above discussion, we only

need to show that at least one of three probabilities
p̂li(l∗i +1,θv,θw), p̂

l∗i
(l∗i −1,θv,θw), and p̂

l∗i
(l∗i ,θv,θw) is non-

zero. From Lemma 1, we have p̂
l∗i
(l∗i ,θv,θw) is always

non-zero irrespective of the relationship between θv
and θw. Therefore, we can prove that p�l

∗
�l∗,�k,�h

> 0.

• Therefore, the transition from (�l∗, �k) to (�l∗,�h) has
non-zero probability from (3).

3) (�l∗,�h) −→ (�n,�h). The proof is the same with (1).

Combining (1), (2) and (3), we can prove that there exits
a multi-transition path with non-zero probability from state
(�l,�k) to (�n,�h), i.e, (�l,�k) −→ (�l∗, �k) → (�l∗,�h) −→ (�n,�h),
where Rl∗i ΔT ≥ ki. Since K ≤ RLΔT , there always exists
such l∗i that satisfies this condition.

Lemma 3: The Markov chain ( �Ht, �Qt) is homogeneous and
positive recurrent, if K ≤ RLΔT .

Proof: Since the transition probability matrix P is inde-
pendent of the time slot t, the Markov chain is homogeneous
[34]. From Theorem 3.3 in [34], ( �Ht, �Qt) is positive recurrent,
since it has finite state space (L×(K+1))D and is irreducible
from Lemma 2.

From Theorem 3.1 in [34], Theorem 3 is valid if and only
if the Markov chain ( �Ht, �Qt) is irreducible, homogeneous and
positive recurrent, which have been proved in Lemma 2 and
Lemma 3.

C. Convergence of the fixed point iteration

According to Theorem 2 in [23], in order to prove the
convergence of the fixed point iteration for the decomposed
DSPN model as described in (17), it is sufficient to show that
the following lemma is true.

Lemma 4: The Markov chain (Hi,t, Qi,t) corresponding to
the ith subsystem in the decomposed model is irreducible, if
K ≤ RLΔT .

Proof: Similar to the proof of Lemma 2, we can prove
Lemma 4 by showing that for each transition from state
(li, ki) to (ni, hi), there exists a multi-transition path with
non-zero probability, which is denoted as (li, ki) −→ (ni, hi).
Comparing Lemma 4 with Lemma 2, we can prove that there
is a multi-transition path (li, ki) −→ (l∗i , ki) → (l∗i , hi) −→
(ni, hi), where Rl∗i ΔT ≥ ki, if we prove that p̃li+1

(li,ki,ki)
> 0,

p̃li−1
(li,ki,ki)

> 0, p̃li(li,ki,ki)
> 0 and p̃

l∗i
(l∗i ,ki,hi)

> 0. This is true
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by (26), since we have proved that p(li+1)

(li,�k,�k)
> 0, p(li−1)

(li,�k,�k)
> 0,

pli
(li,�k,�k)

> 0, and p
l∗i
(l∗i ,�k,�h)

> 0 in Lemma 2, and we also

have πkj ,hj ≥ 0 for any kj , hj ∈ SQj , j ∈ D\{i} and∑
{kj}j∈D\{i}∈S ī

Q

{hj}j∈D\{i}∈S ī
Q

∏
j∈D\{i} πkj ,hj = 1.
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