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Consensus of Multi-Agent Networks With Aperiodic
Sampled Communication Via Impulsive Algorithms
Using Position-Only Measurements

Zhi-Wei Liu, Zhi-Hong Guan, Xuemin Shen, Fellow, IEEE, and
Gang Feng, Fellow, IEEE

Abstract—In this technical note, an impulsive consensus algorithm is
proposed for second-order continuous-time multi-agent networks with
switching topology. The communication among agents occurs at sampling
instants based on position only measurements. By using the property of
stochastic matrices and algebraic graph theory, some sufficient conditions
are obtained to ensure the consensus of the controlled multi-agent network
if the communication graph has a spanning tree jointly. A numerical
example is given to illustrate the effectiveness of the proposed algorithm.

Index Terms—Aperiodic sampled information, consensus, impulsive al-
gorithms, multi-agent networks.

1. INTRODUCTION

It is well known that the consensus problem of multi-agent net-
works has been widely investigated due to its important applications,
including coordinated control of mobile robots, synchronization of
dynamical networks, distributed Kalman filtering in sensor networks,
load balancing in parallel computers, etc [1]-[4]. Many results have
been reported for multi-agent networks with different special features,
such as time delay [5], switching topology [6], asynchronous algo-
rithms [4], [7], nonlinear algorithms [8], [9], quantized data [4], noisy
communication channel [10], second-order model [11], [12], optimal
consensus [13], etc.

Most of the existing works on continuous-time multi-agent networks
assume continuous communication among agents. However, in many
real-world networks, communication among agents may occur peri-
odically rather than continuously. Therefore, it is more practical to
consider continuous-time multi-agent networks with communication
at sampling instants. In [16]-[21], consensus problems were addressed
for continuous-time multi-agent networks with sampled-data setting.
But, all those works assume an equidistant sampling interval, and those
results cannot be directly applied to systems whose length of sampling
interval is time-varying or uncertain. Consequently, it is desirable to
study the consensus problem of multi-agent networks with aperiodic
sampling interval. In addition, the existing works often assume that
each agent can obtain the information of its full states. However, in
some cases, partial states may be unavailable because of technology
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limitations or communication constraints. It is more practical to realize
the consensus by utilizing partial states. Hong et al. [14] investigated
the leader-following consensus of multi-agent networks without using
the leader’s velocity. In [11], the consensus problem of second-order
multi-agent networks in undirected networks with fixed topology was
studied, where each agent can only obtain its positions relative to its
neighbors. Gao et al. [23] considered the consensus problem of multi-
agent networks with time-delay, where each agent can only obtain the
measurements of its position relative to its neighbors. Yu et al. [24] pro-
posed a consensus protocol using both continuous and sampled posi-
tion data without using any velocity information of agents. However, all
these mentioned works [11], [14], [23], [24] require continuous com-
munication among agents, which is not desirable in some applications.

In this technical note, we investigate the consensus problem of
continuous-time second-order multi-agent networks with switching
topology. It is assumed that communication among agents occurs
at sampling instants, and each agent can only obtain the relative
positions to its neighbors and the relative position to its own state at
previous sampling instant. It is also assumed that the sampling period
is time-varying. Motivated by impulsive control strategy [25], [26], an
impulsive consensus algorithm is proposed. Some sufficient conditions
are given to ensure the consensus of the multi-agent network if the
communication graph has a spanning tree jointly.

II. PRELIMINARIES

We first present some mathematical notations to be used throughout
this technical note. Let R denote the set of real numbers and N =
1,2, 3. ... The identity matrix of order n is denoted as I,, (or simply I if
no confusion arises). 1, = (1,1,..., 1)11 is the column vector. 0., x
(or simply O if no confusion arises) denotes the n X m matrix where all
elements are equal to zero. The matrix A is non-negative, i.e., 4 > 0,
if all elements of A are non-negative. For matrices 4, B € RY*¥,
A > Bdenotes A — B > 0.

Lemma 1: [15] Let m > 2 be a positive integer and
A1, Az, ..., Ay be non-negative N x N matrices with positive
diagonal entries, then A1 Ay ... A, > (41 + Ao + ... + An),
where ¢ > 0 can be specified from matrices 4;,i = 1,2,...,m.

The non-negative matrix A is row stochastic if the sum of all ele-
ments of its row is equal to 1. The row stochastic matrix A € RV *V is
called indecomposable and aperiodic (SIA) if limy— o AR = 1597,
where y is some N X 1 column vector.

Lemma 2: [22] Let P1,Po, ... P, € RV*Y be a finite set of SIA
matrices with the property that for each sequence Pi,, P;,,... Py,
with positive length, the matrix product P; P, ... Pij is SIA. Then,
for each infinite sequence P;,, P,,... P, , ..., there exists a column
vector y such that lggo P,P,,...P;, = 1ny?.

A directed grapl{ (digraph) will be used to model network topology
among agents. Let G = {V, £, A} be a directed graph of order IV,
where V = {1,2,... N} is the set of nodes, £ € V x V is the set
of edges, and A = (ai;) 5 v is the weighted adjacency matrix. The
node i represents the agent ¢, and an edge in G is denoted by an or-
dered pair {j,i}. {j,i} € & if and only if the agent i can directly
receive information from the jth agent. Then, the set of neighbors of
the node ¢ is denoted by N; = {j € V|(j,i) € £}. The elements
associated with the edges are positive, i.e., j € N; < a;; > 0,
and assume that a;; = 0,¢ € V. Let deg(i) = 27\:1 a;j, D =
diag{deg(1),deg(2),...,deg(N)}, the Laplacian matrix of the di-
graph G is defined as L = D — A. A directed path in a digraph G is an
ordered sequence vy, va,...,v; of agents such that any ordered pair
of vertices appearing consecutively in the sequence is an edge of the
digraph, i.e. (vi,vit1) € V, forany: = 1,2,...,1 — 1. A directed
tree is a digraph, where there exists an agent, called the root, such that
any other agent of the digraph can be reached by one and only one path
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starting at the root. 7g = {V7,E7} is a spanning tree of G, if 7g is a
directed tree and Vr = V.

Lemma 3: [1] Let L be Laplacian matrix of the digraph G. Zero is a
simple eigenvalue of L, and all the other eigenvalues have positive real
parts if and only if G contains a spanning tree.

The union of the digraphs G1, G2, Gs., . . . , G with the same node set
V is a directed graph with the node set V and the edge set as the union
of the edge sets of the directed graphs in the collection.

Given a matrix P = (p;;) € RV*", the digraph of P, denoted by
G(P), is the digraph with the node set V = {1,2,..., N} such that
there is an edge in G(P) from j to 7 if and only if p;; # 0.

Lemma 4: [18] The stochastic matrix A has algebraic multiplicity
equal to one for its eigenvalue A = 1 if and only if the digraph G(A)
has a spanning tree.

Lemma 5: [18] Suppose that P € RY*¥ is a row stochastic matrix
with positive diagonal elements. If the digraph G(P) has a spanning
tree, then P is SIA.

Consider a multi-agent network consisting of N identical agents in-
dexed by 1,2, ..., N, which is described by

i (1) = v (1), Di(t) = u;(t) ¢))

where i = 1,2,..., N, z;(t) € R, vi(t) € R are the position and
velocity states of the agent ¢, respectively. u;(t) € R" is a control
input for the agent i.

Definition 1: Consensus in the multi-agent network (1) is said
to be achieved, if for any initial state, lim;—. x;(t) = ( and
lim¢—o v;(t) = 0, where i € V and ¢ € R is a constant.

In this technical note, we consider communication among agents oc-
curs at sampling instants. The sampling time sequence {¢x |7, } sat-
isfies 0 < #) < to < +++ < tp < -+, limg_ oty = oo. Let the
time-varying digraph G(t) = {V, £(¢), A(t)} denote the communica-
tion graph of multi-agent network (1). It is assumed that the commu-
nication occurs only at sampling instants which implies that the com-
munication graph G(¢) do not contain any edge (i.e., G(¢) = 0) when
t # 0. Due to technology limitations or communication constraints, it
might be difficult to measure the relative or absolute velocity of agents
[11], [14], [23], [24]. So the following impulsive algorithm without
using any velocity information is proposed:

oo
ui(t) = — Z D1 Z Lij (1) (25(t) — 2i(t))
= EN

4pe (i (1) — 2i(t = hi)) |8t —t1) (@)

where ¢ € V, 6(-) is a Dirac function. Let to = 0, hy = tx — t—1,
when ¢ € (tr—1,tx]. Assume that the control gain p; > 0, p2 > 0,
h < hi < h, and h; belong to a finite set, where h, /i are positive
constants and & € N.

Hence, multi-agent network (1) with impulsive algorithm (2) can be
described by the following impulsive differential equations:

Zi(t)=wvi(t),
0(t)=0, € (tr,tit1] 3)
Avi(tp)=—p1 > Lij(tr)z;(te) —pa2 (zi(tr) —wi(tp—1)),

jev

where Av; () = vi(fz') —vi(te), vi(fz') =lim, 4 v;(t),i € V.
It is assumed that v; () is left-hand continuous at ¢ = Lik, k € N and
v(t) is continuous at to = 0.

Remark 1: In the proposed algorithm (2), the agent ¢, forany : € V,
is required to obtain the sampled relative positions to its neighbors (i.e.,
x;(ty) —x;(tr),j € Ni(t)), and the sampled relative position to itself
in previous sampling instant (i.e., x;(tx) — @;(tx—1)). This is quite
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different from the existing consensus algorithms without velocity in-
formation [11], [14], [23], [24], which require continuous information
of position.

Remark 2: Different from the existing consensus algorithms with
sampled information [16]-[21], the sampling period in the multi-agent
network (3) is not required to be a constant. Hence, the proposed algo-
rithm can be applied to multi-agent network with time-varying or even
uncertain sampling period.

Remark 3: For control input (2), the velocity state of each agent
would be instantaneously changed. This kind of impulsive controller is
useful and practical when the operating time of the impulsive controller
is much smaller than the sampling interval. For example, in multi-robot
systems, the velocity of each robot can be regulated to the desired state
in a very short time, which can be described by the impulsive model.

III. CONVERGENCE ANALYSIS

In this section, sufficient conditions on control gains p1, p2, control
periods i, and the digraph G (¢ ) will be developed so that consensus
can be achieved under control input (2) with switching topology.

From (3), we have v, (tx1+1) = 1,vi(tk+)
2i(tien) = 2i(te) + hiepvs (6) 5 4)
vi (1) = (1= pahu v (67) = p1 Y Lij(tt)
JEV
X x;(tr) — prhrsa Z Lij(thyr)vj (t}f) . 5)
JEV
Let .fl(k) = ;l'g(tk), f‘L(]\) = ;L’g(tk) -+ OL”UL'(L‘:), where o« = 2/p2. It

is easy to show that the multi-agent network (1) achieves consensus, if

hm (k) = hm 0;(k) = 3 where § is a constant. Then, it follows
from (4) and (5) that
Flh 1) = (1= P20 (k) + P2 (),

Bl 1) = 2 + (1= 255 ) 5 ()
—(2/p2 = Ty 1)p1 D7 ey lig(Feg1) 75 (K)
—P1 hk+1 ngy 177 (tk+1)ﬁ7(l‘)

Let &(k) = (@ (k) 24 (k). ... 2k (R)Y,  o(k) =
(01 (k)03 (K),..., 8 (k)T then
(k+1)\ _ ) z(k)
(ﬁ(k—l—l)) =P(k+1)x (Wk)) @)
where
241=(pig) pach) ®
P](k) = (1 — ]]2hk/2)], PQ(k) = (pzhk/Q)I, Pfg(]x) =

(p2hi/2)I — (2/p2hi)p1L(t), and Py(k) = (1 — pahsw/2)I —
prhie L(tg).
To proceed further, the following assumptions are made.
A1) There exists a positive integer [ such that the union of G(¢)
across k € [ko, ko + ] contains a spanning tree, for any k¢ > 0.
A2) The control gains are chosen such that

(p2h)® 2 —poh ©)
2h(2 — poh)lT 2RI

p1 < min {

where [ = sUp; ey pentlin (B}
Lemma 6: 1f assumptions A1) and A2) hold, then P (k) given in (8),
for any k£ € N, is a stochastic matrix with positive diagonal elements.
Proof: Note that pi,pa,h, b > 0, and when assumption Al)
holds, I > 0, which implies that p2h < 2 when assumptions A1) and
A2) hold.
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Then, it is easy to show that when pa7 < 2, P (k) is a non-negative
matrix with positive diagonal elements.

Obviously, P2(k) is a non-negative matrix with positive diagonal
elements.

It can be verified that when pzl_z < 2 and

(p2h)?

< — =
PS 212 = pah)

P3(k) > 0 is a non-negative matrix with positive diagonal elements,
for £ € N.

It also can be verified that when
2 — pg]_l

2hl

P <

P, (k) is a non-negative matrix with positive diagonal elements.

Hence, P (k) is nonnegative matrix with positive diagonal elements,
when assumptions A1) and A2) hold. In addition, P (k)1an = 1an.
Thus, P (k) is a stochastic matrix. O

Lemma 7. 1f assumptions A1) and A2) hold, then HkOH P(k)is
SIA.

Proof: According to the proof of Lemma 6, P (k), P2(k),
P;3(k), and P4(k) are nonnegative matrix with positive diagonal
elements when assumptions A1) and A2) hold. Hence, ZH’CO Pi(k),
ZZL’CAOO Py(k), ZH"O P3(k), and Z[Jrko P4(k), are also non-neg-
ative matrices with positive diagonal elements

Note that
I4kg I+kg
Z P,(k)= <(l+l Z hk>
k=ko k=ko
I+ko l+kg
S Pk (p’ 3 h;)
k=ko k=ko
l+ko P +ko I+ko 9
2
> Pa(k) = <? > hk> I—p Y <p—2 - hk) L(ty).
k=kg k=kg k=kg
4k I+kg 4ko
> Puk <(l—|— 1)-22 Z hk> T=p1 Y heL(te).
k=kq 2 k=kq k=kq
N 1 —a) ol I~
L P = ~ h L =
ot <od ,ulL (1—a)l — u2L>’ where

ZH’“O L(te),0 < a < 1,1 > 0, pu2 > 0, ol — /l,li and
(1 - a)I — paL are nonnegative matrices with positive diagonal
elements. Then, P is also a stochastic matrix and it is easy to check the
edges in the digraph G(P) is the same as the digraph (’(E“rko P(k)).
Let \ be an eigenvalue of matrix P, then det(A\I — P) = 0. Note

that

N
det(A\I —P) = H (/\2 —2M1 — @) + Ap2vi + (1 — 2a)

=1

+apz +apr — p2)7)

where v;,7 = 1,2,..., N are the eigenvalues of L. Let QN =\ —
201 — a) 4+ Apoyi + (1 — 2a) — povi + apeyitapi ;. Then,
Q(1) = apsvi + apivy;. Hence, A = 1 implies v; = 0 for some 1.
When v; = 0

QN = (A= (1-2a) (A - 1),

The union of G(tx) across k € [ko, ko + {] contains a spanning
tree, so L has one simple eigenvalue v; = 0. From 0 < o < 1,
1 — 2« # 1. Hence, from (10), P has one simple eigenvalue A = 1.
It follows from Lemma 4 that g(f)) contains a spanning tree, which
implies that G (Zf;kkoo P (k%)) contains a spanning tree.

(10)
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Fig. 1. Switching topology: G;, ¢ = 1,2, 3, 4.

It follows from Lemma 1 that:

I+ko I+ko
[I Pk >=> Pk (11)
k=kqo k=kg

for some £ > 0.

By Lemma 6, P (k) is a stochastic matrix with positive diagonal ele-
ments. Then, it is easy to show H"H 0 P (k) is also a stochastic matrix.
From (11), G (Hi:rkkoo P(k))also contalns a spanning tree. Then, it fol-
lows from Lemma 5 that the matrix HH"O P(k) is SIA. O

Now we are ready to present our main result as follows.

Theorem 1: If assumptions A1) and A2) hold, then the multi-agent
network (1) with the impulsive algorithm (2) achieves consensus.

Proof: From Lemma 7, if assumptions Al) and A2) hold,
Hitl‘,‘o P(k) is SIA for any ko. It follows from Lemma 2 that
limp—oo P(k)---P(1) = lzNU for some y € R*™. From (7),
lim @7 (k) 3" (k)" = 1any"(#7(0),57(0))", which implies
muiﬁ-agent network (1) achieves consensus. O

Remark 4: Note that poh < 2 when assumptions A1) and A2) hold.
Then, the control gain p, < 2/ I_L, and it is easy to find a suitable p;
according to (9).

Corollary 1: Consider the case of equidistant sampling interval, that
is, hy = h with h being a constant. If assumption A1) holds and

2 —p2h

2h1 }
where [ is given by (10), then multi-agent network (1) with the impul-
sive algorithm (2) achieves consensus.

Corollary 2: Consider the case of fixed communication digraph, that
is, G(tx) = G,k € N. Let L = (I;;) vx ~v be the Laplace matrix of G.
If pohi < 2 and

(p2h)*
2h(2 — pa )l

p1 < min{

(p2h)? 2 —poh
2h(2 — p2h) 1}15}){{1“} 2h Iluec%}x{l”}

p1 < min

then multi-agent network (1) with the impulsive algorithm (2) achieves
consensus.

Corollary 3: Consider the case of both fixed communication digraph
and the constant sampled period, that is, G(tx) = G, hi. = h. L =
(I;;)nxn be the Laplace matrix of G. If G contains a spanning tree
and

(p2h)? 2 — p2h
— axd v ol 1
2h(2 pzh)lié‘i}f{l”} 2h 121153([1“}

p1 < min

then multi-agent network (1) with the impulsive algorithm (2) achieves
consensus.

IV. ILLUSTRATIVE EXAMPLES

In this section, a numerical example is given to illustrate the effec-
tiveness of the proposed algorithm. Consider a multi-agent network (1)
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Fig. 2. Trajectory of the multi-agent network (1) under switched topology, for
p1 = 0.4 and p» = 5. Evolution of (a) x;, and (b) v;.

with the switching topology as shown in Fig. 1. The corresponding La-
pacian matrices of Gy, G2, G3, Ga are

0 0 00 O

0 0 00 O

Li=]10 -1 10 0

-1 0 0 2 -1

0 0 0 0 0

10 -1 0 O

00 0 0 O

Ly=]10 0 1 0 -1

00 0 0 O

o0 0 -1 1

0 00 0 O

0 10 -1 0

Ly=| 0 0 0 0 O

0 00 1 -1

-1 0 0 0 1
and Ly, = 0, respectively. Assume that hy = 0.2,ho = 0.3,h3 =
0.2,hs = 0.3,. --,g(h)—gl, (t7):]2,g(t3)=_"3 G(ts) =
Ga, G(t5) = G1,G(t¢) = Go,---. Then, h = 0.2, h = 0.3, and

sup; ey pentlii(tr)} = 2. According to Remark 4, choose pe = 5 <
2/h = 6.667. It follows from (9) that p; < min{1.25,0.4167}.
Choose p1 = 0.4. Fig. 2 shows that consensus can be achieved with
chosen control gains p; = 0.4 and p2 = 0.5. However, it is noted that
when one control gains p; and p- is chosen to be too large so that the
sufficient condition is not satisfied, consensus can not be achieved as
shown in Fig. 3 and Fig. 4.

V. CONCLUSION

In this technical note, the consensus problem has been studied for
continuous-time second-order multi-agent networks with switching
topology under aperiodic sampled communication based on posi-
tion-only information. Some sufficient conditions have been obtained
to ensure consensus of multi-agent networks. A numerical example has
been given to demonstrate the effectiveness of the proposed algorithm.
It would be interesting to further investigate the multi-agent networks
with quantized communication via hybrid impulsive algorithms to
realize network consensus.
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Fig. 3. Trajectory of the multi-agent network (1) under switched topology, for
p1 = 3.77 and po = 5. Evolution of (a) z;, and (b) v;.
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