
WIRELESS COMMUNICATIONS AND MOBILE COMPUTING
Wirel. Commun. Mob. Comput. 2013; 13:1337–1352

Published online 23 August 2011 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/wcm.1182

RESEARCH ARTICLE

OUR: Optimal Update-based Replacement policy for
cache in wireless data access networks with optimal
effective hits and bandwidth requirements
Mursalin Akon, Mohammad Towhidul Islam, Xuemin (Sherman) Shen* and Ajit Singh

Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1

ABSTRACT

In mobile wireless data access networks, remote data access is expensive in terms of bandwidth consumption. An efficient
caching scheme can reduce the amount of data transmission, hence, bandwidth consumption. However, an update event
makes the associated cached data objects obsolete and useless for many applications. Data access frequency and update
play a crucial role in deciding which data objects should be cached. Seemingly, frequently accessed but infrequently
updated objects should have higher preference while preserving in the cache. Other objects should have lower preference
or be evicted, or should not be cached at all, to accommodate higher-preference objects. In this paper, we proposed Optimal
Update-based Replacement, a replacement or eviction scheme, for cache management in wireless data networks. To facili-
tate the replacement scheme, we also presented two enhanced cache access schemes, named Update-based Poll-Each-Read
and Update-based Call-Back. The proposed cache management schemes were supported with strong theoretical analysis.
Both analysis and extensive simulation results were given to demonstrate that the proposed schemes guarantee optimal
amount of data transmission by increasing the number of effective hits and outperform the popular Least Frequently Used
scheme in terms of both effective hits and communication cost. Copyright © 2011 John Wiley & Sons, Ltd.

KEYWORDS

wireless data access; cache; replacement scheme; access scheme; data update

*Correspondence

Xuemin (Sherman) Shen, Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada,
N2L 3G1.
E-mail: xshen@bbcr.uwaterloo.ca

1. INTRODUCTION

Extraordinary advances in computing electronics and wire-
less communications promise flexibility to our daily lives.
Traditional cellular devices have been mostly used for
voice communication, whereas digital organizer devices
have been for storing details about personal contacts
and schedules. In contrast, modern mobile devices, such
as smartphones, personal digital assistants, and other
handheld computers, and deployed high-bandwidth 3G
(and expected 3.5G and 4G) cellular networks and wire-
less LANs create the platform for ubiquitous mobile
computing. These technologies have made many nec-
essary and entertaining mobile IP-based applications
possible. Mobile IP telephony, mobile TV, video on
demand, video conference, tele-medicine, instant messag-
ing, mobile online banking, stock market tracking, online
multiplayer games are examples of such applications.

Online social networking, such as Facebook [1], Qzone [2],
MySpace [3], and Twitter [4]; video sharing sites, such as
YouTube [5] and Youku [6]; and image and file hosts, such
as SkyDrive [7], Flickr [8], Picasa [9], Photobucket [10],
and Dropbox [11] have changed the way people communi-
cate and store their multimedia and other documents. These
applications and services consume so much bandwidth,
burdening the communication infrastructures, that the ser-
vice providers have no choice but to look for alternate
methodologies and user incentive mechanisms [12–14]. As
prices of advanced mobile devices become more affordable
and more users subscribe for wireless data access services,
the problem of bandwidth is simply going to be worse.

In a mobile information retrieval system, databases and
files are hosted at remote servers, conventionally connected
on the wired networks. Each database or file server hosts a
number of objects made available to be accessed by the
mobile users. Obviously, whenever a mobile user accesses

Copyright © 2011 John Wiley & Sons, Ltd. 1337

Optimal Update-based Replacement policy for cache M. Akon et al.

a data object from the remote server, all the communica-
tions have to pass through the wireless network. Despite
the advancements in wireless technologies, wireless band-
width is the most scarce and the most expensive resource in
a wireless data network. A client has to be very economic
about the bandwidth consumption and make the best effort
towards higher utilization. Many applications adaptively
adjust the quality of service depending on the network
state. For example, a mobile Internet browser may retrieve
images whose quality is adjusted to the available band-
width. However, developing such network-aware applica-
tions is not trivial [15]. Many applications can reduce
bandwidth consumption by caching recurrently accessed
objects locally. Note that, cache-oriented solutions are
not orthogonal for developing network-aware applications,
rather, in most cases, cache can be deployed irrespective of
network awareness.

Caching contributes in three ways to improve the perfor-
mance of the data access applications and the network sys-
tems. Firstly, the average access latency is reduced as many
data objects are delivered from the local cache, instead of
fetching from the remote server. Secondly, without cache at
each access, an object has to be fetched from the server and
the object has to be passed through the network from the
server to the client; thus, caching reduces the network load.
Reduced network load decreases the cost of data access,
and it is a very important design goal for most of the wire-
less applications. Thirdly, as the server gets fewer request
from a client, the server becomes more scalable without
additional computing and network resources. An interest-
ing side effect of employing cache is that, by cutting down
the number of communication transmissions, caching not
only salvage on expensive wireless access but also saves
power and prolongs battery life.†

A cache mechanism needs to address several aspects,
and two of these aspects are related to our problem
domain—(1) a cache access and (2) a replacement scheme.
A cache access scheme describes two important jobs of a
cache mechanism—(1) how a client and a server utilize
the cache and (2) how consistency between the original
data items at the server and copies at the client caches is
maintained. In a distributed environment, the second task is
often very complicated and termed as cache consistency or
invalidation scheme, if investigated from data consistency
or data invalidation perspective, respectively.

For many applications, the existence of a more recent
update renders all older copies of the data object invalid.
These applications must have access to the most recent
updated data. This kind of consistency is called the latest
value consistency [17,18], and a cache, satisfying the latest
value consistency, is said to be strongly consistent [17,19].

†It is worth noting that transmission over wireless data network con-

sumes a good amount of power [16]. However, reducing power con-

sumption is not the main focus, but is an attractive by-product of

this research.

With the latest value consistency requirement, when a data
object is updated, all the cached copy becomes obsolete
and cannot be used to serve application requests. In this
case, a client has to retrieve the data item from the server.
Several strongly consistent cache consistency schemes for
wireless data access have been proposed, such as Invalida-
tion Report (IR) schemes [17,20–27], Poll-Each-Read [19],
and Call-Back [19,26,28].

The other aspect of a cache mechanism, the replace-
ment scheme, comes into play when the cache is full
and an accessed object has to be accommodated. Here,
one or more cached objects may have to be evicted to
make room for the newly arrived object. Most research
works have considered Least Recently Used (LRU)
[17,19–22,25–27,29,30] or Least Frequently Used (LFU)
[31] replacement schemes for wireless data access. Note
that, a cache mechanism may perform differently with dif-
ferent combinations of access and replacement schemes;
therefore, a system developer has to be prudent in choosing
the appropriate replacement and access schemes.

In this paper, we study two strongly consistent cache
access and an update-oriented replacement schemes for
wireless data networks, spanned over more than one
wireless cell. Our main contributions are of three folds:
we introduce Update-based Poll-Each-Read (UPER) and
Update-based Call-Back (UCB) access schemes, which
are tailored to provide both access and update histo-
ries to the replacement schemes; we propose Optimal
Update-based Replacement (OUR), a replacement scheme,
based on the idea of giving preference to frequently
accessed but infrequently updated data objects while
storing objects in the cache; and we analytically prove
that our replacement scheme, combined with the access
schemes, ensures the worst-case optimal performance. As
a result, this research provides the upper boundary for
the worst-case performance of any caching scheme and
a benchmark for average-case performance comparison.
The design goals of the proposed scheme are to increase
the effective hit ratio and to reduce transmission cost (i.e.,
bandwidth consumption) over the wireless cellular net-
works. Simulations are performed to validate our proposals
and claims.

The remainder of the paper is organized as follows.
We present our system model, related works, and perfor-
mance metrics in Section 2. The UPER and the UCB cache
access and our cache replacement schemes are introduced
in Section 3. Quantitative analysis with an analytical model
is provided in Section 4. Performance evaluations and com-
parisons are presented in Section 5. We conclude the paper
in Section 6.

2. BACKGROUND

In this section, we discuss our system model followed
by important related works. We fold up the section by
describing the design goals and performance metrics.

1338 Wirel. Commun. Mob. Comput. 2013; 13:1337–1352 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm

M. Akon et al. Optimal Update-based Replacement policy for cache

Figure 1. A wireless cellular network for data access. MSC, mobile switching center; MS, mobile station; BS, base station;
PSTN, public switched telephone network.

2.1. System model

Our system model is based on the wireless data networks,
already available in the consumer market [32]. In these
networks, service areas are divided into a number of loca-
tion areas (LAs). An LA is further partitioned into a num-
ber of cells. Each cell has a base station (BS). Many mobile
stations (MSs) reside in a service area, and each of them
connects to the closest BS. All the BSs within one LA
are connected to a mobile switching center (MSC). All the
MSCs are finally connected to the public switched tele-
phone network. Such a network is connected to the Internet
in different ways, such as through proprietary networks
of the wireless carriers or the public switched telephone
network. A mobile terminal accesses data servers residing
either in the service provider’s network or in the Inter-
net through its associated BS. Figure 1 shows a wireless
cellular network for data access. Typically, wireless links
exist only between MSs and corresponding BSs, and in this
wireless cellular network, MSs host client applications.‡

A client on an MS may use a cache to improve its per-
formance. Each client manages its own cache. However,
the data servers also participate in improving the perfor-
mance of the client caches. Note that, in our model, we
keep the wireless cellular network infrastructures, that is,
the network of BSs, MSCs, and gateways, unchanged. We
are motivated to take this route because modifications to
the wireless cellular network infrastructures are extremely
expensive. Besides, if caches are implemented at the BSs or
MSCs, whenever an MS switches from one BS to another
or one MSC to another, the cache or cache-related data

‡In the rest of the paper, we use the terms MS, client (application), and

user interchangeably.

is also required to be moved, resulting in significant over-
head. When each MS maintains its own cache, the perfor-
mance of cache at an MS is not influenced by intracell or
intercell or LA mobility. In this research, we consider that
proper transmission schedules, channel condition track-
ing, error and flow control are performed by lower com-
munication layers, and a client focuses on lowering soft
bandwidth—the amount of data the client requests to and
from the lower layers to transmit and receive, respectively.

2.2. Related works

Significant works have been done on caching in wired
environment. As bandwidth in wired environment is aban-
doned, many researches concentrate on faster data retrieval
by using cache rather than focusing on bandwidth con-
sumption. In [33,34], a scheme to prefetch and cache
streaming multimedia segments to be played in the near
future are proposed. The application behavior in streaming
multimedia is mostly deterministic, where data is accessed
in sequence. In [35], alternates to distributed hash table
are proposed to cache indices among a group of peers in a
distributed manner. These techniques enable fast and effi-
cient query processing in structured peer-to-peer networks.
However, in this application, cache buffer is considered to
be ample, and cache overflow is not considered to happen.
In [36,37], a collaborative scheme is presented to share
file/disk caches among network workstations. These works
assume availability of direct unicast and broadcast com-
munications among cache entities. However, such features
are not available in our system model; hence, the presented
collaborations are not directly applicable. In [38], a cache
management scheme for wireless networks is proposed.

Wirel. Commun. Mob. Comput. 2013; 13:1337–1352 © 2011 John Wiley & Sons, Ltd. 1339
DOI: 10.1002/wcm

Optimal Update-based Replacement policy for cache M. Akon et al.

This scheme performs better or worse than LFU depending
on access frequencies and patterns. Moreover, this scheme
is not supported by any analytical model.

In wireless data access, update process plays an impor-
tant role because it makes the locally cached data objects
invalid. Thus, it is beneficial for a replacement scheme to
utilize update and access information together. The studies
in [19] investigates LRU as the replacement scheme with-
out considering the effects of the update process. Although
other researches [39,40] have proposed to utilize update
information in replacement schemes, the main concentra-
tion was to reduce the stretch§ [41] of the IR. It is impor-
tant to understand that IR schemes perform well under
the following assumptions: (1) the channel is a broad-
cast channel, (2) all the clients are in one wireless cell,
and (3) the server is local to the wireless cell, that is,
located at the BS. For example, if clients are in differ-
ent wireless cells, the IR schemes become very expensive,
because IR reports include too much information that is
irrelevant to clients in different wireless cells [19]. In a
practical wireless cellular network, not all of the men-
tioned assumptions are satisfied. In other words, the server
is more likely to be at a remote site, subscribed clients are
scattered all over the wireless cellular network or even in
remote networks, and the entire network is not covered by
a single broadcast channel. Furthermore, a suitable imple-
mentation of an IR scheme requires cross layer support for
efficiency; hence, IR schemes are not realistic in practi-
cal wireless cellular networks. LRU [17,20–22], LFU [31],
and Most Recently Used [42] cache replacement schemes
are extensively studied particularly in the domain of oper-
ating systems, databases, and Web caches. It has been
shown that for online data objects, LFU provides superior
performance [43].

2.3. Performance metrics

The goals of our replacement scheme is to increase the
effective hit ratio and to reduce the communication cost.
When an access takes place, either a cache hit or a cache
miss happens. A cache miss is an event where the accessed
data object is not in cache. A cache hit is an event where
a cached data item is accessed. Cache hit can be further
classified into valid cache hit and invalid cache hit. Given
that the cached object is the most recent version, that is, the
object has not been updated because it has been cached, a
valid cache hit takes place. Otherwise, the access results
in an invalid cache hit. Effective hit ratio is the ratio of
a valid cache hit over all accesses. While measuring cost,
we focus on bandwidth consumption—the amount of data
transmitted to and from an MS to satisfy data requests from
the applications.

§Stretch is defined as the ratio of average response time to service time,

where service time is the response time as if there exists no other job

in the system.

3. PROPOSED SCHEME

In this section, we first present the notations and prim-
itives used in this paper. Then, we introduce the UPER
and UCB cache access schemes. We describe the pro-
posed update-oriented replacement scheme at the end of
this section.

3.1. Notations

Before describing the cache scheme, we introduce several
key terms, used in the following discussions.¶ Let the num-
ber of distinct and equal size objects hosted by the server
be N . The hosted objects are identified as Oi , where i D
1; : : : ; N . In case the objects are not of the same size, we
consider that they are broken down into fixed-size smaller
pieces.|| In our problem domain, object updates happen at
the server only. Let the maximum number of objects an MS
can locally cache be K.

Let �i ;j .t/ be the access frequency of data item j at
client i and �j .t/ be the update frequency of data item j

at the server up to time t . Note that �i ;j .t/ is maintained
for each client, and �j .t/ is an aggregated measurement
and does not involve any client. We denote �i ;j and �j as
the expected access rate at client i and the expected update
rate at the server for data item j , respectively. When t is
sufficiently large, �i ;j .t/ approaches to access rate �i ;j
and �j .t/ to �j . Formally, �i ;j D limt!1 �i ;j .t/ and

�j D limt!1 �j .t/. We denote �D
PN
iD1 �i as total

access rate. Similarly, we denote �D
PN
iD1 �i as the total

update rate.

3.2. Primitives

The proposed UPER and an UCB cache access schemes are
spawned from the Poll-Each-Read and Call-Back access
schemes, respectively, to integrate both update and access
information when the cache is accessed or updated. Subse-
quently, our replacement scheme employs the update and
access information to ensure the optimum performance.
To describe our access schemes, we use the following
primitives:

add(data): Add data object to the local cache.
evict(id): Evict the local object with identification—id.
replace(data): Overwrite local older copy of data object
with a newer one.
modify(profile): Depending on schemes in place,
access-related and update-related profiles per objects
and per client are maintained. Each profile keeps access
and/or update frequencies of the hosted objects and may

¶We continue to use the same notations introduced in previous research

publications.
||In literature, this idea is often reflected through depth of a cache block.

1340 Wirel. Commun. Mob. Comput. 2013; 13:1337–1352 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm

M. Akon et al. Optimal Update-based Replacement policy for cache

contain information about availability of objects at dif-
ferent clients. This primitive modifies the given pro-
file with the most recent information. A modification
updates a small part, often related to a single object or
user, of the entire profile.
find_id(replacement_scheme): Find the identification
of the object to evict, using the given replacement
scheme, identified by replacement_scheme.

3.3. Working principle of the access
schemes

3.3.1. Update-based Poll-Each-Read scheme.

Different steps of UPER access scheme are shown in
Figures 2 and 3. In this scheme, the server maintains access
profile for each object per client, as well as update pro-
file for each object. Whenever an access or update takes
place, the server updates the corresponding profile. Thus,
the server becomes the most knowledgeable entity in the
system. If a locally cached data object is requested, the
MS sends a request to the server to verify the validity of
the cached object. If the cached copy is the most updated
one, the server simply replies back with an acknowledge-
ment (Figure 2(a)). Otherwise, the server forwards the most
recently updated copy (Figure 2(b)). Contrary to the previ-
ous two scenarios, if the request is for an object that does
not exist in the local cache, the mobile terminal sends a

request for the object. If the mobile terminal has a space
to accommodate a new object (i.e., cache is not full), the
server simply forwards a copy (Figure 3(a)). Otherwise,
the server makes a decision about a replacement and for-
wards the decision with a copy of the requested object
(Figure 3(b)). In this scheme, when the server receives an
update request, it replaces the object with the most recent
copy and adjusts the update profile for that object.

3.3.2. Update-based Call-Back scheme.

In UCB, beside the server, each MS also maintains
access and updates information for each cached object.
Although the server continues maintaining both the global
profiles, often, they do not reflect the most recent informa-
tion. Some of the steps in this scheme is shown in Figure 4.
In this scheme, when an MS receives a request for an object
and finds that a copy locally exists, the object is served
immediately without consulting the server. Additionally,
the locally maintained access profile for that object is
updated. On the other hand, when the requested object is
not cached locally, the MS forwards the request for the
missing object to the server. At the reception of such a
message, the server replies back with the requested object
with its access and update information. Now, if the MS
has a space to accommodate the new object in the cache,
the object and its profiles are simply added (Figure 4(a)).
Otherwise, an eviction decision is made. The decision

(a) Scenario 1 (b) Scenario 2

Figure 2. Steps for Update-based Poll-Each-Read access scheme in different scenarios when requested object is locally cached:
(a) Scenario 1 and (b) Scenario 2.

(a) Scenario 3 (b) Scenario 4

Figure 3. Steps for Update-based Poll-Each-Read access scheme in different scenarios when requested object is not locally cached:
(a) Scenario 3 and (b) Scenario 4.

Wirel. Commun. Mob. Comput. 2013; 13:1337–1352 © 2011 John Wiley & Sons, Ltd. 1341
DOI: 10.1002/wcm

Optimal Update-based Replacement policy for cache M. Akon et al.

(a) Scenario 1 (b) Scenario 2

Figure 4. Steps for Update-based Call-Back access scheme in different scenarios at a cache miss: (a) Scenario 1 and (b) Scenario 2.

is forwarded to the server with the access profile of the
to-be-evicted object so that the server adjusts the central
profile accordingly. The MS continues to discard the
evicted object and its related profiles (Figure 4(b)).

3.4. Optimal Update-based
Replacement scheme

In this subsection, we present our cache replacement
scheme. We name it Optimal Update-based Replacement
(OUR) scheme, which uses both update and access fre-
quencies to achieve superior-guaranteed performance. We
define the performance factor (PF) from the perspective of
client i for object j up to time t as follows:

PFi ;j .t/D
�i ;j .t/

2

�i ;j .t/C �j .t/
(1)

Similarly, long term PF is defined as

PFi ;j D lim
t!1

�i ;j .t/
2

�i ;j .t/C �j .t/
D

�2i;j

�i ;j C �j
(2)

Detail semantics about PF will be discussed in the next
section. OUR scheme works by computing the PF for all
the objects using the access and update histories collected
through the cache access scheme. The PF of the most
recently accessed object is simultaneously computed. If the
new object has a higher PF than that of any cached one, the
object with the lowest PF is evicted, and the new object is
stored in the cache. Otherwise, the most recently accessed
object is not cached, and the cache is kept intact without
any change. Algorithm 1 presents the replacement scheme
using the notations introduced in Section 4.

4. QUANTITATIVE ANALYSIS

In this section, we analytically prove that OUR ensures the
worst-case optimal cache performance in terms of cache
hits and communication cost.

We number all replacements in the order they take place
in time, for example, the earliest replacement be numbered
as the first replacement, the next one as the second replace-
ment, and so on. We use C.t/ and C.t/0 to denote the
set consisting of all cached objects before and after the
t th replacement. For our analysis, we define two perfor-
mance metrics—effective hits and cost. Note that, effective
hits and cost are computed considering all accesses over a
long time.

We denote the probability of guaranteed effective hits
after the t th replacement of UPER and UCB as PUPER.t/

and PUCB.t/, respectively, under any replacement scheme.
The costs of UPER and UCB resulting from the t th
replacement are denoted asCUPER.t/ andCUCB.t/, respec-
tively, under any replacement scheme. Similarly, we
denote PUPERCOUR.t/, PUCBCOUR.t/, CUPERCOUR.t/,
and CUCBCOUR.t/ as the corresponding metrics at the t th
replacement when OUR replacement scheme is exercised.
Let Oa.t/ and Oe.t/ denote the accessed and replaced
objects at the t th replacement, respectively. Let OOUR.t/

denote the replaced object when OUR scheme is used.
Notations Creq, Cack, and Cobj are used to denote the trans-
mission cost of a request (or verification) message, an

1342 Wirel. Commun. Mob. Comput. 2013; 13:1337–1352 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm

M. Akon et al. Optimal Update-based Replacement policy for cache

acknowledge message„ and an object, respectively. Here,
we omit the costs of transmitting replacement decisions
or cost of piggy backing profile information of an object,
as they incur very negligible overheads. Based on the
behavior of OUR scheme, we have the following theorem.

Theorem 1. OUR scheme maximizes the probability of
guaranteed effective hits at each replacement for both
UPER and UCB access schemes.

Proof . A replacement happens when the cache is full and
a new object is fetched by the cache manager. At such an
event, an object not available in the cache is introduced.
The replacement scheme makes the final decision about
preserving the object in the local cache. Our goal is to show
that the probability of guaranteed effective hits after t th
replacement obtained by replacing OOUR.t/ with Oa.t/ is
larger than or equal to the probability obtained by replac-
ingOe.t/withOa.t/. At the t th replacement, the following
conditions must hold:

Oa.t/ … C.t/ (3)

Oe.t/ 2 C.t/[fOa.t/g (4)

C.t/0 D .C .t/[fOa.t/g/ nfOe.t/g (5)

Similarly, for OUR scheme,

OOUR.t/ 2 C.t/[fOa.t/g (6)

C.t/0 D .C .t/[fOa.t/g/ nfOOUR.t/g (7)

At any access, the probability of the accessed object
being Oi , 16 i 6N , is

pa;i D
�i

�
(8)

The probability of Oi being accessed before an update
takes place is

pu;i D
�i

�i C �i
(9)

Accesses to different data items are independent, that is,
they are disjoint events. Therefore, from Equation (5) to
Equation (9), no matter what replacement scheme is used,
we have

PUPER.t/D PUCB.t/

D
X

8i jOi2C.t/
0

pa;ipu;i

D
X

8i jOi2C.t/[fOa.t/gnfOe.t/g

pa;ipu;i

D
X

8i jOi2C.t/[fOa.t/gnfOe.t/g

�i

�

�i

�i C �i

D
X

8i jOi2C.t/[fOa.t/gnfOe.t/g

�2i
�.�i C �i /

D
X

8i jOi2C.t/[fOa.t/g

�2i
�.�i C �i /

�
�2e

�.�eC �e/
(10)

So, the equality when the OUR is exercised can be
driven as follow:

PUPERCOUR.t/DPUCBCOUR.t/

D
X

8i jOi2C.t/[fOa.t/g

�2i
�.�i C �i /

�
�2OUR

�
.�OUR C �OUR/ (11)

According to the definition of the OUR scheme, we have

�2OUR

�OUR C �OUR
� min
8i jOi2C.t/[fOa.t/g

�2i
�i C �i

6 �2e
�i C �e

(12)

Therefore, we have

PUPERCOUR.t/D PUCBCOUR.t/

D
X

8i jOi2C.t/[fOa.t/g

�2i
�.�i C �i /

� min
8i jOi2C.t/[fOa.t/g

�2i
�.�i C �i /

>
X

8i jOi2C.t/[fOa.t/g

�2i
�.�i C �i /

�
�2e

�.�e C �e/

D PUPER.t/D PUCB.t/ (13)

From Equation (13), at each replacement, the probabil-
ity of effective hits obtained by using OUR is larger than
or equal to the same metric by using any other replace-
ment scheme. It is concluded that the eviction choice
made by OUR ensures optimal worst-case effective hits at
each replacement. �

Corollary 1. OUR minimizes the cost of data access
at each replacement for both the UPER and the UCB
access schemes.

Proof . When the UPER cache access scheme is exercised
and an access causes a cache hit, the client and the server
only exchange a request and an acknowledgement mes-
sage (Figure 2(a)). If the access causes a cache miss or an
invalid cache hit, the client sends the server a request mes-
sage, and the server replies to the client with the data object

Wirel. Commun. Mob. Comput. 2013; 13:1337–1352 © 2011 John Wiley & Sons, Ltd. 1343
DOI: 10.1002/wcm

Optimal Update-based Replacement policy for cache M. Akon et al.

(Figures 2(b) and 3(a)) and the replacement decision if the
cache is full (Figure 3(b)). Therefore, for UPER,

CUPER.t/DPUPER.t/.CreqCCack/

C .1�PUPER.t//.CreqCCobj/

DCreqCCobj CPUPER.t/.Cack �Cobj/

For OUR, the previous equality is expressed as follows:

CUPERCOUR.t/DCreqCCobj

CPUPERCOUR.t/.Cack �Cobj/

Without loss of generality, the cost of transmitting
an acknowledgment is much smaller than the cost of
transmitting an entire object. So, Cack� Cobj, that is,
Cack �Cobj� 0. It has been indicated in Theorem 1 that
PUPER.t/ is maximized while using OUR. Therefore,
CUPER.t/ is minimized while the OUR scheme is used.

In UCB scheme, there is no message exchange when
the access causes an effective cache hit. Thus, the cost
resulting from the replacement at the t th access is

CUCB.t/D .1�PUCB.t//.CreqCCobj/ (14)

and for OUR replacement,

CUCBCOUR.t/D .1�PUCBCOUR.t//.CreqCCobj/

(15)
Again, CUCB.t/ is minimized while OUR is used

because PUCBCOUR.t/> PUCB.t/. �

With these properties, we have the following theorem:

Theorem 2. OUR scheme gives long-term optimal-
guaranteed effective cache hits for both UPER and UCB
access schemes.

Proof . Suppose another scheme, called OPT, make a dif-
ferent decision than OUR at time t1 as shown in Figure 5.
At this point, object Oa1 is accessed, OUR replaces object
OOUR1 , and OPT replaces object OOPT1 . By definition,
PFOUR1 < PFOPT1 . From Theorem 1, it is evident that
OUR performs better than OPT scheme before any further
replacement takes place. However, at some later time t2,
when Oa2 is accessed, OPT makes another replace-
ment where object OOPT2 is replaced to accommo-
date the accessed object. To prove the theorem, we

Figure 5. Replacement in Optimal Update-based Replacement
(OUR) and other schemes.

assume that because of this replacement decision, OPT
outperforms OUR scheme. Now, we prove the theorem
by contradiction.

As OUR outperforms OPT between the period t1
and t2, to outperform OUR in the long run, OPT
has to have a better performance than OUR through
the replacement at t2. From Equation (10), we know
that objects with higher PF results in higher effec-
tive hit rate. As a result, PFa2 has to be higher than
PFOPT2 . Denote the content of the cache before t1
be C . Of course, OOPT2 2

�
CnfOOPT1g

�
[fOa1g. If

OOPT2 2 CnfOOPT1g, OUR scheme would have also
replaced an object with the lowest PF from the cache, but
that contradicts with our initial assumption. Then, OOPT2
and Oa1 have to be the the same, resulting in PFa2 >

PFa1 . Again, OUR scheme would have replaced Oa1 or
another object with lower PF to accommodate Oa2 , which
contradicts our initial assumption.

Hence, the OPT scheme cannot exist. Using the same
argument, it can be shown that there exists no sequence
of replacements, which results in a higher guaranteed
effective hit rate than OUR. �

5. PERFORMANCE EVALUATION

We have developed an extensive discrete event simula-
tor in C++ to evaluate the performance of the proposed
OUR replacement scheme. We compare OUR with the
LFU replacement scheme [44] because of the reasons
described in Section 2. Our simulation setup is described
in Subsection 5.1. We discuss the results from the simula-
tions in the rest of this section. We also present results from
theoretical analysis wherever applicable.

5.1. Simulation setup

For data access applications, different objects have differ-
ent popularity. It has been observed that the access to dif-
ferent online objects follow Zipf-like distributions [19,44].
In our simulation, at an access (or update), object Oi is
accessed (or updated) with the probability pi , defined as

pi D

2
4i˛

0
@
NX
jD1

1

j ˛

1
A
3
5
�1

where ˛ > 0 and is called the Zipf ratio. Note that, when
˛ D 0, pi D 1=N , for all i , that is, all objects are cho-
sen with the same probability of 1=N . Let the Zipf ratio
for access and update events be ˛a and ˛u, respectively.
In our simulations, an object is ranked uniquely within the
range from 1 toN to find its access and update probability.
Notice that item Oi may have two distinct ranks to rep-
resent its access, and update probability and both of them
may be different than the object ID, i .

Let na;j and nu;j be the total number of accesses for
all the clients and the total number of updates at the server

1344 Wirel. Commun. Mob. Comput. 2013; 13:1337–1352 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm

M. Akon et al. Optimal Update-based Replacement policy for cache

to object j , respectively. Let nmiss denote the total number
of cache misses and invalid cache hits. Let na be the total
number of accesses to all the objects from all the clients.
For our simulations, we compute the effective hit ratios as

PUPER D 1�
nmiss

na
D PUCB (16)

where na D
PN
jD1 na;j and then deduce effective hits as

EHUPER D PUPER ��� T

D PUCB ��� T D EHUCB
(17)

where T is the simulation time. Finally, the computation
of costs for UPER and UCB are shown in Equations (18)
and (19), respectively.

CUPER D
1

na
Œ.na � nmiss/� .CreqCCack/

C nmiss � .CreqCCobj/�

(18)

100000

200000

300000

400000

500000

600000

700000

800000

900000

0 0.2 0.4 0.6 0.8 1 1.2 1.4

UPER/UCB+OUR (Simulation)
UPER/UCB+OUR (Theory)

UPER/UCB+LFU (Simulation)

E
ffe

ct
iv

e
hi

ts

α
(a) Κ = 50

100000

200000

300000

400000

500000

600000

700000

800000

900000

0 0.2 0.4 0.6 0.8 1 1.2 1.4

UPER/UCB+OUR (Simulation)
UPER/UCB+OUR (Theory)

UPER/UCB+LFU (Simulation)

E
ffe

ct
iv

e
hi

ts

α
(b) Κ = 60

100000

200000

300000

400000

500000

600000

700000

800000

900000

0 0.2 0.4 0.6 0.8 1 1.2 1.4

UPER/UCB+OUR (Simulation)
UPER/UCB+OUR (Theory)

UPER/UCB+LFU (Simulation)

E
ffe

ct
iv

e
hi

ts

α
(c) Κ = 70

100

200

300

400

500

600

0 0.2 0.4 0.6 0.8 1 1.2 1.4

UPER+OUR (Simulation)
UPER+OUR (Theory)

UPER+LFU
UCB+OUR (Simulation)

UCB+OUR (Theory)
UCB+LFU

C
os

t p
er

 a
cc

es
s

α
(d) Κ = 50

100

200

300

400

500

600

0 0.2 0.4 0.6 0.8 1 1.2 1.4

UPER+OUR (Simulation)
UPER+OUR (Theory)

UPER+LFU
UCB+OUR (Simulation)

UCB+OUR (Theory)
UCB+LFU

C
os

t p
er

 a
cc

es
s

α
(e) Κ = 60

100

200

300

400

500

600

0 0.2 0.4 0.6 0.8 1 1.2 1.4

UPER+OUR (Simulation)
UPER+OUR (Theory)

UPER+LFU
UCB+OUR (Simulation)

UCB+OUR (Theory)
UCB+LFU

C
os

t p
er

 a
cc

es
s

(f) Κ = 70

α

Figure 6. Performance of Optimal Update-based Replacement (OUR) and Least Frequently Used (LFU) for objects with the same
update frequencies: (a) K D 50, (b) K D 60, (c) K D 70, (d) K D 50, (e) K D 60, and (f) K D 70. UPER, Update-based Poll-Each-Read;

UCB, Update-based Call-Back.

Wirel. Commun. Mob. Comput. 2013; 13:1337–1352 © 2011 John Wiley & Sons, Ltd. 1345
DOI: 10.1002/wcm

Optimal Update-based Replacement policy for cache M. Akon et al.

CUCB D
1

na
Œnmiss.CreqCCobj/� (19)

Unless mentioned otherwise, we consider Creq and Cack
to have the same default value of Cmsg, where Cmsg D 60.
The default values for Cobj and � are 600 and 1, respec-
tively. It is worth to mention that all the objects in this
experiment have equal sizes. Variable object sizes with dif-
ferent cache replacement policies are out of the scope of
this paper. The default number of MSs in the network is 20.

5.2. Objects with no updates

Figure 6 shows the effective hit ratio and cost for OUR
and LFU scheme when no update to any object takes place,
that is, �j for all j is 0. In all the simulations, the server
is populated with 500 objects. In this case, OURi ;j is
determined by�i ;j , and consequently, while accommodat-
ing new objects in the cache, both OUR and LFU choose
the same objects for eviction. Thus, both the schemes
result in the same performance. In addition, we have the
following observations:

� All combinations of access and replacement schemes
enjoy higher effective hit ratio and lower cost when

the objects are for read only and no update takes place
(i.e., � D 0). Static databases, audio, and video files
sharing in wireless environment are examples of this
kind of application.

� LFU performance is also optimal where no update
takes place in the caching system.

� With increment of ˛a, hit ratio also increases. The
higher ˛a is, the smaller set of objects is accessed
more frequently, resulting in fewer misses.

� Larger cache helps in alleviating cache misses. How-
ever, this behavior is clearly visible when ˛a is
smaller. With larger ˛a, most of the access are due
to fewer objects; hence, increasing cache size results
in very little additional benefit.

5.3. Impact of number of objects and
cache size

In this subsection, we present the effect of the number of
objects (N) and cache size (K) on cache performance. In
Figure 7, the performance of UPER/UCB+OUR is com-
pared with UPER/UCB+LFU for different object set sizes.
The values for the parameters ˛a, ˛u, and K in these sim-
ulations are 0:20, 0:60, and 20, respectively. We have the
following observations:

15000

20000

25000

30000

35000

40000

45000

50000

55000

400 500 600 700 800 900 1000

Number of objects (N)

UPER/UCB+OUR (Simulation)
UPER/UCB+OUR (Theory)

UPER/UCB+LFU

E
ffe

ct
iv

e
hi

ts

(a) = 0.40

15000

20000

25000

30000

35000

40000

45000

50000

55000

400 500 600 700 800 900 1000

Number of objects (N)

UPER/UCB+OUR (Simulation)
UPER/UCB+OUR (Theory)

UPER/UCB+LFU

E
ffe

ct
iv

e
hi

ts

620

625

630

635

640

645

650

655

400 500 600 700 800 900 1000

Number of objects (N)

UPER+OUR (Simulation)
UPER+OUR (Theory)

UPER+LFU
UCB+OUR (Simulation)

UCB+OUR (Theory)
UCB+LFU

C
os

t p
er

 a
cc

es
s

620

625

630

635

640

645

650

655

400 500 600 700 800 900 1000

Number of objects (N)

UPER+OUR (Simulation)
UPER+OUR (Theory)

UPER+LFU
UCB+OUR (Simulation)

UCB+OUR (Theory)
UCB+LFU

C
os

t p
er

 a
cc

es
s

(b) = 0.60

(c) = 0.40 (d) = 0.60

Figure 7. Performance of Optimal Update-based Replacement (OUR) and Least Frequently Used (LFU) for objects with different num-
ber of objects: (a) �D 0:40, (b) �D 0:60, (c) �D 0:40, and (d) �D 0:60. UPER, Update-based Poll-Each-Read; UCB, Update-based

Call-Back.

1346 Wirel. Commun. Mob. Comput. 2013; 13:1337–1352 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm

M. Akon et al. Optimal Update-based Replacement policy for cache

� Effective hits for all combinations of access and
replacement schemes decrease with the increment of
database size. However, in all cases, OUR replace-
ment scheme shows better results.

� Given a fixed size cache, as the object set size
increases, the chance of hit reduces, irrespective of
the replacement scheme. However, the gain of using
OUR becomes prominent with larger set sizes.

� UCB+OUR scheme gives the best performance in
terms of cost per access, and UCB+LFU closely
follows. Provided that Cobj� Cmsg, according to
Equation (18), the difference between UCB+OUR
and UCB+LFU is dominated by nmiss. Hence, with
smaller miss rate, the gap between OUR and LFU
scheme dilutes.

� With any of the replacement schemes, UCB access
scheme cost less than UPER. However, OUR scheme
reduces cost per access further as compared with
LFU scheme.

Figure 8 shows different performance characteristics for
different cache sizes. For these simulations, the values for
the parameters ˛a, ˛u, and N are chosen as 0:01, 0:60,
and 400, respectively. From the figure, we deduce the
following arguments:

� In oppose to the previous case, as cache size increases,
the number of effective hits also increases for all com-
binations of schemes, and OUR performs better in
all cases.

� Because of increasing number of hits, the cost per
access also declines with larger cache for both the
schemes. However, the cost of UCB is reduced at a
higher rate than that of UPER.

� As cache size increases, each additional extra cache
buffer adds fewer additional effective hits. Hence, a
designer must compromise between the cost of adding
extra cache buffer and cache performance.

5.4. Impact of Zipf ratio

Figure 9 shows the effect of update Zipf ratio on the
performance of both OUR and LFU schemes with the
simulation parameters ˛a, K, and N to be 0:01, 50, and
500, respectively. It can be seen that

� with different Zipf ratios, the performance of OUR is
consistently better than that of LFU in terms of both
number of hits and cost per access; and

� the overall effective hits fall and the cost increases as
update Zipf ratios increases.

20000

40000

60000

80000

100000

120000

140000

160000

20 30 40 50 60 70 80 90 100
Cache size (K)

UPER/UCB+OUR (Simulation)
UPER/UCB+OUR (Theory)

UPER/UCB+LFU

E
ffe

ct
iv

e
hi

ts

20000

40000

60000

80000

100000

120000

140000

160000

20 30 40 50 60 70 80 90 100
Cache size (K)

UPER/UCB+OUR (Simulation)
UPER/UCB+OUR (Theory)

UPER/UCB+LFU

E
ffe

ct
iv

e
hi

ts

560

580

600

620

640

20 30 40 50 60 70 80 90 100
Cache size (K)

UPER+OUR (Simulation)
UPER+OUR (Theory)

UPER+LFU
UCB+OUR (Simulation)

UCB+OUR (Theory)
UCB+LFU

C
os

t p
er

 a
cc

es
s

560

580

600

620

640

20 30 40 50 60 70 80 90 100
Cache size (K)

UPER+OUR (Simulation)
UPER+OUR (Theory)

UPER+LFU
UCB+OUR (Simulation)

UCB+OUR (Theory)
UCB+LFU

C
os

t p
er

 a
cc

es
s

(a) = 0.50

(c) = 0.50

(b) = 0.60

(d) = 0.60

Figure 8. Performance of Optimal Update-based Replacement (OUR) and Least Frequently Used (LFU) for objects with differ-
ent cache sizes: (a) � D 0:50, (b) � D 0:60, (c) � D 0:50, and (d) � D 0:60. UPER, Update-based Poll-Each-Read; UCB,

Update-based Call-Back.

Wirel. Commun. Mob. Comput. 2013; 13:1337–1352 © 2011 John Wiley & Sons, Ltd. 1347
DOI: 10.1002/wcm

Optimal Update-based Replacement policy for cache M. Akon et al.

90000

100000

110000

120000

130000

0.4 0.5 0.6 0.7 0.8 0.9 1

UPER/UCB+OUR (Simulation)
UPER/UCB+OUR (Theory)

UPER/UCB+LFU (Simulation)

E
ffe

ct
iv

e
hi

ts

90000

100000

110000

120000

130000

0.4 0.5 0.6 0.7 0.8 0.9 1

UPER/UCB+OUR (Simulation)
UPER/UCB+OUR (Theory)

UPER/UCB+LFU (Simulation)

E
ffe

ct
iv

e
hi

ts

570

580

590

600

610

620

0.4 0.5 0.6 0.7 0.8 0.9 1

UPER+OUR (Simulation)
UPER+OUR (Theory)

UPER+LFU
UCB+OUR (Simulation)

UCB+OUR (Theory)
UCB+LFU

C
os

t p
er

 a
cc

es
s

570

580

590

600

610

620

0.4 0.5 0.6 0.7 0.8 0.9 1

UPER+OUR (Simulation)
UPER+OUR (Theory)

UPER+LFU
UCB+OUR (Simulation)

UCB+OUR (Theory)
UCB+LFU

C
os

t p
er

 a
cc

es
s

(a) = 0.50 (b) = 0.60

(c) = 0.50 (c) = 0.60

Figure 9. Performance of Optimal Update-based Replacement (OUR) and Least Frequently Used (LFU) for different Zipf ratios:
(a) �D 0:50, (b) �D 0:60, (c) �D 0:50, and (d) �D 0:60. UPER, Update-based Poll-Each-Read; UCB, Update-based Call-Back.

106000

108000

110000

112000

114000

116000

118000

120000

122000

20 25 30 35 40

Number of mobile stations

UPER/UCB+OUR (Simulation)

UPER/UCB+OUR (Theory)

UPER/UCB+LFU

E
ffe

ct
iv

e
hi

ts

103500

104000

104500

105000

105500

106000

106500

107000

107500

108000

108500

20 25 30 35 40

Number of mobile stations

UPER/UCB+OUR (Simulation)

UPER/UCB+OUR (Theory)

UPER/UCB+LFU

E
ffe

ct
iv

e
hi

ts

575

580

585

590

595

600

605

20 25 30 35 40

Number of mobile stations

UPER+OUR (Simulation)
UPER+OUR (Theory)

UPER+LFU
UCB+OUR (Simulation)

UCB+OUR (Theory)
UCB+LFU

C
os

t p
er

 a
cc

es
s

588

590

592

594

596

598

600

602

604

20 25 30 35 40

Number of mobile stations

UPER+OUR (Simulation)

UPER+OUR (Theory)

UPER+LFU

UCB+OUR (Simulation)

UCB+OUR (Theory)

UCB+LFUC
os

t p
er

 a
cc

es
s

(a) = 0.40 (b) = 0.50

(c) = 0.40 (d) = 0.50

1348 Wirel. Commun. Mob. Comput. 2013; 13:1337–1352 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm

M. Akon et al. Optimal Update-based Replacement policy for cache

550

600

650

700

750

800

850

900

50 100 150 200 250 300

UPER+OUR
UCB+OUR

C
os

t p
er

 a
cc

es
s

(a) Case 1

550

600

650

700

750

800

850

900

50 100 150 200 250 300

UPER+OUR
UCB+OUR

C
os

t p
er

 a
cc

es
s

(b) Case 2

Figure 11. Cost of Optimal Update-based Replacement (OUR) and Least Frequently Used for different message sizes: (a) Case 1 and
(b) Case 2. UPER, Update-based Poll-Each-Read; UCB, Update-based Call-Back.

5.5. Impact of number of mobile stations

The number of MSs has significant effect on what PF val-
ues different objects get. In the way PF is computed (as
shown in Equation (2)), �j is a global metric and is not
affected by the number of MSs. On the other hand, �i ;j for
all i are affected by the number of MSs, provided that� for
the entire system is given. As the number of MSs increases,
the difference between PFs of different items become less
distinct, and PFs are mainly determined by �. Figure 10
shows results with parameters ˛a, ˛u, K, and N valued at
0:01, 0:06, 50, and 500, respectively. As shown in Figure 9,
with more MSs, the hit rate decreases at a faster rate, and
hence, the cost per access increases.

5.6. Impact of message size

Finally, we investigate the impact of different message
sizes, that is, Cmsg. We consult two cases: (1) K D 50
and N D 500 and (2) K D 100 and N D 400. For both
the cases, values of �, ˛a, and ˛u are set to 0:40, 0:01,

and 0:60. The results are presented in Figure 11. From
both the results, it is evident that cost per access for UPER
increases at a faster rate than UCB as the ratio of Cmsg to
Cobj increases.

5.7. General observation

We have the following general observations while prepar-
ing and running the simulator and evaluating the results:

� It is difficult to synthetically generate access and
update traces that satisfy all the parameters and cap-
ture the worst-case requirements. Hence, most of
the traces are generated with high update rates and
update Zipf ratios to make them behave more closer
to the worst-case scenarios. In all the simulations, the
theoretical probability of hits are computed at each
replacement only. Thus, in most cases, simulation
results are slightly better than the theoretical results.

� For cases where cache suffers from higher num-
ber of misses, or cases where there are fewer to no

Figure 10. Performance of Optimal Update-based Replacement (OUR) and Least Frequently Used (LFU) with different number
of mobile stations: (a) � D 0:40, (b) � D 0:50, (c) � D 0:40, and (d) � D 0:50. UPER, Update-based Poll-Each-Read; UCB, Update-

based Call-Back.

Wirel. Commun. Mob. Comput. 2013; 13:1337–1352 © 2011 John Wiley & Sons, Ltd. 1349
DOI: 10.1002/wcm

Optimal Update-based Replacement policy for cache M. Akon et al.

misses, the temporal objects introduced in between
two consecutive cache replacements result in fewer
extra cache hits. Thus, in those cases, the difference
between theory and simulation subsides.

� For cases where cache suffers from higher number
of misses, the benefit of OUR scheme becomes more
visible. As the system approaches to a system with
read-only objects (i.e., objects with no updates), both
LFU and OUR can achieve the optimal performance.

6. CONCLUSION

In this paper, we have proposed an optimal cache replace-
ment scheme, named Optimal Update-based Replacement
(OUR) scheme, to make efficient use of the network band-
width in wireless data networks by increasing effective
cache hits. To accommodate access and update informa-
tion in the caching system, we have also proposed two
enhanced cache access schemes—UPER and UCB access
scheme. We have analyzed the cache access schemes and
proved that if combined with OUR scheme, the schemes
guarantee optimal number of effective cache hits and opti-
mal cost of data access in terms of network bandwidth.
Extensive simulations also demonstrate that the proposed
scheme outperforms LFU in terms of both effective hits
and communication costs.

Currently, we are working towards finding optimal cache
system policies for data access applications where updates
are initiated by the clients, rather than the server. We are
also investigating cache systems for other form of wireless
networks, particularly, networks with limited broadcasting
capabilities, such as wireless LAN. In many applications,
objects sizes are different. We plan to carry on researches
where the same objects size constraint is relaxed.

REFERENCES

1. Facebook, Inc. facebook, 2010. http://www.facebook.
com/.

2. Qzone QQ. Qzone, 2010. http://qzone.qq.com/.
3. News Corp. Digital Media. Myspace, 2010. http://

www.myspace.com/.
4. Twitter, Inc. twitter, 2010. http://www.twitter.com/.
5. YouTube, LLC. Youtube, 2010. http://www.youtube.

com/.
6. Youku. Youku, 2010. http://Youku.com/.
7. Windows Live SkyDrive. Skydrive, 2010. http://

skydrive.live.com/.
8. Yahoo! Inc. flickr, 2010. http://www.flickr.com/.
9. Google Inc. Picasa, 2010. http://picasa.google.com/.

10. Photobucket. Photobucket, 2010. http://photobucket.
com/.

11. Dropbox, Inc. Dropbox, 2010. http://dropbox.com/.
12. AT&T - News Room. AT&T launches pilot Wi-Fi proj-

ect in Times Square, 2010. http://www.att.com/gen/

press-room?pid=4800&cdvn=news&newsarticleid=
30838.

13. AT&T - News Room. AT&T Wi-Fi handles more
than 85 million total connections in 2009, more than
four times 2008, 2010. http://www.att.com/gen/press-
room?pid=4800&cdvn=news&-news articleid=30433
&mapcode=consumer.

14. AT&T - News Room. AT&T Wi-Fi network usage
soars to more than 53 million connections in the first
quarter, 2010. http://www.att.com/gen/press-room?
pid=4800&cdvn=news&newsarticleid=30766.

15. Creus GBI, Niska P. System-level power manage-
ment for mobile devices. In International Confer-
ence on Computer and Information Technology, 2007;
799–804.

16. Perrucci GP, Fitzek F, Sasso G, Kellerer W, Widmer J.
On the impact of 2G and 3G network usage for mobile
phones’ battery life. In European Wireless, 2009;
255–259.

17. Cao G. Proactive power-aware cache management
for mobile computing systems. IEEE Transaction on
Computers 2002; 51(6): 608–621.

18. Wang X, Fan P. A strongly consistent cached data
access algorithm for wireless data networks. Wireless
Networks 2009; 15(8): 1013–1028.

19. Lin Y-B, Lai W-R, Chen J-J. Effects of cache mech-
anism on wireless data access. IEEE Transactions on
Wireless Communications 2003; 2(6): 1247–1258.

20. Barbará D, Imieliński T. Sleepers and workaholics:
caching strategies in mobile environments. ACM
SIGMOD Record 1994; 23(2): 1–12.

21. Cai J, Tan K-L. Energy-efficient selective cache inval-
idation. Wireless Networks 1999; 5(6): 489–502.

22. Cao G. A scalable low-latency cache invalidation
strategy for mobile environments. IEEE Transactions
on Knowledge and Data Engineering 2003; 15(5):
1251–1265.

23. Kumar A, Sarje AK, Misra M. Prioritised predicted
region based cache replacement policy for location
dependent data in mobile environment. International
Journal of Ad Hoc and Ubiquitous Computing 2010;
5(1): 56–67.

24. Madhukar A, Özyer T, Alhajj R. Dynamic cache
invalidation scheme for wireless mobile environments.
Wireless Networks 2009; 15(6): 727–740.

25. Tian K-L, Cai J, Ooi BC. An evaluation of cache
invalidation strategies in wireless environments. IEEE
Transactions on Parallel and Distributed Systems
2001; 12(8): 789–807.

26. Yin J, Alvisi L, Dahlin M, Lin C. Volume leases for
consistency in large-scale systems. IEEE Transaction
on Knowledge and Data Engineering 1999; 11(4):
563–576.

1350 Wirel. Commun. Mob. Comput. 2013; 13:1337–1352 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm

M. Akon et al. Optimal Update-based Replacement policy for cache

27. Yuen JC-H, Chan E, Lam K-Y, Leung HW. Cache
invalidation scheme for mobile computing systems
with real-time data. ACM SIGMOD Record 2000;
29(4): 34–39.

28. Nelson MN, Welch BB, Ousterhout JK. Caching in the
Sprite network file system. ACM SIGOPS Operating
Systems Review 1987; 21(5): 3–4.

29. Hu Q, Lee DL. Cache algorithms based on adaptive
invalidation reports for mobile environments. Cluster
Computing 1998; 1(1): 39–50.

30. Kahol A, Khurana S, Gupta SKS, Srimani PK.
A strategy to manage cache consistency in a dis-
tributed mobile wireless environment. IEEE Transac-
tion on Parallel and Distributed Systems 2001; 12(7):
686–700.

31. Robinson JT, Devarakonda MV. Data cache man-
agement using frequency-based replacement. In
ACM SIGMETRICS Performance Evaluation Review,
Vol. 18, 1990; 134–142.

32. Tanenbaum AS. Computer Networks. Pearson Educa-
tion: NJ, USA, 2002.

33. Chi H-C, Zhang Q. Deadline-aware network coding
for video on demand service over P2P networks. Jour-
nal of Zhejiang University—Science A 2005; 7(22–23):
755–763.

34. Chi H-C, Zhang Q, Shen X, (Sherman). Efficient
search and scheduling in P2P-based media-on-demand
streaming service. IEEE Journal on Selected Areas of
Communications 2007; 25(1): 119–130.

35. Skobeltsyn G, Aberer K. Distributed cache table: effi-
cient query-driven processing of multiterm queries in
P2P networks. Technical Report LSIRRE-PORT-2006-
010, EPFL, Lausanne, Switzerland, 2006.

36. Akon M, Islam T, Shen X, (Sherman), Singh A.
SPACE: a lightweight collaborative caching for clus-
ters. Peer-to-Peer Networking and Applications 2010;
3(2): 80–96.

37. Korupolu MR, Dahlin M. Coordinated placement and
replacement for large-scale distributed caches. IEEE
Transactions on Knowledge and Data Engineering
2002; 14(6): 1041–4347.

38. Chen H, Xiao Y, Shen X, (Sherman). Update-based
cache access and replacement in wireless data access.
IEEE Transactions on Mobile Computing 2006; 5(12):
1734–1748.

39. Xu J, Hu Q, Lee DL, Lee W-C. SAIU: an effi-
cient cache replacement policy for wireless on-demand
broadcasts. In Proceedings of the Ninth International
Conference on Information and Knowledge Manage-
ment, 2000; 46–53.

40. Xu J, Hu Q, Lee W-C, Lee DL. Performance
evaluation of an optimal cache replacement policy
for wireless data dissemination. IEEE Transaction
on Knowledge and Data Engineering 2004; 6(1):
125–139.

41. Acharya S, Muthukrishnan S. Scheduling on-demand
broadcasts: new metrics and algorithms. In The
4th Annual ACM/IEEE International Conference on
Mobile Computing and Networking, 1998; 43–54.

42. Chou H-T, DeWitt DJ. An evaluation of buffer man-
agement strategies for relational database systems.
In VLDB ’85 Proceedings of the 11th International
Conference on Very Large Data Bases, 1985; 127–141.

43. Abrams M, Standridge CR, Abdulla G, Fox EA,
Williams S. Removal policies in network caches for
world-wide web documents. In SIGCOMM ‘96 Con-
ference Proceedings on Applications, Technologies,
Architectures, and Protocols for Computer Communi-
cations, 1996; 293–305.

44. Breslau L, Cao P, Fan L, Phillips G, Shenker S.
Web caching and Zipf-like distributions: evidence and
implications. In IEEE INFOCOM, Vol. 1, March 1999;
126–134.

AUTHORS’ BIOGRAPHIES

Mursalin Akon received his B.Sc.
Engg. degree in 2001 from the
Bangladesh University of Engineer-
ing and Technology (BUET),
Bangladesh, and his M.Comp.Sc.
degree in 2004 from the Concordia
University, Canada and Ph.D. degree
in 2011 from the University of
Waterloo, Canada. His current

research interests include peer-to-peer computing and
applications, network computing, and parallel and dis-
tributed computing.

Mohammad Towhidul Islam re-
ceived his B.Sc. Engg. degree in
2001 from the Bangladesh Univer-
sity of Engineering and Technology
(BUET), Bangladesh, and his M.Sc.
degree in 2004 from the University
of Manitoba, Canada. He is currently
working towards his Ph.D. degree at
the University of Waterloo, Canada.

His current research interests include peer-to-peer com-
puting and applications, service oriented architectures, and
mobile computing.

Wirel. Commun. Mob. Comput. 2013; 13:1337–1352 © 2011 John Wiley & Sons, Ltd. 1351
DOI: 10.1002/wcm

Optimal Update-based Replacement policy for cache M. Akon et al.

Xuemin (Sherman) Shen received
the B.Sc. (1982) degree from Dalian
Maritime University (China) and the
M.Sc. (1987) and Ph.D. degrees
(1990) from Rutgers University, New
Jersey (USA), all in electrical engi-
neering. He is a Professor and the
Associate Chair for Graduate Studies,
Department of Electrical and Com-

puter Engineering, University of Waterloo, Canada. His
research focuses on mobility and resource management
in wireless/wired networks, wireless security, ad hoc and
sensor networks, and peer-to-peer networking and applica-
tions. He is a co-author of three books, and has published
more than 300 papers and book chapters in different areas
of communications and networks, control and filtering. Dr.
Shen serves as the Technical Program Committee Chair for
IEEE Globecom’07, General Co-Chair for Chinacom’07
and QShine’06, the Founding Chair for IEEE Communi-
cations Society Technical Committee on P2P Communica-
tions and Networking. He also serves as the Editor-in-Chief
for Peer-to-Peer Networking and Application; founding
Area Editor for IEEE Transactions on Wireless Communi-
cations; Associate Editor for IEEE Transactions on Vehic-
ular Technology; KICS/IEEE Journal of Communications
and Networks, Computer Networks; ACM/Wireless Net-
works; and Wireless Communications and Mobile Com-
puting (Wiley), etc. He has also served as Guest Editor for
IEEE JSAC, IEEE Wireless Communications, and IEEE

Communications Magazine. Dr. Shen received the Excel-
lent Graduate Supervision Award in 2006, and the Out-
standing Performance Award in 2004 from the University
of Waterloo, the Premier’s Research Excellence Award
(PREA) in 2003 from the Province of Ontario, Canada, and
the Distinguished Performance Award in 2002 from the
Faculty of Engineering, University of Waterloo. Dr. Shen
is a registered Professional Engineer of Ontario, Canada.

Ajit Singh received the B.Sc. degree
in electronics and communication
engineering from the Bihar Insti-
tute of Technology (BIT), Sindri,
India, in 1979 and the M.Sc. and
Ph.D. degrees from the University
of Alberta, Edmonton, AB, Canada,
in 1986 and 1991, respectively, both
in computing science. From 1980 to

1983, he worked at the R & D Department of Operations
Research Group (the representative company for Sperry
Univac Computers in India). From 1990 to 1992, he was
involved with the design of telecommunication systems
at Bell-Northern Research, Ottawa, ON, Canada. He is
currently an Associate Professor at Department of Elec-
trical and Computer Engineering, University of Waterloo,
Waterloo, ON, Canada. His research interests include net-
work computing, software engineering, database systems,
and artificial intelligence.

1352 Wirel. Commun. Mob. Comput. 2013; 13:1337–1352 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm

