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Mobile actor is a promising tool for wireless sensor and actor networks (WSANs) provisioning energy and
time efficient data collection. In this paper, we study actors’ mobility control in WSANs for efficient
events detecting in terms of time and energy consumption. We introduce an innovative approach ORA-
CLE, to make actors predict events before sensors detection and migrate to the areas where the event may
occur. In specific, we propose an event prediction scheme to predict an event from collected sensory data
by utilizing the maximum likelihood estimation. Based on the perception, we design a control policy of
actor’s mobility pattern with Markov decision process. ORACLE not only enables minimal motion of
actors which conserves time and energy to reach the event areas but also is energy-efficiency for sensors
to reduce the forwarding range for event detection message. We evaluate the effectiveness of our pro-
posed scheme through extensive experimental analysis.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

We have witnessed the rapid development of wireless sensor
technologies recently because of the flexibility, self-organization,
and low cost of conventional sensors. The more sensors in a net-
work, the more efficient monitoring environments and processing
sensory data is necessary for conserving both lifetime and energy
of the network [1,21]. Introducing actors into the network, called
wireless sensor and actor networks (WSANs), successfully accom-
plishes this requirement to collect and process data from sensors
in the network [2–5,22]. In WSANs, sensors are low-cost and
low-power and deployed throughout a field to sense environ-
ments, while actors are powerful and resourceful and are deployed
much less than the number of the sensors. The actors collect and
process data reported by the sensors and perform actions accord-
ing to situations when the sensors detect events in the monitored
field.

In general, the application scenarios in WSANs can be
categorized basically into two types: complement of existing
sensor networks and new application paradigms. The first category
includes application scenarios where actors are employed for com-
plementing/enhancing traditional sensor networks. For example,
actors work as mobile sinks to achieve energy- and time-efficient
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data collection in the network [6]. Also, actors are used as energy
suppliers to recharge energy in the battery of deployed sensors.
Another category includes application scenarios where actors are
employed in a new way such that actors react to events and work
for ‘‘mission’’ accomplishment in event areas. For example, wildfire
is detected by sensors deployed in a forest while actors receive
sensor reports including a fire location and its intensity and ac-
tively move to extinguish a fire. Another example is, when a disas-
ter happens (e.g., earthquake and flooding) and some people are
missing, sensors find locations of victims and safe routes and
accordingly actors guide a rescue team to the victims along the
routes through a dangerous area [8]. In this paper, we focus on
WSANs for the new application paradigms and assume an action
area of actors coincides with an event area or is very close to the
event area.

In literature, however, actors always walk randomly around the
network before they receive event reports from sensors. It may
cause not only data-delivery delay but also energy consumption
on the sensors if the location of the actors is far from the location
of the sensors nearby event areas. This is because many sensors are
involved in relaying data to the actors which results in consuming
enormous amounts of energy over the network. Also, if the actors
take quite long time to migrate to action areas due to the long dis-
tance between the action areas and the location of the actors, such
a waste of time could inflict considerable damage on mission-
critical applications. Especially for applications dealing with emer-
gent situations (e.g., lifesaving application), it is important for the
actors to take less time to move to action areas after detecting
events. An intuitive solution is to relax criteria of detecting events
(e.g., decreasing a threshold) so that actors could arrive at action
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Fig. 1. Application example: sensors monitor wildfire and an actor predicts an event from sensor reports and moves toward the possible event [left] and finally is close to a
location where the event occurs [right].
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areas just on time when events occur. However, it might cause
more energy consumption on sensors since the sensors are too sen-
sitive and frequently detect events and report to actors a number
of times. Further more, it might increase a false alarm rate of event
detection which causes the waste of network bandwidth and en-
ergy. We argue that such problems can be solved by actor mobility
control which makes actors to predict event areas and move to-
ward the areas before the events actually occur. Hence, our objec-
tive is to design effective control of actor mobility to maintain
quality of service, especially in case of emergent situations, while
saving the energy on sensors and the time for the actors to migrate
after the events.

To this end, first, we propose event prediction scheme for an ac-
tor to predict an event from collected sensory data by using the
maximum likelihood estimation. The actor observes sensor read-
ings along the way to move around the network before any event
occurs. The actor can only encounter a subset of sensors during a
short time with partial observations of the network, and estimate
how likely an event occurs under the current condition. Second,
we design a control policy of actor mobility with reinforcement
learning in Markov decision processes. The actor determines next
direction to migrate toward possible event areas by following the
control policy based on the event prediction. Fig. 1 illustrates one
of application examples, i.e., a WSAN is deployed for wildfire mon-
itoring. Sensors monitor wildfire and report sensory data to an ac-
tor when they are in its communication range and the actor moves
toward a possible fire by following the mobility control policy (left
hand of Fig. 1). After some time periods, the actor gets close to a
location on fire and extinguishes the fire immediately before it
spreads (right hand of Fig. 1).

The remainder of our paper is organized as follows. Section 2 re-
views related works. In Section 3, we propose the event prediction
scheme. In Section 4, we design the actor mobility control policy
based on the event prediction scheme. Section 5 evaluates the per-
formance of our proposed control policy and presents the results
with some discussion. Finally, we give concluding remarks and
outline the directions for future work in Section 6.

2. Related work

Research issues on WSANs have been widely addressed by
many articles recently [2–12]. Selvaradjou et al. [11] formulate
the problem of optimal assignment of mobile actors in WSANs as
Mixed Integer Non Linear Program, in order to conserve the energy
needed for actor mobility but otherwise fulfill the deadline and re-
source constraints of events. Akyildiz and Kasimoglu [2] introduce
lots of open research challenges for sensor-actor and actor-actor
coordination and communication problems in WSANs. Melodia
et al. [10] handle the coordination problem in WSANs. They pres-
ent a coordination framework and developed an optimal solution
for the sensor-actor coordination based on an event-driven parti-
tioning paradigm and formulated it as an ILP (Integer Linear Prob-
lem). Melodia et al. [8] also propose a location management
scheme to localize actors with minimal energy expenditure for
sensors and design algorithms to deal with network congestion
for traffic generated in the event area and with modeling actors’
mobility for optimal task accomplishment based on the character-
istic of the events. Li et al. [12] propose a novel localized algorithm,
iMesh, which uses no global computation and generates constant
per node storage load to deliver Distance-sensitive Service Discov-
ery in WSANs. A route design problem for actors has been ad-
dressed to minimize their average inter-arrival time to sensors in
[9]. The authors prove the problem is NP-hard and propose an opti-
mized solution for the actors to effectively collect data from every
sensor in the network by using minimum spanning trees.

However, those papers only consider the actors’ motion after
the events occur. To the best of our knowledge, this is the first
work to deal with controlling actor mobility before the events oc-
cur. Our paper aims effective actor’s mobility control which makes
the actor migrate to event areas in a short time after sensors detect
events by accurately predicting the event areas.

3. Event prediction scheme

In this section, we propose an event prediction scheme for an
actor to predict an event under the current condition as well as
to get a clue to the decision on whether the actor is on a ‘‘right’’
way to a possible event area. The actor observes sensory data from
a subset of sensors and estimates a probability of how likely an
event occurs from these partial observations using maximum like-
lihood estimation (MLE). The obtained probability is used for the
actor mobility control in Section 4. First, we briefly describe the
network model and then present how the event prediction scheme
works in details.

3.1. Network model

A typical WSAN is composed of a large number of sensors Ns
and some actors Na such that Ns� Na. The actors are deployed
and move randomly around the network at the beginning of sur-
veillance. An actor collects sensory data from every sensor encoun-
tered within a time window whose size is determined in advance.
The time window is shifted by a unit of time. Data collected from n
sensors in the time window is stored as the 1 � n vector:

xðDTÞ ¼ ½x1; x2; . . . ; xn� ð1Þ

where xn is the sensory data of nth visited sensor within the time
window. The data in the vector is deleted when the data is already
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out of the time window. This is because data in the vector should
be temporal- and spatial-correlated each other to derive a proba-
bility of an event in terms of time and space (specified in the next
section). On the other hand, the sensors are densely deployed on a
sensing field and monitor environmental phenomenon and period-
ically store sensory data on themselves. Each sensor’s communica-
tion range is very limited and the sensors can communicate only
with their neighbors so that a sensor can transmit data directly
to the actor only when the actor is within the sensor’s range.
When the sensor detects an event, it routes its information to
the closest actor. According to the current trend, we apply a geo-
graphical routing paradigm to the sensor-actor communication
[12,13]. Hence, the sensors require actors’ location management
and we apply an energy-aware solution [8] to the network model
and its location management scheme takes advantages of two
strategies: location updating and location prediction. Actors’ loca-
tion updates are broadcasted in limited ranges using Voronoi dia-
grams while actors’ locations are predicted at the sensor-side
based on previously received updates using Kalman filtering. An
actor broadcasts location updates in its Voronoi cell if the actor’s
actual location is far from a location predicted by sensors within
the cell.

3.2. Maximum likelihood estimation (MLE)

We systematically show how to utilize the MLE for an actor to
predict an event in this section. The MLE is a widely used statistical
method to provide estimates of a statistical model’s parameters
from given data such that the estimates fit the model. The MLE
has been applied to several research fields which include signal
processing in sensor networks [14,15].

We use spatial correlation among sensors to apply the MLE.
For the dense sensor network, sensory data is highly spatial-cor-
related because sensors are close to each other [16]. From this
point of view, such sensory data can be described by a normal
distribution and the data distribution is different on a probability
of an event. For example, in fire detection application, each sensor
collects temperature of surroundings and the probability of devel-
oping fire is high in an area where the mean of temperature is
higher and its variance is less than that of other areas. Consider
an actor estimates the mean and the variance with the MLE by
a set of sensory data collected on a route and derives the proba-
bility of an event. Assume the probability of the event can be
determined by the mean and the variance of a unit area which
is too large for the actor to observe in a short time period. In
practical use, it is not difficult to obtain such a function for the
probability of the event by computer simulations and/or real
experiments. Then, the goal becomes to estimate the mean and
variance in the vicinity of the actor’s current location from its
partial observations.

To this end, we first define parameter h such as

h ¼ ðl;r2Þ ð2Þ

where parameter l is the mean and r2 is the variance in the vicinity
of the actor’s current location. The actor wants to estimate h from
collected sensory data x(DT) in time window DT. x(DT) is collected
from closely deployed sensors so as described by the normal distri-
bution. The normal distribution N(l,r2) has a probability density
function which is

f ðxjl;r2Þ ¼ 1ffiffiffiffiffiffiffi
2p
p

r
exp �ðx� lÞ2

2r2

 !
ð3Þ

Sensory data in x(DT) is independent and identically-distributed
and the corresponding probability density function can be given
by
f ðxðDTÞjl;r2Þ ¼
Yn

i¼1

f ðxijl;r2Þ

¼ 1
2pr2

� �n=2

exp �
Pn

i¼1ðxi � lÞ2

2r2

 !
ð4Þ

Thus, we maximize the following likelihood.

LðhÞ ¼ f ðxðDTÞjhÞ ð5Þ

To maximize the Eq. (5), we maximize its logarithm, called the log
likelihood, which monotonically increases over the range of the
likelihood. We differentiate the log likelihood with respect to l
and r and equate to zero, respectively. The differentiated log likeli-
hood with respect to l can be described as

@

@l
log

1
2pr2

� �n=2

exp �
Pn

i¼1ðxi � lÞ2

2r2

 ! !
¼ 0 ð6Þ

Eq. (6) can be rewritten for ease of computation as

@

@l
log

1
2pr2

� �n=2

exp �
Pn

i¼1ðxi � �xÞ2 þ nð�x� lÞ2

2r2

 ! !
¼ 0 ð7Þ

where �x is the mean of the collected sensory data. Then, we have

l̂ ¼ �x ¼
Xn

i¼1

xi=n ð8Þ

Similarly, we maximize the log likelihood with respect to r and
have

r̂2 ¼
Xn

i¼1

ðxi � l̂Þ2=n ð9Þ

Substitute l̂ into Eq. (9) and finally we obtain the maximum likeli-
hood estimator as

ĥ ¼ ðl̂; r̂2Þ ¼ �x;
Xn

i¼1

ðxi � �xÞ2=n

 !
ð10Þ

The actor calculates the probability of an event which depends on
the mean and the variance of sensory data, respectively. Assume
probability density functions of the mean and the variance are given
in advance by computer simulations and/or real experiments. If the
probability density function of the mean is denoted as fM(l) and the
probability density function of the variance is denoted as fV(r2), the
joint probability density function can be written as fM,V(l,r2). The
actor can obtain the probability of the event when the mean l
and the variance r2 are satisfied simultaneously and then the cur-
rent probability of the event Prt can be computed by

Prtða 6 M 6 b; c 6 V 6 dÞ ¼
Z b

a
dl
Z d

c
fM;V ðl;r2Þdr ð11Þ

where a, b, c, and d are constant values and show each range which
values of (M,V) fall within. The actor finds the ranges for the mean l

_

and the variance r̂2 obtained by Eq. (10) and finally calculates the
probability of the event by Eq. (11).

4. ORACLE: Actor mobility control scheme

In this section, we propose the actor mobility control scheme,
ORACLE, for the actor to decide a direction of migration while
observing sensors before any event occurs. A main idea is as fol-
lows: (1) The actor compares the current probability of the event
Prt to the previous probability Prt�1 which is calculated with sen-
sory data in time window DT � 1; (2) The actor decides where to
migrate by following a control policy based on a current state of
whether the probability Prt is higher or lower than Prt�1. The actor



1032 K. Ota et al. / Computer Communications 35 (2012) 1029–1037
is motivated by a reward to be given if the probability Prt is higher
than the previous one and the control policy shows the actor a
direction where it is high possible for the actor to obtain the re-
ward; and (3) The actor migrates to a new location, observes sen-
sory data, and calculates the current probability. Then, it repeats
the procedures (1) to (3) until it receives event reports from sen-
sors. We achieve those procedures using reinforcement learning
in Markov decision processes (MDPs) described in Section 4.2.
We first define a direction where the actor migrates at the next
time slot in the following section before going onto details of
MDP based actor mobility control.

4.1. Definition of direction

The actor can observe sensory data only when it is within a
transmission range of a sensor. It is important to effectively select
sensors to be visited since unnecessary visiting results in consum-
ing both energy on sensors and time for the actor to migrate. Thus,
we define a direction as one of neighboring nodes where the actor
migrates at the next time slot. The actor selects one node based on
features of each neighbor as criteria to make a decision. For exam-
ple, neighbor i produces more sensory data than the others and
neighbor j maintains low error rate in its sensory data. For the ac-
tor to decide the direction without finding specific sensors, we de-
fine a feature of each sensor, called the intensity of a sensor, to
show the sensor’s surrounding information by involving its neigh-
boring nodes. The intensity quantifies information produced by a
sensor and its neighbors and shows how diverse data the informa-
tion includes. For example, if sensors observe temperature of an
environment, the intensity of a sensor is low when the sensor
and its neighbors all produce the similar temperature values. Intu-
itively, when the actor finds the probability of the event increases
at the current sensor, it may prefer to select a neighbor whose
intensity is low since sensors around the neighbor possibly pro-
duce the similar data to the current sensor’s data. However, only
the intensity is not enough to decide which neighbor is the best
to select, then other related conditions should be considered. Thus
we introduce the MDP to the actor mobility control which is de-
scribed in Section 4.2.

For calculating the intensity on each sensor, a sensor exchanges
its own sensory data with its neighbors periodically but much less
frequently than sensing environments. The sensor calculates its
own intensity with all received data in a period of time and stores
it locally and temporarily. The intensity is recalculated when new
data comes in another period of time in order to keep temporal
correlation among sensory data. The intensity is computed using
entropy as follows.

Let X be the random variable representing a certain type of
sensory data (e.g., temperature) from sensor i and its neighbors.
For the sake of computation, we discretize the continuous sensory
data values into Q disjoint intervals. For example, if the tempera-
ture value is 15 degrees Celsius and the temperature values are
separated by five, we say the temperature is three. If we observe
the sensors for N time slots in a period of time DT, the time series
of the sensory data can be denoted by DDT = (d0,d1, . . . ,dN�1) where
dt 2 [0,Q � 1], 0 6 t 6 N � 1 is the sensory data in time slot t.
Assume each of these Q data values appears mv times in DDT,
0 6 v 6 Q � 1. Thus, the probability of the sensory data on the node
being equal to particular value v can be computed as mv/N.
Therefore, the entropy of X is:

HðXÞ ¼ �
XQ�1

v¼0

mv

N
log

mv

N
ð12Þ

The entropy is denoted as the intensity and the intensity of node i at
time t can be described as
IntensityiðtÞ ¼ HðXÞ ð13Þ

Note that each sensor computes the intensity based on all sensory
data it holds, which may consist of its own data and data received
from a subset of all its neighbors. For example, a few or more data
come from one neighbor and none of data comes from another
neighbor. A sensor can compute the intensity without waiting for
all neighbors to finish forwarding their sensory data to the sensor.
Hence, a priority of exchanging packets for computing the intensity
is lower than that of transmitting packets for notifying an event to
the actor.

4.2. Reinforcement learning in Markov decision processes

We design actor mobility control using reinforcement learning
in MDPs. The MDP is a well-known mathematical framework to
dynamically formulate optimization problems of stochastic
systems such as a queuing model, an inventory model, a reliability
system, and so forth. More precisely, the MDP provides a decision-
making model for changeable environments. When a process is in
state s and a decision-maker takes action a which is available in
state s, the process’s state changes stochastically from state s to a
new state s0 at the next time step. The decision-maker obtains cor-
responding reword r on given action a and state s0. The decision-
maker follows policy p which shows an action to be taken under
the current state.

The MDP has been widely adopted for sensor network research
[17,18]. One is target tracking in wireless sensor networks which
accomplishes energy conservation of sensors by effectively pre-
dicting a target’s trajectory using a Hierarchical MDP [17]. On the
other hand, a ferry’s mobility control framework in mobile ad
hoc networks is designed based on an extended MDP called Par-
tially Observable MDP (POMDP) [18], which aims for a data ferry
to encounter as many as randomly moving sensors by controlling
the ferry’s motion using the POMDP. Our research is inspired by
this research but we apply the MDP instead of the POMDP since
the actor can directly observe the current state by the event predic-
tion scheme presented in Section 3.

The MDP is represented by a 4-tuple (S,A,P�(�, �), r(�, �)) where,

� S is a set of states and state st denotes an increase or a decrease
in the probability of the event at current time step t comparing
to the previous one at previous time step t � 1. Thus, S holds
two states such that S :¼ {increase,decrease}.
� A is a set of actions and action at denotes one of neighboring

sensors where the actor will migrate at current time step t.
Based on the intensity of the neighboring sensors, A includes
three sensors whose intensity is the highest, medium, and the
lowest in all neighbors respectively. The actor will choose one
of those three sensors to migrate so that the set of actions can
be A :¼ {jh, jm, jl}.
� P�(�, �) is the state transition function represented by Pa(s,s0) = Pr

(st+1 = s0jst = s,at = a) which is the probability of state s’ at next
time step t + 1 if the actor chooses action a in state s at time step
t.
� r(�, �) is the immediate reward represented by r(s,a) which is the

reward the actor obtains when the actor takes action a after that
it observes state s. Here we set r(s,a) = 1 when s = increase
otherwise r(s,a) = �1.

The main objective is to find a policy p for the actor to migrate
to next sensor (action) under the current probability of the event
(state). p is a function specifying the action p(s) to be selected
when the current state is s. Whenever the actor selects an action
and then a state is changed, the actor obtains a reward r(s,a) based
on given state s and action a. The goal is to choose a policy p that



Fig. 2. The flowchart of the actor mobility control scheme ORACLE.
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will maximize some cumulative functions of the rewards which
can be denoted by R(sT,aT) where sT and aT are a history of states
and actions over a potentially long time window T respectively.
That is formulated as:

p� ¼ arg max
p

E½RðsT ; aTÞjat ¼ ptðst�1; at�1Þ� ð14Þ

Although the actor’s mobility is modeled as Markovian such that it
decides the next sensor to migrate only depending on a current
state, the actor does not know the exact probabilities of the state
transition Pa(s,s0). Then, the problem becomes a reinforcement
learning problem in the MDP. The reinforcement learning is an area
of machine learning to deal with a problem for an actor to decide an
action with observations from an environment and to learn a policy
capable to maximize rewards by series of actions [19]. A basic idea
of the reinforcement learning is the actor repeats trials of taking
several actions with several states and figures out an optimal policy
from the experience.

For effective learning of the actor, a state-value function is de-
fined to evaluate each state where the actor expects to be given re-
wards afterwards:

VpðsÞ ¼ Epðrtþ1 þ crtþ1 þ . . . :jst ¼ sÞ ¼ Ep
X1
k¼1

ck�1rtþkþ1

 !
ð15Þ

where c is the discount rate (0 < c 6 1) to evaluate a reward given in
the future which is discounted over time. This is because a
farther-future reward is less guaranteed since the environment
surrounding the actor may change over time and the actor may
not get a constant reward.

Eq. (15) considers only the impact of a current state on expected
cumulative-rewards. However, in our scenario, the actor also con-
siders the impact of an action selected when in the current state on
the rewards. More specifically, when the probability of the event
increases/decreases at a currently-visited sensor, it is a key to fig-
ure out which neighbors should be selected in order to make more
rewards in the future. For this purpose, an action-value function is
defined to evaluate a pair of a state and an action:

Qpðs; aÞ ¼ Epðrtþ1 þ crtþ1 þ � � � jst ¼ s; at ¼ aÞ

¼ rðs; aÞ þ c
X

s0
Vpðs0ÞPaðs; s0Þ ð16Þ

Eq. (16) implies the action-value function will give an expected
value of the cumulative rewards called a Q-value when the actor
simply tries action a in state s and then follows policy p. An optimal
action-value function which satisfies the above action-value func-
tion for every pair of a state and an action is described as:

Q �ðs; aÞ ¼max
a

rðs; aÞ þ c
X

s0
Q �ðs0; aÞ

" #
ð17Þ

From Eq. (17), the actor will consider action a as an optimal action
in state s when its Q-value is maximized. In other words, the policy
p(s) can be determined by the optimal action-value function Q⁄,
which is a precise estimate of the action-value function Qp in Eq.
(16). Then, the question is how to update a Q-value during the ac-
tor’s experience in order to finally obtain the optimal-value function
Q⁄.

We apply a reinforcement learning technique called Q-learning
to the problem [19]. The basic idea of Q-learning can be described
as follows. When the actor takes an available action at in state st at
time step t, Q-value Q(st,at) is updated with maxatþ1 Qðstþ1; atþ1Þ
where the actor is expected to choose action at+1 which has the
maximum Q-value in state st+1. Such a procedure can be formu-
lated for any combination of states and actions as:
Qðst; atÞ  Qðst; atÞ þ a

� rtþ1 þ cmaxatþ1 Qðstþ1; atþ1Þ � Qðst; atÞ
� �

ð18Þ

where a is the learning rate (0 6 a 6 1) which indicates how much
the most recent information is included to the Q-value (e.g., a = 0
means the Q-value will be never updated). Q-learning means that
the Q-value converges to an optimal Q-value with probability one
if every action is chosen by the actor a number of times although
these actions are chosen in a random way. However, the actor is ex-
pected to acquire as many as rewards before obtaining the optimal
Q-value in order to get close to a possible event area. In other word,
the actor requires to gain experience efficiently to obtain the
optimal Q-value in the shortest possible time. Therefore, some
action-selection rules are proposed [19] and we apply the mostly
used e-greedy action-selection rule. In the e-greedy rule, an action
with a maximum Q-value at time step t is selected while the other
actions are randomly selected with small probability e. This can uti-
lize estimated Q-values obtained from learning and at the same
time efficiently seek better solutions for future.

Consequently, the actor determines a direction to migrate in the
network while predicting an event from collected sensory data
according to the following nine phases. Fig. 2 shows a flowchart
of the actor mobility control scheme and the numbers in the figure
are corresponding to the number of each phase.

(1) Initialize Q-values for every entry of S � A
(2) Collect data from a sensor nearby the actor (current visited

sensor) and calculate the probability of the event Prt at cur-
rent time step t using MLE.

(3) The probability is compared to the probability Prt�1 com-
puted at previous time step t � 1, and then observe a current
state st and obtain a reward rt�1 according to st.

(4) Update Q-value by Eq. (18).
(5) Request sensors within a communication range of the actor

to send their intensity and update a set of actions A.
(6) Shift a time step from t to t + 1 and migrate to one of neigh-

bor sensors chosen by the e-greedy action-selection rule.
(7) Repeat phases (2) to (6) until the actor obtains an optimal

Q-value.
(8) After the actor obtains the optimal Q-value, phase (6) is

replaced to the following phase (6)0 such that (6)0 shifts a
time step t to t + 1 and migrates to one of neighbor sensors
chosen by the optimal action-value function Q⁄



Fig. 3. Distance from the event area to the actor vs. monitored area.

Fig. 4. Moving range of the actor vs. monitored area.
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(9) Repeat phases (2), (3), (5), and (6)0 until the actor receives
event reports from sensors.

5. Performance evaluation

In this section, we evaluate ORACLE by simulation experiments
using Netlogo simulator [20]. We consider one actor dispatched to
a monitored area and one event to occur in the area. Three key per-
formance metrics in the experiments: distance, range, and energy
consumption. The distance is between the actor and a sensor
which first detects an event. The distance is shorter when the actor
is closer to an event area, which implies the actor successfully pre-
dicts the event. This metric is used for all sets of experiments. The
range indicates a moving range of the actor in the monitored area.
It is ideal for the range to be minimized while the shorter distance
is maintained. This metric is used in Section 5.1. The energy con-
sumption indicates sensor energy consumed by introducing the
event prediction scheme and additional contacts with the actor.
It is important to reduce the energy consumption as much as pos-
sible since the sensor energy is battery-powered and very limited.
This metric is used in the last section.

In our network settings, a number of sensors are randomly and
densely deployed and the starting point of the actor is a fixed po-
sition. The event area is randomly chosen within the monitored
area and environmental values are set on each sensor, which are
spatially-correlated to the event area and change every unit of
time. We randomly generate 50 network-examples for each net-
work setting to obtain the distance, the range, and the energy
consumption respectively from the average over those examples.
The main parameters are set in the experiments as follows: the
monitored area is from 80 � 80 m2 to 160 � 160 m2 in each set
of experiments. A transmission range of sensors is 10 m and that
of the actor is the same in this experiments. We use q to denote
the rate of changing environmental values and two situations are
considered: changeable and unchangeable environments. We set
q = 0.5 and 0.02, respectively for the two situations. The actor mi-
grates from sensor to sensor at one time step t and the environ-
mental values change with q based on t. For example, when
q = 0.5, the environmental values will change per two time steps.
We use k to denote the rate of exchanging data between sensors
to compute the intensity for the event prediction scheme. We set
k = 1, 0.3, 0.2. For example, when q = 0.5 and k = 1, sensory data is
exchanged per two time steps. We set e = 0.01, 0.05, 0.1, 0.2 for
the probability used in the e-greedy action-selection rule,
respectively.

5.1. ORACLE vs. random walk model

In the first set of experiments, we compare ORACLE with a ran-
dom walk model where the actor randomly migrates from sensor
to sensor randomly. For random walk model, the actor ‘‘patrols’’
the monitored area without following any mobility control policy
until it receives event reports from sensors. Other parameters such
as the transmission range of the actor are the same for both mod-
els. In this experiments, we set the parameters q = 0.5, k = 0.3, and
e = 0.1. Fig. 3 shows the distance from the event area to the actor
over different monitored area by using the random model and
ORACLE, respectively. The performance of the actor using ORACLE
is better for a larger-scale network (160 square-meter area) since
the actor has more opportunities to learn the optimal Q-value by
encountering more various sensors. Fig. 4 shows the moving range
of the actor. We can see that the actor can minimize migration by
applying ORACLE while it effectively predicts the event area.

We also evaluate performance with different variances of envi-
ronmental data observed by sensors. We assume data collected
from closely deployed sensors is described by a normal distribu-
tion and the actor estimates parameter h based on it as mentioned
in Section 3.2. Thus, we investigate the impact of the variance on
the performance in terms of the distance and the moving range.
We vary the variance on the basis of a value used in the previous
experiments and indicated as sigma on x-axis in Figs. 5 and 6 for
simplicity. In this experiments, the monitored area is fixed to
120 square meter and other parameters are the same as the previ-
ous experiments. In Fig. 5, ORACLE still outperforms the random
walk with changing the variance and however larger or smaller
variance makes the performance worse since it may mislead the
actor on predicting the probability of the event in some cases. On
the other hand, the moving range of the actor using ORACLE is
smaller with the smaller variance as shown in Fig. 6. The actor
may require expanding a range to migrate in order to find the opti-
mal Q-value when the variance is larger. However, ORACLE gets
better performance than the random walk with every different
variable.

From this set of experiments, we can conclude that the actor
can successfully control its mobility by predicting event areas with
minimal migration by using ORACLE even with different variables
under the normal distribution. The scalability of ORACLE is also
observed from the experiments.



Fig. 5. Distance from the event area with different variances in 120 square-meter
area.

Fig. 6. Moving range of the actor with different variances in 120 square-meter area.

Fig. 7. Distance from the event area to the actor under two different environmental
conditions.
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5.2. Impact of the rate of environmental change on the distance

In the second set of experiments, we evaluate ORACLE in terms
of the distance under two different situations: changeable environ-
ment and unchangeable environment with q = 0.5, 0.02 respec-
tively. The changeable environment means environmental values
drastically change at each time step so that the event tends to oc-
cur in a short period. Likewise, the unchangeable environment
indicates the opposite situation. The other parameters are fixed
k = 0.3 and e = 0.1. Fig. 7 shows the distance from the event area
to the actor with different rate of changing environments. The per-
formance of the actor under the unchangeable environment is
slightly better especially in a large-scale network. This is because
the actor collects sensory data over a long period and estimates
the optimal Q-value more precisely from accumulated experience.
Experiment results indicate that ORACLE has the temporal-
scalability as well as the spatial-scalability as shown in Section 5.1.
Fig. 8. Distance from the event area with different probability in changeable
environment.
5.3. Impact of different values of the probability e on the distance

In the third set of experiments, we evaluate ORACLE in terms of
the distance with different probability used in the e-greedy action-
selection rule, e = 0.01, 0.05, 0.1, 0.2, under the changeable and
unchangeable environments, respectively. The higher probability,
the more every action has a chance to be selected in a random
way similar to the random walk model. The data exchanging rate
is fixed to be k = 0.3, and the rate of environmental change is set
as q = 0.5, 0.02 according to two different environmental condi-
tions. Fig. 8 shows the distance from the event area to the actor
with different probabilities under the changeable environment.
Though there is no significant difference among performance with
different probabilities, the performance of the actor is unstable
when probability e is high (e = 0.2), such that the better perfor-
mance is observed in the smaller-scale network while the perfor-
mance gets worse in the large-scale network. On the other hand,
under the unchangeable environment as shown in Fig. 9, the per-
formance with the higher probability is better because information
the actor can obtain from sensors may be limited in the unchange-
able environment and it is helpful for the actor to seek better solu-
tions by randomly selecting the next action.

The results of the experiments are useful to determine the
parameter e under different scenarios such as large- or small-scale
network and a changeable or unchangeable environment. The
probability between e = 0.05 and e = 0.1 is suitable for any scenario.



Fig. 9. Distance from the event area with different probability in unchangeable
environment. Fig. 11. Average energy consumption with different rate of exchanging data

between sensors.
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5.4. Impact of the rate of exchanging data between sensors on the
distance and the energy

In the last set of experiments, we evaluate ORACLE in terms of
the distance and the energy consumption of sensors by varying
the rate of exchanging data between sensors, i.e., k = 1, 0.3, 0.2,
respectively. The energy consumption is calculated using the link
metric [8]: E = 2Eelec + Eampda where a is the exponent of the path
loss propagation (2 6 a 6 5), Eamp is a constant [J/(bit �ma)], and
Eelec is the energy for the transceiver circuitry to transmit or re-
ceive one bit [J/bit] � a = 2, Eamp = 10p, and Eelec = 50n are used in
this experiment. The other parameters are fixed as q = 0.5 and
e = 0.1.

As shown in Fig. 10, the exchanging rate has little impact on the
performance of the actor. On the other hand, however, Fig. 11
shows the average energy consumption is much less when the
exchanging rate is low. The results indicate that the sensor energy
can be saved while the performance of the actor is maintained with
the low rate of exchanging data among sensors. We can conclude
that the actor can migrate to the event area both time-efficiently
and energy-efficiently when the event occurs with ORACLE.
Fig. 10. Distance from the event area with different rate of exchanging data
between sensors.
6. Conclusion

In this paper, we have proposed ORACLE which is a time and en-
ergy efficient scheme to control the actors’ movement with event
prediction. It has been demonstrated that with ORACLE (1) the ac-
tor can minimize migration comparing to the conventional actor
mobility model while it effectively predicts the event area; (2)
ORACLE has the temporal-scalability as well as the spatial-scalabil-
ity; (3) appropriate parameter values are systematically found for
better performance according to different situations; and (4) the
sensor energy can be saved while the performance of the actor is
maintained. For our future work, we will consider multi-actors’
mobility control to deal with several events occurring simulta-
neously regarding velocity of each actor, intensity of each event,
and mutual correlation of the both metrics.
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