
Computer Networks 56 (2012) 2080–2095
Contents lists available at SciVerse ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/locate /comnet
A bandwidth and effective hit optimal cache scheme for wireless
data access networks with client injected updates

Mursalin Akon, Mohammad Towhidul Islam, Xuemin (Sherman) Shen ⇑, Ajit Singh
Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
a r t i c l e i n f o

Article history:
Received 28 October 2010
Received in revised form 18 October 2011
Accepted 17 February 2012
Available online 2 March 2012

Keywords:
Wireless data access
Cache
Replacement policy
Access scheme
Data update
Proactive and reactive data access
1389-1286/$ - see front matter � 2012 Elsevier B.V
doi:10.1016/j.comnet.2012.02.015

⇑ Corresponding author.
E-mail addresses: mmakon@bbcr.uwaterlo

mtislam@bbcr.uwaterloo.ca (M.T. Islam), xshen
(X. (Sherman) Shen), asingh@uwaterloo.ca (A. Singh
a b s t r a c t

In this paper, we propose an optimal cache replacement policy for data access applications
in wireless networks where data updates are injected from all the clients. The goal of the
policy is to increase effective hits in the client caches and in turn, make efficient use of the
network bandwidth in wireless environment. To serve the applications with the most
updated data, we also propose two enhanced cache access policies making copies of data
objects strongly consistent. We analytically prove that a cache system, with a combination
of our cache access and replacement policy, guarantees the optimal number of effective
cache hits and optimal cost (in terms of network bandwidth) per data object access. Results
from both analysis and extensive simulations demonstrate that the proposed policies out-
perform the popular Least Frequently Used (LFU) scheme in terms of both effective hits and
bandwidth consumption. Our flexible system model makes the proposed policies equally
applicable to applications for the existing 3G, as well as upcoming LTE, LTE Advanced
and WiMAX wireless data access networks.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, we have witnessed extraordinary
improvements in computing electronics and wireless com-
munications. These inventions are promising flexibility to
our daily lives. Traditionally, cellular devices were used
for voice communication. In contrast, modern mobile com-
munication devices, such as smart phones, personal digital
assistants (PDAs) and other hand-held computers are pow-
erful general purpose computing devices with communica-
tion capabilities. These devices create the platform for
computing and data access from any where and at any time
by using existing high bandwidth 3G, under deployment
LTE, and expected LTE Advanced and IEEE 802.16 m data ac-
cess networks. Due to these emerging technologies, many
necessary and entertaining mobile Internet applications
. All rights reserved.

o.ca (M. Akon),
@bbcr.uwaterloo.ca
).
such as Mobile IP telephony, mobile TV, video-on-demand
(VOD), video conference, tele-medicine, mobile online
banking, stock market tracking, instant messaging, on the
road adaptive navigation, multi-player games have become
a reality. Live Internet applications, such as online social
networking (i.e., Facebook [1], Qzone [2], MySpace [3],
Twitter [4]), document storage and sharing (i.e., Skydrive
[5], Flickr [6], Picasa [7], Photobucket [8], Dropbox [9]),
video sharing (i.e., Youtube [10], Youku [11]) have changed
the way people communicate with each other, and store
and share their multimedia contents and documents. The
benefits and features of these Internet applications are
made available at the expense of huge bandwidth con-
sumptions, burdening the communication infrastructure.
Mobile devices with faster processor, variety of sensors
and powerful operating systems are becoming more afford-
able. As more users subscribe for wireless data access ser-
vices, the problem of bandwidth is simply going to get
worse. Modernizing wireless communication infrastruc-
ture towards higher capacity is extraordinary expensive.
Thus, the service provides have no choice but to look for

http://dx.doi.org/10.1016/j.comnet.2012.02.015
mailto:mmakon@bbcr.uwaterloo.ca
mailto:mtislam@bbcr.uwaterloo.ca
mailto: xshen@bbcr.uwaterloo.ca
mailto:asingh@uwaterloo.ca
http://dx.doi.org/10.1016/j.comnet.2012.02.015
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

M. Akon et al. / Computer Networks 56 (2012) 2080–2095 2081
alternate solutions and user incentive mechanisms [12–
14].

In a mobile information retrieval system, databases and
files are hosted at a remote server. Conventionally these
servers are directly connected to the wired networks to
make the data access process faster and feasible. When a
wireless user accesses data objects from the server, all
communications have to pass through the channels of
the wireless network. In spite of many improvements,
wireless channel bandwidth is the scarcest resources, mak-
ing data access in wireless networks very expensive. To
reduce the data access cost, a client has to be very eco-
nomic about the amount of data access. Additionally, when
data is accessed a client must make the best utilization of
the wireless channels. Many efforts have been put towards
the best utilization of the available wireless channels. In
such efforts, some applications behave adaptively depend-
ing on the state of the wireless channel, available band-
width and other resources. For example, a mobile image
retrieval system may retrieve images whose quality is
adjusted according to the available bandwidth. A mobile
device Internet browser retrieving compressed hypertext
documents from the server and decompressing before
displaying is another example of environment aware appli-
cations. However, developing such network aware applica-
tions is not trivial, particularly because the application
logic as well as the development process become excep-
tionally complex [15]. In wireless data access applications,
caching recently accessed objects is a very practical ap-
proach to reduce the amount of data access, and hence,
cost of data access. Notice that cache oriented solutions
do not contradict with the idea of developing network
aware applications, rather, in many cases, cache can be
deployed irrespective of network awareness of the
applications.

Incorporating cache in a network system may increase
the performance of the system in three ways – (1) the aver-
age access time or latency is shortened. As the local cache
hosts a number of objects (depending on some criteria)
many data objects are delivered from the local cache with-
out retrieving the objects from the remote server. There-
fore, caching is heavily used in hardware systems, such
as processor cache and disk cache; (2) if caching is not
deployed, at an access, the requested object would have
to be fetched from the data server. With cache, many data
objects are served locally, reducing the amount the data
transferred over the networks; and (3) without cache, all
data accesses have to be handled by the server. With cache,
many of the accesses are handled by the client, cutting
down the server load. The latter two benefits also make
the data access system more scalable – allowing a server
to handle more clients without adding any additional com-
puting or network resources. Use of cache in wireless envi-
ronment results in another very interesting and crucial
benefit to its users. Data communications from wireless
devices consume a significant amount of power. Utilization
of a cache reduces the amount of communication trans-
missions. Consequently, data access cost is reduced, power
is saved, and battery life is prolonged.

The goal of deployment cache may vary. In wireless
data access applications, a cache mechanism needs to
address two crucial aspects – cache access and cache
replacement policies. A cache access policy determines
how a cache is accessed and how the client–server system
utilizes the cache. Maintaining consistency between cop-
ies scattered over clients and the server is also a task of
the cache access policy. Notice that ensuring consistency
in a distributed environment is complicated, particularly,
if updates are allowed to be injected from any of the
clients.

Despite the complexity of the problem, many applica-
tions demands availability of the most recently updated
information/objects, because updates render all copies of
older versions of the updated objects obsolete for further
computation. This kind of consistency is called the latest
value consistency [16], and a cache, satisfying the latest
value consistency, is said to be strongly consistent [16,17].
In this case, a client has to retrieve the data item from
the server. Several strong cache consistency algorithms
for mobile/wireless data access have been proposed, such
as, Invalidation Report (IR) schemes [18,19,16,20–29],
Poll-Each-Read [17] and Call-Back [30,17,31,28].

When a cache is full and a new object is introduced, a
decision has to be made – whether caching the new object
is beneficial, and if it is, which existing object should be
removed to make space. A replacement policy makes this
important decision. Most researchers consider Least
Recently Used (LRU) [18,19,16,20–25,17,26–29] or Least Fre-
quently Used (LFU) [32] replacement policies for wireless
data access. In general, an access policy can be deployed
with any of a set of replacement policies and vice versa.
However, performance of different combinations of access
and replacement policies varies depending on system char-
acteristics. Hence, a system developer has to be prudent in
choosing the appropriate replacement and access policies.

In this paper, we provide a strongly consistent and up-
date-aware cache mechanism for wireless clients scattered
over a network spanning multiple wireless cells, where
data updates may originate from any client. We make
three major contributions – firstly, we propose two
strongly consistent cache access policies – Proactive Access
Policy (PAP), and Reactive Access Policy (RAP). Secondly, we
introduce an Update-oriented Replacement Policy (URP).
Our access policies are designed keeping the replacement
policy in mind. The access policies collect different access
and update related information to facilitate working capa-
bility of the cache replacement policy. In turn, the replace-
ment policy aims towards higher effective hits. Thirdly, we
analytically prove that our replacement policy ensures the
optimal performance. As a result, this research provides
the upper boundary for the worst case performance of
any caching scheme and a foundation for average case per-
formance comparison. The design goals of the proposed
cache mechanism are – (1) to increase the effective hit
ratio and (2) to reduce transmission cost (i.e., bandwidth
consumption) by the applications. Simulations are per-
formed to validate our proposals and claims.

The remainder of the paper is organized as follows. We
present our system model, related works and performance
metrics in Section 2. The PAP and RAP cache access, and URP
cache replacement policies are introduced in Section 3.
Quantitative analysis is provided in Section 4. Performance

Fig. 1. Pictorial view of the system model.

2082 M. Akon et al. / Computer Networks 56 (2012) 2080–2095
evaluations and comparisons are presented in Section 5.
We conclude the paper in Section 6.
2. Background

We start the section with a description of our system
model followed by a brief introduction to important
related works. We present the design goals and perfor-
mance metrics at the end of the section.
1 In the rest of the paper, we use these terms – mobile host, client
(application), and user, interchangeably. Unless specified precisely, a cache
and cache manager is considered to be an integral part of a client.
2.1. System model

Our system model is based on the wireless data net-
works, already available in the consumer market [33]. In
these networks, service areas are divided into a number
of location areas (LA). An LA is further partitioned into a
number of cells. Each cell has a base station (BS). Many
mobile stations (MSs) reside in a service area and each of
them connect to the closest BS. All the BSs within one LA
are connected to a mobile switching center (MSC). All the
MSCs are finally connected to the public switched telephone
network (PSTN).

An example wireless data access network is shown in
Fig. 1a. An MSC is connected to the Internet through either
proprietary networks of the wireless career or through
PSTN. For practical reasons, data servers are integrated to
the Internet or to the service provider’s network through
wired infrastructure. As a result, any form of communica-
tion between a mobile device and a data server has to pass
through the wireless section of the network, located be-
tween the mobile device and the corresponding BS. Notice
that, existing 2G (such as EDGE, CDMA2000 1xRTT), 3G
(such UMTS, WCDMA, CDMA2000 1xEV-DO), 3.5G and
3.7G (such as HSDPA, IEEE 802.16e), under deployment
3.9G (such as Long Term Evolution (LTE)) and expected
4G (such as LTE Advanced, IEEE 802.16m) networks are
practical examples of our system model.

Users run different client applications on their mobile
devices. A group of interrelated data access applications
may want to use a cache for the reasons described in the
previous section. A cache consists of a buffer and a cache
manager.1 In our model, a data server also plays an impor-
tant role and collaborates with the cache managers in
improving the performance of the client caches scattered
over the network, as shown in Fig. 1b. We made the design
choice of leaving the wireless network infrastructure un-
changed. We are motivated by the fact that changes to wire-
less infrastructures are expensive and often a very slow
process to be universally adopted. Moreover, if caches or
cache helpers are implemented at any of the intermediate
processing units of the infrastructure (i.e., BSs, MSCs or gate-
ways), cache management becomes complex. As mobile
wireless device roams from one cell to another, maintained
cache and/or related status information also has to be
moved from one processing unit to another, resulting in sig-
nificant overhead and delay. On the other hand, a locally
maintained cache at a mobile device is not influenced by
the mobility of the user. In this paper, we consider that com-
munication scheduling, channel condition tracking, packet
scheduling, error and flow control are performed by the low-
er layers of the communication stack. Rather, we focus on
reducing bandwidth consumed by the application or soft
bandwidth – the amount of data the client requests to and
from the lower layers to transmit and receive, respectively.

2.2. Related works

The technique of caching has been employed in different
problem domains. Caching in wired networks has received
significant attention from research community. Applica-
tions in wired network enjoy plethora network bandwidth.
Thus, most of the researches concentrate on faster data re-
trieval (i.e., latency) rather than focusing on bandwidth
consumption. In [34,35], authors propose a pre-fetch
scheme to cache streaming multimedia segments to be

M. Akon et al. / Computer Networks 56 (2012) 2080–2095 2083
played in the near future. The characteristics of streaming
multimedia application is mostly deterministic. Here,
sequential data segments are accessed in sequence. Cach-
ing is used in other areas of computer applications to store
temporary entries. In [36], alternates to Distributed Hash
Table (DHT) are proposed, where caching is employed to
store indices among a group of peers in a distributed man-
ner. These techniques enable fast and efficient query pro-
cessing in structured P2P networks. However, in those
applications, where the caches are considered as temporary
storages, a significantly large buffer is allocated for storage,
and cache eviction is not considered. In [37,38], authors
present a collaborative scheme to share file/disk caches
among tightly coupled network workstations. The pro-
posed scheme assumes that direct and efficient unicast
and broadcast communications among all the clients are
provided by the network infrastructure. Our system model
does not support such communication features and hence,
the presented collaborations are not directly applicable.

Unreliable communication links and user’s mobility
impose challenges on data consistency for collaborative
caching in wireless data access. There are many cache con-
sistency strategies available in recent days. However, each
strategy focuses on particular application domain. Cao
et al. provide a 3D design framework for evaluating the
cache consistency strategies with respect to consistency
control, consistency level and consistency status mainte-
nance [39]. Hara et al. further classify the consistency level
in four different primitives: Global Consistency, Local
Consistency, Time-Based Consistency, and Peer-Based
Consistency. Quorum is a basic technique of achieving
geographical consistency. However, the authors do not
mention bandwidth consumption for quorum formation
to achieve the required consistency level [40].

In wireless data access, update process plays an impor-
tant role because an update renders all the older copies of
the updated data object invalid. For this reason, a replace-
ment policy has to be aware of not only the access events
but also the update events. The researches in [17] study
LRU as the replacement policy without considering the ef-
fects of the update process. The method in [41] made
efforts to utilize the update information. However, the
work is not supported by an analytical model and does
not guarantee better performance. Rather, the performance
heavily depends on the access and update patterns and
frequencies. Other researches [42,43] have also proposed
to utilize update information in replacement policies, but
the main concentration was to reduce the stretch2 [44] of
the invalidation report (IR).

Notice that IR schemes perform well, if the following
three conditions are satisfied by the underlying system.
Firstly, the channel is a broadcast channel. Secondly, all
the clients are in one wireless cell, and finally, the server
is available locally, i.e., according to our model, at the base
station. If clients are located in different wireless cells, IR
reports include too much information which is irrelevant
to clients in different wireless location areas. Thus, IR
2 Stretch is defined as the ratio of average response time to service time,
where service time is the response time as if there exists no other job in the
system.
schemes become very expensive [17]. In a real-life wireless
network, not all of the three conditions are satisfied due to
practical and architectural reasons. For example, the server
is more likely to be at a remote site, subscribed clients are
scattered all over the wireless networks or even in remote
networks, and the entire network is not covered by a single
broadcast channel. Moreover, a suitable implementation of
an IR scheme requires cross layer support for efficiency,
but not much attention from software development com-
munity has been attained towards such support. Hence,
IR schemes are not realistic in practical data access net-
works. Beside the access policy, LRU [18,19,16,20], LFU
[32], MRU [45] cache replacement policies are extensively
studied particularly in the domain of operating systems,
databases and Web caches. It has been shown that for
online data objects, LFU provides superior performance
among the three [46].

2.3. Performance metrics

We have two major design goals – (1) increase the
effective hit ratio and (2) reduce the communication cost.
To better understand these goals, we first define the fol-
lowing concepts. When an access takes place, two situation
may arise – a cache hit or a cache miss. A cache miss hap-
pens when the accessed data object is not in the cache.
Otherwise, a cache hit is considered to take place. How-
ever, not all cache hits contribute towards serving a data
object from the cache. Thus, cache hits are classified into
two groups – valid cache hit and invalid cache hit. A cached
object becomes invalid when an updated version of the
object is available. Invalid cache hits are those hits due to
invalid cached objects. Given that the cached object is
the most recent version, a hit on the object results in a
valid cache hit. Effective hit ratio is the ratio of a valid cache
hit over all accesses.

According to our system model, the wireless channel
bandwidth between the mobile devices and corresponding
base stations is the most expensive resource. Hence, mea-
suring cost involves the amount of average soft bandwidth,
consumed by the cache aware applications, to serve a data
object request.
3. Proposed scheme

In this section, we first present the PAP and RAP cache
access policies. Then, we describe the proposed Update-
oriented Replacement Policy or URP.

3.1. Notations

Before describing the proposed policies, we introduce
several notations from previous related research publica-
tions to make the concepts clear. Let the number of distinct
and equal size objects hosted by the server be N. The hosted
objects are identified as Oi, where i = 1, . . . , N. Let the max-
imum number of objects a client can locally cache be K. Let
lj

iðtÞ and kj
iðtÞ be the access and update frequencies, respec-

tively, of Oi at client j up to time t. We denote lj
i and kj

i as the
expected access and update rates at the client j for object Oi,

2084 M. Akon et al. / Computer Networks 56 (2012) 2080–2095
respectively. With sufficiently larger value of t; lj
iðtÞ and

kj
iðtÞ approach to access and update rate lj

i and kj
i, respec-

tively. Formally, lj
i ¼ limt!1lj

iðtÞ and kj
i ¼ limt!1kj

iðtÞ. Let
li(t) and ki(t) be the total access and update rate for object
Oi up to time t, respectively. Expected access and update
rate for object Oi over all clients is defined as li =
limt?1li(t) and ki = limt?1ki(t), respectively. Obviously,
liðtÞ ¼

P
jl

j
iðtÞ and kiðtÞ ¼

P
jk

j
iðtÞ. Similarly, lj(t), lj, kj(t)

and kj are defined.
3.2. Access policies preliminaries

We introduce RAP, a reactive, and PAP, a proactive ac-
cess policy. Through those access policies, we ensure that
the objects, served to the applications, are the copies of
the most recent version of the objects. Beside serving
requested objects, these policies handle updates initiated
by the clients, and collect access and update related infor-
mation to facilitate working requirements of the replace-
ment policy. Our replacement policies use following
abstract3 primitives:

add(object): Add object to the local cache. The prere-
quisite of this primitive is the availability of at least
one free memory block in the cache buffer.
evict(id): Evict the object in the cache buffer with iden-
tification – id. The post condition of this primitive is one
more free memory block in the cache buffer.
replace(obj): Overwrite an older copy of locally cached
obj object with the most recent version of obj.
modify(prof): Depending on policies in place, access
and update related profiles per object (and per client)
are maintained. Each profile keeps access and/or update
frequencies of the hosted objects and may contain
information about availability of objects at different cli-
ents. This primitive modifies part of the profiles, indi-
cated by prof.
find_id(replacement_policy): Find the identification of
the object to evict, using the given replacement policy,
identified by replacement_policy.

3.3. Working principle of the access policies

3.3.1. The update process
In both PAP and RAP, whenever a client initiates an up-

date, the updated object is forwarded to the server. At the
same time, both policies may store the updated object in
the local cache in according to the replacement policy
(described later). PAP and RAP policy differ in the process
of notifying other clients about the update. PAP follows a
proactive approach for notification, where as, RAP is reac-
tive. Whenever the server receives an update, in PAP, the
server notifies all other clients hosting a copy of the same
object about availability of a newer version. This way, a
client is able to remove locally cached invalid objects. No-
tice that in order to notify the clients about the update
events, the server has to maintain a profile indicating cache
3 Efficient implementation details are left for the application designers
and developers.
contents of all its clients. In contrast, in RAP, a client checks
for consistency of a requested object in reactive manner
and the server simply waits for such queries.
3.3.2. Access process in RAP
As stated above, in RAP, the clients are reactive in veri-

fying the consistency of the associated data object at each
access. In this policy, the server is the most resourceful and
knowledgable entity in the system. It maintains per client
per data object access and update profiles. It also keeps
track of number of objects hosted by each clients. The
working steps of RAP is shown in Fig. 2.

When a client makes a request for an object, in some
cases, a copy of the object is available in the local cache.
An event of access to such an object begins with a verifica-
tion step, where the cache manager sends a query to the
server (in a VERIFY message) requesting a check on validity
of the cached copy. When the cached copy is consistent
with the most recent version of the object, the server con-
firms the validity with an acknowledgement (as an ACK
message). Otherwise, the server forwards a copy of the
most recent version of the object (with a REPLACE mes-
sage) and the cache manager replace the older copy with
the most recent version, received from the server. Fig. 2a
illustrates the entire process.

In the other cases, no copy of the requested object is
available in the local cache (as shown in Fig. 2b). Obviously,
the client has to make a request to the server to fetch the ob-
ject (in a REQUEST message). The server considers two dif-
ferent scenarios. If the client cache has more buffer to
accommodate at least one more object, the requested object
is simply forwarded (in an ADD message) to the client to be
added to its cache buffer. Otherwise, a replacement decision
has to be made. The server, the most knowledgeable entity
in the system, makes the replacement decision and for-
wards the identification of the object to replace with a copy
of the requested object (in an EVICT message).
3.3.3. Access process in PAP
In PAP, as the server informs its clients about all the up-

dates in a proactive manner, each client precisely knows
which locally cached objects are consistent. Thus, unlike
RAP, at a request from a client, the cache manager does
not need to consult the server to verify consistency. Be-
sides, in this policy, the cache manager is responsible to
make replacement decision. To facilitate this decision mak-
ing process, the manager maintains access and update pro-
file for all the cached objects.

When a consistent copy of a requested object resides in
local cache, the object is served without any further pro-
cessing. Otherwise, a sequence of steps are taken to satisfy
the request (as shown in Fig. 3). A request to fetch the ob-
ject is sent to the server (in a REQUEST message). The ser-
ver fetches the object along with the relevant access and
update profiles (in an ADD message). If the cache manager
finds that the local cache is full, it makes a replacement
decision before accommodating the newly received object.
It must be noted that whenever the policy decide to
replace an object (either due to replacement or update),
the associated profiles are forwarded to the server.

Fig. 2. Step sequences for RAP access policy.

Fig. 3. Step sequences for PAP access policy.

M. Akon et al. / Computer Networks 56 (2012) 2080–2095 2085
3.4. Update-oriented Replacement Policy (URP)

In this subsection, we present Update-oriented Replace-
ment Policy (URP), which uses both update and access fre-
quencies gathered through the access policies to achieve
superior guaranteed performance. We use gain factor (GF)
of an object to determine which object should be given pref-
erence in preserving in the cache. We define GF for the ob-
ject Oi at client j up to time t according to (1). The logic
behind this definition of GF is elaborated in the next section.

GFj
iðtÞ ¼

lj
iðtÞ þ kj

iðtÞ
� �

lj
iðtÞ

lj
iðtÞ þ kiðtÞ

ð1Þ

Similarly, long term GF is defined as,

GFj
i ¼ lim

t!1

lj
iðtÞ þ kj

iðtÞ
� �

lj
iðtÞ

lj
iðtÞ þ kiðtÞ

¼
lj

i þ kj
i

� �
lj

i

lj
i þ ki

ð2Þ
The working steps for replacement is shown in Algo-
rithm 1. The algorithm takes two inputs – the set of (attri-
butes of) the currently cached object and the accessed
object (Oa). It finds the object with the minimum GF (Or)
over all the cached and accessed object (line 1–6). If Or

and Oa are not the same (line 7), Or is evicted from and
Oa is saved to the cache. Otherwise, the cache is kept intact
and Oa is not saved. We consider replacement and eviction
to be different – replacement takes place whenever the
cache is full and a new object is introduced to the cache.
A replacement results in eviction when an in cache object
is replaced with the newly introduced object.

Algorithm 1. Replacement algorithm at client i

2086 M. Akon et al. / Computer Networks 56 (2012) 2080–2095
4. Quantitative analysis

In this section, we analyze PAP and RAP. We also con-
sider the cases when URP is combined with RAP and PAP.
To facilitate the analysis, we number all replacements in
the sequence they take place in time. The earliest replace-
ment be identified as the first replacement, the next one as
the second replacement and so on. The set consisting of all
cached objects before and after the tth replacement are
denoted with C(t) and C(t)0, respectively.

Let the probability of guaranteed effective hits after the
tth replacement for RAP and PAP be PRAP(t) and PPAP(t),
respectively, under an arbitrary replacement policy. Simi-
larly, the expected cost of accessing an object resulting
from the tth replacement are denoted as CRAP(t) and CPAP(t),
accordingly, under any replacement policy. We use
PRAP+URP(t), PPAP+URP(t), CRAP+URP(t) and CPAP+URP(t) to denote
the relevant metrics due to the tth replacement when
URP is exercised. Let Oa(t) and Or(t) denote the accessed
and replaced objects at the tth access, respectively. Let
OURP(t) denote the replaced object when URP is used. The
cost of transmission of an object, a request (or verification)
message, and an acknowledge message are denoted with
the notations Cobj, Creq, and Cack, respectively. In this paper,
we leave out the costs of transmitting replacement deci-
sions or cost of piggy backing profile information with a
large message, such a message with an object. These infor-
mation incurs very negligible message overheads. Based on
the behavior of URP policy, we conclude the following
theorem.

Theorem 1. URP maximizes the probability of guaranteed
effective hits at each replacement for both RAP and PAP access
mechanisms.
Proof. At a cache access, if the accessed object is not avail-
able at the local cache, the object is fetched from the ser-
ver. When the local cache is full and a new object is
introduced (due to access), a replacement decision has to
be made. The employed replacement policy makes the final
decision about preserving the new object. In case the new
object is preserved, another object from the local cache is
evicted to make space for the new object. Without loss of
generality, let tth access results in a replacement. To prove
the theorem, we must show that the probability of guaran-
teed effective hits after tth replacement obtained by
replacing OURP(t) with Oa(t) is larger than or equal to the
same probability obtained by replacing Or(t) with Oa(t).
The following conditions holds at the tth access event,

OaðtÞ R CðtÞ ð3Þ

OrðtÞ 2 CðtÞ [fOaðtÞg ð4Þ

CðtÞ0 ¼ ðCðtÞ [fOaðtÞgÞ n fOrðtÞg ð5Þ

Similarly, for URP policy,

OURPðtÞ 2 CðtÞ [fOaðtÞg ð6Þ

CðtÞ0 ¼ ðCðtÞ [fOaðtÞgÞ n fOURPðtÞg ð7Þ
Since access event is a Poison process, at any access, the
probability of the accessed object being a given object
Oi, 1 6 i 6 N, at client j is

pa;i ¼
lj

iPN
i¼1li;j

¼ lj
i

lj
ð8Þ

Since update event is also a Poison process, the proba-
bility of Oi being accessed or locally updated before being
updated from any other client is,

pu;i ¼
lj

i þ kj
i

lj
i þ
P

jk
j
i

¼ lj
i þ kj

i

lj
i þ ki

ð9Þ

Note that pu;i also represents the probability that Oi is
locally accesses or updated before the object become inva-
lid. Accesses to different data items are independent, i.e.,
they are disjoint events. Therefore, from (5)–(9), no matter
what replacement policy is used, we have,

PRAPðtÞ ¼ PPAPðtÞ ¼
X

8ijOi2CðtÞ0
pa;ipu;i

¼
X

8ijOi2CðtÞ[fOaðtÞgnfOrðtÞg
pa;ipu;i

¼
X

8ijOi2CðtÞ[fOaðtÞgnfOrðtÞg

lj
i

lj

lj
i þ kj

i

lj
i þ ki

¼
X

8ijOi2CðtÞ[fOaðtÞgnfOrðtÞg

ðlj
i þ kj

iÞl
j
i

lj
i þ ki

� �
lj

¼
X

8ijOi2CðtÞ[fOaðtÞg

lj
i þ kj

i

� �
lj

i

lj
i þ ki

� �
lj
�

lj
r þ kj

r

� �
lj

r

lj
r þ kr

� �
lj

¼ 1
lj

X
8ijOi2CðtÞ[fOaðtÞg

lj
i þ kj

i

� �
lj

i

lj
i þ ki

�
lj

r þ kj
r

� �
lj

r

lj
r þ kr

2
4

3
5

¼ 1
lj

X
8ijOi2CðtÞ[fOaðtÞg

GFj
i � GFj

r

" #

ð10Þ

So, the equality when URP is exercised can be driven as
follows:

PRAPþURPðtÞ ¼ PPAPþURPðtÞ ¼
1
lj

X
8ijOi2CðtÞ[fOaðtÞg

GFj
i � GFj

URP

" #
ð11Þ

According to the definition of the URP policy, we have,

GFj
URP � min

8ijOi2CðtÞ[fOaðtÞg
GFj

i

� �
ð12Þ

Therefore, we conclude,
PRAPþURPðtÞ ¼ PPAPþURPðtÞ

¼ 1
lj

X
8ijOi2CðtÞ[fOaðtÞg

GFj
i � min

8ijOi2CðtÞ[fOaðtÞg
ðGFj

iÞ
" #

P
1
lj

X
8ijOi2CðtÞ[fOaðtÞg

GFj
i � GFj

r

" #
¼ PRAPðtÞ ¼ PPAPðtÞ ð13Þ

M. Akon et al. / Computer Networks 56 (2012) 2080–2095 2087
From the above derivation, it is conspicuous that at
each replacement, the probability of effective hits while
using URP is greater than or equal to the same metric while
using any other replacement policy. Thus, we conclude
that URP maximizes the probability of guaranteed effective
hits at each replacement for both RAP and PAP access
mechanism. h
Corollary 1. URP minimizes the expected cost of data access
at each replacement for both RAP and PAP access mechanism.
Proof. With the RAP cache access scheme, when an access
results in an effective cache hit, the client and the server
exchange a request and acknowledgement message only
(Fig. 2a). Otherwise, e.g., if the access causes a cache miss
or an invalid cache hit, the client sends the server a request
message, and the server responds to the client by fetching
the requested data object (Fig. 2a). If the cache is full, the
server also forwards a replacement decision (Fig. 2b).
Therefore, for RAP,
CRAPðtÞ ¼ PRAPðtÞðCreq þ CackÞ þ ð1� PRAPðtÞÞðCreq þ CobjÞ

¼ Creq þ Cobj þ PRAPðtÞðCack � CobjÞ ð14Þ

In all practical applications, the cost of transmitting a
simple message, such as an acknowledgment, is much
smaller than the cost of transmitting an entire object,
i.e., Cack� Cobj. If simple messages are more or as expensive
as fetching data objects, deployment of caches for strongly
consistent applications would be more expensive in
terms of both computing and communication resources.
Thus, Cack � Cobj < 0, but PRAP P 0 and PRAP+URP P 0. From
Theorem 1, we know that PRAP(t) is maximized when URP
is used, i.e., PRAP+URP P PRAP. Therefore, when URP is applied,
following properties hold:

CRAPþURPðtÞ¼CreqþCobjþPRAPþURPðtÞðCack�CobjÞ
6CreqþCobjþPRAPðtÞðCack�CobjÞ¼CRAPðtÞ ð15Þ

In PAP, in case of an effective cache hit there is no need
for communication in between the client and the server.
Therefore, the cost of access resulting from the replace-
ment at the tth access is:
CPAPðtÞ ¼ ð1� PPAPðtÞÞðCreq þ CobjÞ ð16Þ

Again, from Theorem 1, CPAP(t) is minimized when URP
is employed to make replacement decisions, i.e.,
PPAP+URP(t) P PPAP(t). Thus,

CPAPþURPðtÞ ¼ ð1� PPAPþURPðtÞÞðCreq þ CobjÞ
6 ð1� PPAPðtÞÞðCreq þ CobjÞ ¼ CPAP � ð17Þ

Based on the characteristics of URP proven above, we
propose the following theorem:
Theorem 2. In the long run URP gives optimal guaranteed
effective cache hits.

Proof. Let the content of a cache be C up to time t1. Let
object Oa1 be accessed at t1, and there is another replace-
ment policy called OPT making a different decision than
URP. The objects replaced by URP and OPT are OURP1 and
OOPT1, respectively. By definition, GFURP1 6 GFOPT1. It has
been proven in Theorem 1 that the guaranteed hits for
URP are higher than or equal to any other replacement
policy, including OPT. Hence, PURP(t1) > POPT(t1). To makeup
the loss and outperform URP, let at a later time t2 > t1,
when Oa2 is accessed, OPT makes another replacement
decision, where URP continues with the existing cache
content. Thus, PURP(t1) = PURP(t2) < POPT(t2). At time t2,
object OOPT2 is decided to be replaced. The events are
shown in Fig. 4. Next, we prove the theorem by contradic-
tion and show that OPT replacement policy cannot exist.

POPTðt2Þ > PURPðt1Þ

)
X
8ijOi2C

GFi þ GFa1 þ GFa2 � GFOPT1 � GFOPT2

>
X
8ijOi2C

GFi þ GFa1 � GFURP1

) GFa2 > GFOPT2 þ GFOPT1 � GFURP1 ð18Þ

Here, GFOPT1 > GFURP1 and thus, a2 – OPT2 and the
replacement at t2 involves in an eviction. It is clear that
the following equation must hold:

OOPT2 2 C [fOa1g n fOOPT1g ð19Þ

We consider three possible cases for choosing OOPT2.

Case 1, where OOPT2 2 Cn{OOPT1,OURP1}: URP would make
an eviction and accommodate OOPT2, as Cn{OOPT1,OURP1}
C [{Oa1}n{OURP1}.
Case 2, where OOPT2 � OURP1: From (18), we can derive
GFa2 > GFOPT1. As OOPT1 2 C [{Oa1}n{OURP1}, URP would
evict Ok �min8ijOi2C[fOa1gnfOURP1gOi, where either k � OPT1
or (GFOPT1 P GFk) GFa2 > GFk) ^ (k – OPT1).
Case 3, where OOPT2 � Oa1: With similar argument of
case 2, it can be shown that URP would make a replace-
ment decision to evict some Ok 2 C [{Oa1}n{OURP1} to
accommodate Oa2.

Therefore, it is not be possible that OPT makes an evic-
tion decision to accommodate Oa2 at t2 while satisfying
(18), and at the same time, URP does not also accommo-
date Oa2 by evicting one of the cached objects. Hence, a
policy like OPT does not exist. Using the same argument,
it can be shown that there exists no sequence of replace-
ments (by another replacement policy) which results in
higher guaranteed effective hits than URP. h
5. Performance evaluation

To evaluate the performance of our proposed policies,
we have performed a series of extensive simulations using
a detail discrete event simulator written in C++. Based on
the discussion in Section 2, we have also evaluated the
performance of the access policies combined with the pop-
ular Least Frequently Used (LFU) [47] and Least Recently
Used (LRU) [18] replacement policies. Among LFU and
LRU, LFU consistently demonstrates better performance,
supporting the findings in [46]. Therefore, comparative
discussion is limited in between LFU and our proposed

Fig. 4. Replacement in URP and other policies.

2088 M. Akon et al. / Computer Networks 56 (2012) 2080–2095
policies. In our simulations, we have collected information
related to different performance metrics, discussed in
Section. Our simulation environment is described in
Section 5.2. We summarize our findings from the simula-
tions in Section 5.3–5.9. We also present results from the
theoretical analysis, wherever applicable.
5.1. Performance metrics

We consider two performance metrics – effective hits
and cost per access. Let na,j be the total number of accesses
to object Oj from all the clients. Let nmiss denote the total
number of cache misses and invalid cache hits. Let na be
the total number of accesses to all the objects from all
Fig. 5. Performance of URP, LFU and LRU polic
the clients, i.e, na ¼
PN

j¼1na;j. We compute the effective hit
ratios as follows:

PRAP ¼ 1� nmiss

na
¼ PPAP ð20Þ

Then, we deduce normalized effective hits as,

EHRAP ¼ PRAP � l� T ¼ PPAP � l� T ¼ EHPAP ð21Þ

where T is the simulation time and l ¼
P

i

P
jl

j
i. In our

simulations, we do not compute the cost of piggy backing
information. For example, when access or update frequen-
cies are sent with other large message load (such as an
object), the cost of transmitting access or update frequen-
cies is ignored. We also keep aside the cost of forwarding
updates from the clients, because irrespective of the choice
y with different object population sizes.

M. Akon et al. / Computer Networks 56 (2012) 2080–2095 2089
of the access policy, this cost is fixed. Finally, the costs per
access for RAP and PAP are computed according to (22) and
(23), respectively.

CRAP ¼
1
na
½ðna � nmissÞ � ðCreq þ CackÞ þ nmiss � ðCreq þ CobjÞ�

ð22Þ

CPAP ¼
1
na
½nmissðCreq þ CobjÞ� ð23Þ
5.2. Simulation setup

In data access applications, popularity of different ob-
jects are different. Researches have shown that user inter-
est in different online objects follow Zipf-like distributions
[47,17]. In our simulations, we assume Zipf-like distribu-
tions for object access or update pattern, and at an access
or update event, an object with rank i is accessed or up-
dated with the probability pi, defined as,

pi ¼ ia
XN

j¼1

1
ja

 !" #�1

where a P 0 and is called the Zipf ratio. Note that, when
a = 0, pi = 1/N, for all i, and all objects are chosen with the
Fig. 6. Performance of URP, LFU and LRU fo
same probability of 1/N. Let aa and au be the Zipf ratio
for access and update events, respectively. We uniquely
rank each object within the range from 1 to N to find its ac-
cess and update probability. Note that rank of the object Oi

may not be related to the object identifier i, as well, rank
for access and update may be distinct. By default, we con-
sider that Creq and Cack have the same value of Cmsg. Unless
mentioned otherwise, the value of Cmsg, Cobj and l are 60,
600, and 1, respectively. We consider that 20 mobile users
are in our network.
5.3. Impact of objects population

In this subsection, we discus our study on the effect of
object population size (N). In Fig. 5, the performance of
RAP/PAP + URP is compared with RAP/PAP + LFU for differ-
ent object populations sizes. We consider the values for the
parameters aa, au and K in these simulations to be 0.20, 0.60
and 20, respectively. We observe following behaviors from
the results:

� Given a fixed size cache, as the object population size
increases, the chance of cache hit reduces, irrespective
of the replacement policy. However, the gain of using
URP becomes prominent with larger population sizes.
r objects with different cache sizes.

Fig. 7. Performance of URP, LFU and LRU for objects with no update.

2090 M. Akon et al. / Computer Networks 56 (2012) 2080–2095

M. Akon et al. / Computer Networks 56 (2012) 2080–2095 2091
� Effective hits for all combinations of access and replace-
ment policies decrease with the increment of object
population size. However, in all cases, URP shows better
results.
� PAP + URP policy gives the best performance in terms of

cost per access and PAP + LFU closely follows. Provided
that Cobj� Cmsg, according to (22), the difference
between PAP + URP and PAP + LFU is dominated by nmiss.
Hence, with smaller miss rate, the gap between URP and
LFU is inconspicuous.
� With any of the replacement policies, cost per access for

PAP is less than that’s of RAP. However, URP reduces
cost per access further as compared to LFU policy.

5.4. Impact of cache size

Performance characteristics for different cache sizes are
shown in Fig. 6. For these simulations, the values for the
parameters aa, au and N are chosen to be 0.01, 0.60 and
400, respectively. From the figures, we deduce following
arguments:

� In oppose to the previous discussion on object popula-
tion, as cache size increases, the number of effective hits
also increases for all combinations of policies. At the
same time, URP demonstrates superior performance in
all cases.
Fig. 8. Performance of URP, LFU an
� Due to increasing number of hits, the cost per access, for
both policies, also declines with larger cache. However,
cost with PAP reduces at a higher rate than that’s of
RAP.
� With increment of cache size, each additional extra

cache buffer results in fewer additional effective hits.
Hence, a designer must find a tradeoff between the
increment of cache performance and the cost of adding
extra cache buffer space.

5.5. Impact of objects with no updates

Fig. 7 shows effective hit ratio and cost per access for
URP and LFU policy when no update to any object takes
place, i.e., kj

i for all i,j is 0. In other word, the objects are
for read-only. To gather these results, in all the simula-
tions, an object population size of 500 is considered. With
no update events, GFj

i is found by lj
i (as can be found from

(2)) and as a result, while making a replacement (as well
as, eviction) decision, both URP and LFU choose the same
object. Thus both the policies result in exactly the same
performance.

Besides, we have the following observations:

� LFU performance is also optimal where no update event
takes place in the caching system.
d LRU for different Zipf ratios.

Fig. 9. Performance of URP, LFU and LRU different number of mobile stations.

2092 M. Akon et al. / Computer Networks 56 (2012) 2080–2095
� With increment of aa, number of effective hits also
increases. The higher aa is, the smaller set of objects is
accessed more frequently, contributing towards fewer
misses.
� Larger cache helps alleviating cache misses. However,

this behavior is clearly observed when aa is smaller.
Fig. 10. Cost of URP for dif
With larger aa, most of the access are due to fewer
objects and hence, increasing cache size results in fewer
number of additional effective hits.
� All combinations of access and replacement policies

enjoy higher effective hits and lower cost per access
when the objects are for read only and no update takes
ferent message sizes.

M. Akon et al. / Computer Networks 56 (2012) 2080–2095 2093
place (i.e., k = 0). Static databases, audio and video files
sharing in wireless environment are examples of this
kind of application.

5.6. Impact of Zipf ratio

Fig. 8 shows the effect of update Zipf ratio on the perfor-
mance of both URP and LFU policies. In these results, we
set the simulation parameters aa, K and N to 0.01, 50 and
500, respectively. The results demonstrate that:

� With different Zipf ratios, performance of URP is consis-
tently better than that’s of LFU in terms of both number
of hits and cost per access.
� In these simulations, while computing Zipf ratios, we

have considered that both the ranks of object Oi are i.
As a result, more frequent updates to more frequently
accessed objects results in fewer overall hits. Note that,
if rank for access and update Zipf ratio for all objects are
arbitrary, the performance of the system may approach
to a system with no update at all (see Section 5.5).

5.7. Impact of number of mobile stations

Number of mobile stations has significant impact on GF
values of different objects. As shown in (2), ki is a combined
metric and the number of mobile stations has no effect on
it. In contrary, given a fixed li and ki; lj

i and kj
i are affected

by the number of mobile stations. As number of mobile
stations increases, the difference between GFs of different
objects becomes less distinctive and GFs are mainly deter-
mined by ki. Fig. 9 presents results from simulations with
parameters aa, au, K, and N valued at 0.01, 0.06, 50, and
500, respectively. As shown in the figure, with more MSs
the number of effective hits decreases at a faster rate and
hence, the cost per access increases.

5.8. Impact of message size (Cmsg)

Finally, we investigate the impact of different message
sizes, i.e., Cmsg. We consult two different cases, where (1)
K = 50 and N = 500 and (2) K = 100 and N = 400. For both
the cases, we consider the values of k, aa and au to be
0.40, 0.01 and 0.60, respectively. From the results, pre-
sented in Fig. 10, we observe that cost per access for RAP in-
creases at a faster rate than PAP as the ratio of Cmsg to Cobj

increases.

5.9. Other observations and discussions

We have the following general observations while pre-
paring and running the simulator, and evaluating the
results:

� Cases where cache suffer from a higher number of
misses, or cases where there are fewer to no misses,
the temporal objects introduced in between two con-
secutive cache replacements result in fewer extra cache
hits. Thus, in those cases, the difference between theory
and simulation subsides.
� Cases where cache suffers from a higher number of
misses, the benefit of URP becomes more visible. As the
system approaches to a system with readonly objects
(i.e., objects with no updates), both LFU and URP
approaches same (and optimal) performance.
� It is difficult to synthetically generate access and update

traces which satisfy all the parameters and capture the
worst case requirements. Hence, most of the traces are
generated with high update rates and update Zipf ratios
to make them behave more closer to the worst case sce-
narios. In all the simulations, the theoretical probability
of hits are computed at each replacement only. Thus,
simulation results are in general slightly better than
the theoretical ones.

6. Conclusion

In this paper, we have proposed an optimal cache
replacement policy, named Update-oriented Replacement
Policy (URP) for wireless data access applications where
updated are injected from all the clients. The goal of the
policy is to make efficient use of the network bandwidth
in wireless environment, by increasing effective cache hits.
To maintain strong consistency among copies of objects
and facilitate working environment for URP, we have also
proposed two enhanced cache access policies – Proactive
Access Policy (PAP), and Reactive Access Policy (RAP). We
have proved that if PAP or RAP is combined with URP,
the cache system guarantees optimal number of effective
cache hits and optimal cost (in terms of network band-
width) per data object access. Due to our comprehensive
system model, the proposed policies are equally applicable
to existing 2G and 3G, as well as upcoming Long Term
Evolution (LTE), LTE Advanced and WiMAX wireless data
access networks.

We are currently investigating optimal caching schemes
for other form of wireless network infrastructures, particu-
larly those networks supporting limited broadcast, such as
WLANs. We are also considering a cooperative caching
scheme so that clients can be opportunistic in fetching
objects that are requested by other clients. At the same
time, an idle client can assist other neighboring busy clients
to cache objects for future use.

References

[1] Facebook, Inc., facebook, 2010. <http://www.facebook.com/>.
[2] Qzone QQ, Qzone, 2010. <http://qzone.qq.com/>.
[3] News Corp. Digital Media, Myspace, 2010. <http://www.myspace.

com/>.
[4] Twitter, Inc, twitter, 2010. <http://www.twitter.com/>.
[5] Windows Live SkyDrive, Skydrive, 2010. <http://skydrive.live.com/>.
[6] Yahoo! Inc., flickr, 2010. <http://www.flickr.com/>.
[7] Google Inc., Picasa, 2010. <http://picasa.google.com/>.
[8] Photobucket, Photobucket, 2010. <http://photobucket.com/>.
[9] Dropbox, Inc., Dropbox, 2010. <http://dropbox.com/>.

[10] YouTube, LLC, Youtube, 2010. <http://www.youtube.com/>.
[11] Youku, Youku, 2010. <http://Youku.com/>.
[12] AT& T – News Room, AT& T Launches Pilot Wi-Fi Project in Times

Square, 2010. <http://www.att.com/gen/press-room-?pid=4800&
cdvn=news&newsarticleid-=30838>.

[13] AT& T – News Room, AT& T Wi-Fi Network Usage Soars to More Than
53 Million Connections in the First Quarter, 2010. <http://www.
att.com/gen/press-room-?pid=4800&cdvn=news&newsarticleid-
=30766>.

http://www.facebook.com/
http://qzone.qq.com/
http://www.myspace.com/
http://www.myspace.com/
http://www.twitter.com/
http://skydrive.live.com/
http://www.flickr.com/
http://picasa.google.com/
http://photobucket.com/
http://dropbox.com/
http://www.youtube.com/
http://Youku.com/
http://www.att.com/gen/press-room-?pid=4800&cdvn=news&newsarticleid-=30838
http://www.att.com/gen/press-room-?pid=4800&cdvn=news&newsarticleid-=30838
http://www.att.com/gen/press-room-?pid=4800&cdvn=news&newsarticleid-=30766
http://www.att.com/gen/press-room-?pid=4800&cdvn=news&newsarticleid-=30766
http://www.att.com/gen/press-room-?pid=4800&cdvn=news&newsarticleid-=30766

2094 M. Akon et al. / Computer Networks 56 (2012) 2080–2095
[14] AT& T – News Room, AT& T Wi-Fi Handles More Than 85 Million
Total Connections in 2009, More Than Four Times 2008, 2010.
<http://www.att.com/gen/press-room-?pid=4800&cdvn=news&-news
articleid-=30433&mapcode=consumer>.

[15] G.B.I. Creus, P. Niska, System-level power management for mobile
devices, in: International Conference on Computer and Information
Technology, 2007, pp. 799–804.

[16] G. Cao, Proactive power-aware cache management for mobile
computing systems, IEEE Transaction on Computers 51 (6) (2002)
608–621.

[17] Y.-B. Lin, W.-R. Lai, J.-J. Chen, Effects of cache mechanism on wireless
data access, IEEE Transactions on Wireless Communications 2 (6)
(2003) 1247–1258.

[18] D. Barbará, T. Imieliński, Sleepers and workaholics: caching
strategies in mobile environments, ACM SIGMOD Record 23 (2)
(1994) 1–12.

[19] J. Cai, K.-L. Tan, Energy-efficient selective cache invalidation,
Wireless Networks 5 (6) (1999) 489–502.

[20] G. Cao, A scalable low-latency cache invalidation strategy for mobile
environments, IEEE Transactions on Knowledge and Data
Engineering 15 (5) (2003) 1251–1265.

[21] B.Y.L. Chan, A. Si, H.V. Leong, Cache management for mobile
databases: design and evaluation, in: Proceedings of the
Fourteenth International Conference on Data Engineering, 1998,
pp. 54–63.

[22] C.C.F. Fong, J.C.S. Lui, M.H. Wong, Quantifying complexity and
performance gains of distributed caching in a wireless mobile
computing environment, in: Proceedings of the Thirteenth
International Conference on Data Engineering, 1997, pp. 104–
113.

[23] Q. Hu, D.L. Lee, Cache algorithms based on adaptive invalidation
reports for mobile environments, Cluster Computing 1 (1) (1998)
39–50.

[24] J. Jing, A. Elmagarmid, A.S. Helal, R. Alonso, Bit-sequences: a new
cache invalidation method in mobile environments, Mobile
Networks and Applications 2 (2) (1997) 115–127.

[25] A. Kahol, S. Khurana, S. Gupta, P. Srimani, A strategy to manage cache
consistency in a distributed mobile wireless environment, IEEE
Transaction on Parallel and Distributed Systems 12 (7) (2001) 686–
700.

[26] K.-L. Tian, J. Cai, B.C. Ooi, An evaluation of cache invalidation
strategies in wireless environments, IEEE Transactions on Parallel
and Distributed Systems 12 (8) (2001) 789–807.

[27] K.-L. Wu, P.S. Yu, M.-S. Chen, Energy-efficient caching for wireless
mobile computing, in: Proceedings of the Twelfth International
Conference on Data Engineering, 1996, pp. 336–343.

[28] J. Yin, L. Alvisi, M. Dahlin, C. Lin, Volume leases for consistency in
large-scale systems, IEEE Transaction on Knowledge and Data
Engineering 11 (4) (1999) 563–576.

[29] J.C.-H. Yuen, E. Chan, K.-Y. Lam, H.W. Leung, Cache invalidation
scheme for mobile computing systems with real-time data, ACM
SIGMOD Record 29 (4) (2000) 34–39.

[30] J.H. Howard, M.L. Kazar, S.G. Menees, D.A. Nichols, M. Satyana-
rayanan, R.N. Sidebotham, M.J. West, Scale and performance in a
distributed file system, ACM Transactions on Computer Systems 6
(1) (1988) 51–81.

[31] M.N. Nelson, B.B. Welch, J.K. Ousterhout, Caching in the sprite
network file system, ACM SIGOPS Operating Systems Review 21 (5)
(1987) 3–4.

[32] J.T. Robinson, M.V. Devarakonda, Data cache management using
frequency-based replacement, in: ACM SIGMETRICS Performance
Evaluation Review, vol. 18, 1990, pp. 134–142.

[33] A.S. Tanenbaum, Computer Networks, Pearson Education, NJ, USA,
2002.

[34] H.-C. Chi, Q. Zhang, Deadline-aware network coding for video on
demand service over P2P networks, Journal of Zhejiang University –
Science A 7 (22-23) (2005) 755–763.

[35] H.-C. Chi, Q. Zhang, X. Shen, Efficient search and scheduling in P2P-
based media-on-demand streaming service, IEEE Journal on Selected
Areas of Communications 25 (1) (2007) 119–130.

[36] G. Skobeltsyn, K. Aberer, Distributed Cache Table: Efficient Query-
Driven Processing of Multiterm Queries in P2P Networks, Tech. Rep.
LSIRRE-PORT-2006-010, EPFL, Lausanne, Switzerland, 2006.

[37] M.R. Korupolu, M. Dahlin, Coordinated placement and replacement
for large-scale distributed caches, IEEE Transactions on Knowledge
and Data Engineering 14 (6) (2002) 1041–4347.

[38] M. Akon, T. Islam, X. Shen, A. Singh, SPACE: A lightweight
collaborative caching for clusters, Peer-to-Peer Networking and
Applications 3 (2).
[39] J. Cao, Y. Zhang, G. Cao, L. Xie, Data consistency for cooperative
caching in mobile environments, IEEE Computer 40 (4) (2007) 60–
66.

[40] T. Hara, S.K. Madria, Consistency management strategies for data
replication in mobile ad hoc networks, IEEE Transactions on Mobile
Computing 8 (7) (2009) 950–967.

[41] H. Chen, Y. Xiao, X. Shen, Update-based cache access and
replacement in wireless data access, IEEE Transactions on Mobile
Computing 5 (12) (2006) 1734–1748.

[42] J. Xu, Q. Hu, D.L. Lee, W.-C. Lee, SAIU: an efficient cache replacement
policy for wireless on-demand broadcasts, in: Proceedings of the
Ninth International Conference on Information and Knowledge
Management, 2000, pp. 46–53.

[43] J. Xu, Q. Hu, W.-C. Lee, D.L. Lee, Performance evaluation of an optimal
cache replacement policy for wireless data dissemination, IEEE
Transaction on Knowledge and Data Engineering 6 (1) (2004) 125–
139.

[44] S. Acharya, S. Muthukrishnan, Scheduling on-demand broadcasts:
new metrics and algorithms, in: The 4th Annual ACM/IEEE
International Conference on Mobile Computing and Networking,
1998, pp. 43–54.

[45] H.-T. Chou, D.J. DeWitt, An evaluation of buffer management
strategies for relational database systems, in: VLDB, 1985, pp. 127–
141.

[46] M. Abrams, C.R. Standridge, G. Abdulla, E.A. Fox, S. Williams,
Removal policies in network caches for world-wide web
documents, in: SIGCOMM, 1996, pp. 293–305.

[47] L. Breslau, P. Cao, L. Fan, G. Phillips, S. Shenker, Web caching and zipf-
like distributions: evidence and implications, in: IEEE INFOCOM, vol.
1, 1999, pp. 126–134.

M. Akon received his B.Sc.Engg. degree in
2001 from the Bangladesh University of
Engineering and Technology (BUET), Bangla-
desh, and his M.Comp.Sc. degree in 2004 from
the Concordia University, Canada. He is cur-
rently working towards his Ph.D. degree at the
University of Waterloo, Canada. His current
research interests include peer-to-peer com-
puting and applications, network computing,
and parallel and distributed computing.
T. Islam received his B.Sc.Engg. degree in
2001 from the Bangladesh University of
Engineering and Technology (BUET), Bangla-
desh, and his M.Sc. degree in 2004 from the
University of Manitoba, Canada. He is cur-
rently working towards his Ph.D. degree at the
University of Waterloo, Canada. His current
research interests include peer-to-peer com-
puting and applications, service oriented
architectures, and mobile computing.
X. Shen received the B.Sc. (1982) degree from
Dalian Maritime University (China) and the
M.Sc. (1987) and Ph.D. degrees (1990) from
Rutgers University, New Jersey (USA), all in
electrical engineering. He is a Professor and
the Associate Chair for Graduate Studies,
Department of Electrical and Computer Engi-
neering, University of Waterloo, Canada. His
research focuses on mobility and resource
management in wireless/wired networks,
wireless security, ad hoc and sensor networks,
and peer-to-peer networking and applica-

tions. He is a co-author of three books, and has published more than 300
papers and book chapters in different areas of communications and net-

http://www.att.com/gen/press-room-?pid=4800&cdvn=news&-newsarticleid-=30433&mapcode=consumer
http://www.att.com/gen/press-room-?pid=4800&cdvn=news&-newsarticleid-=30433&mapcode=consumer

M. Akon et al. / Computer Networks 56 (2012) 2080–2095 2095
works, control and filtering. He serves as the Technical Program Com-
mittee Chair for IEEE Globecom’07, General Co-Chair for Chinacom’07 and
QShine’06, the Founding Chair for IEEE Communications Society Technical
Committee on P2P Communications and Networking. He also serves as
the Editor-in-Chief for Peer-to-Peer Networking and Application; found-
ing Area Editor for IEEE Transactions on Wireless Communications;
Associate Editor for IEEE Transactions on Vehicular Technology; KICS/IEEE
Journal of Communications and Networks, Computer Networks; ACM/
Wireless Networks; and Wireless Communications and Mobile Comput-
ing (Wiley), etc. He has also served as Guest Editor for IEEE JSAC, IEEE
Wireless Communications, and IEEE Communications Magazine. Dr. Shen
received the Excellent Graduate Supervision Award in 2006, and the
Outstanding Performance Award in 2004 from the University of Waterloo,
the Premier’s Research Excellence Award (PREA) in 2003 from the Prov-
ince of Ontario, Canada, and the Distinguished Performance Award in
2002 from the Faculty of Engineering, University of Waterloo. He is a
registered Professional Engineer of Ontario, Canada.
A. Singh received the B.Sc. degree in elec-
tronics and communication engineering from
the Bihar Institute of Technology (BIT), Sindri,
India, in 1979 and the M.Sc. and Ph.D. degrees
from the University of Alberta, Edmonton, AB,
Canada, in 1986 and 1991, respectively, both
in computing science. From 1980 to 1983, he
worked at the R& D Department of Operations
Research Group (the representative company
for Sperry Univac Computers in India). From
1990 to 1992, he was involved with the
design of telecommunication systems at Bell-

Northern Research, Ottawa, ON, Canada. He is currently an Associate
Professor at Department of Electrical and Computer Engineering, Uni-
versity of Waterloo, Waterloo, ON, Canada. His research interests include

network computing, software engineering, database systems, and artifi-
cial intelligence.

	A bandwidth and effective hit optimal cache scheme for wireless data access networks with client injected updates
	1 Introduction
	2 Background
	2.1 System model
	2.2 Related works
	2.3 Performance metrics

	3 Proposed scheme
	3.1 Notations
	3.2 Access policies preliminaries
	3.3 Working principle of the access policies
	3.3.1 The update process
	3.3.2 Access process in RAP
	3.3.3 Access process in PAP

	3.4 Update-oriented Replacement Policy (URP)

	4 Quantitative analysis
	5 Performance evaluation
	5.1 Performance metrics
	5.2 Simulation setup
	5.3 Impact of objects population
	5.4 Impact of cache size
	5.5 Impact of objects with no updates
	5.6 Impact of Zipf ratio
	5.7 Impact of number of mobile stations
	5.8 Impact of message size (Cmsg)
	5.9 Other observations and discussions

	6 Conclusion
	References

