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Cost function based routing has been widely studied in wireless sensor networks for energy
efficiency improvement and network lifetime elongation. However, due to the complexity
of the problem, existing solutions have various limitations. In this paper, we analyze the
inherent factors, design principles and evaluation methods for cost function based routing
algorithms. Two energy aware cost based routing algorithms named Exponential and Sine
Cost Function based Route (ESCFR) and Double Cost Function based Route (DCFR) have
been proposed in this paper. For ESCFR, its cost function can map small changes in nodal
remaining energy to large changes in the function value. For DCFR, its cost function takes
into consideration the end-to-end energy consumption, nodal remaining energy, resulting
in a more balanced and efficient energy usage among nodes. The performance of the cost
function design is analyzed. Extensive simulations demonstrate the proposed algorithms
have significantly better performance than existing competing algorithms.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Wireless sensor networks (WSNs) are collections of
low-cost battery-powered devices, called sensors, which
have integrated sensing, computing, and wireless commu-
nication capabilities [1]. They are deployed for detecting
events of a predetermined nature and transmitting sensed
event data to the data sink or base station for further anal-
ysis [2,3]. It is recognized that WSNs have great potentials
in many important applications such as military surveil-
lance, environmental monitoring, infrastructure and facil-
ity diagnosis, and so on [4]. To reduce deployment budge,
WSNs are expected to have minimized overall energy con-
sumption and balanced energy usage among individual
sensors. In WSNs, one of the main design challenges is to
maximize network lifetime without scarifying network
sensing performances (e.g., coverage and reliability).
. All rights reserved.
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The lifetime of a WSN can be defined as the time
elapsed till the first sensor node in the network de-
pletes its energy, since once a sensor node dies, the
sensing capability of the network starts degrading
[3]. To maximize network lifetime, an energy-efficient
routing algorithm should be used for data communica-
tions. The algorithm needs to have the following three
main features: (1) minimum total energy usage, (2)
balanced energy consumption, and (3) distributed
characteristics.

Cost function based routing has been studied exten-
sively because of its distributed nature and good energy
performance [5,6]. In such routing algorithms, a node cur-
rently having a packet to transmit decides locally which of
its neighbors is the next hop based on a cost function. A
well-designed cost function will lead to energy-efficient
decisions and prolonged network lifetime. There are many
cost functions proposed in literature. They were, however,
designed merely according to designers’ experience, which
is suboptimal, and lacks of theoretical analysis on their
performance.
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mailto:csuanfengliu@gmail.com
http://dx.doi.org/10.1016/j.comnet.2012.01.023
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet


1952 A. Liu et al. / Computer Networks 56 (2012) 1951–1967
In this paper, we analytically study existing cost func-
tion based routing algorithms and present the general
principles and guidelines for cost functions construction.
We propose a novel double cost function based routing
(DCFR) algorithm, which is decentralized, adaptive, and
outperforms existing cost function based solutions in
terms of energy efficiency improvement and network life-
time elongation. Existing solutions consider only end-to-
end energy consumption and nodal remaining energy,
and achieve suboptimally balanced energy consumption.
Unlike these schemes, DCFR additionally includes energy
consumption rate in its cost function. The cost function
has a rapidly increasing slope such that a small difference
in energy consumption rate or available energy level can
lead to a big difference in function values. Hence, DCFR
has an excellent capability of balancing energy usage dur-
ing routing. Each node chooses next hop to forward data
according to the energy consumption rates as well as node
remaining energy of its neighbors, so energy consumption
is balanced in the entire network. We show the benefits of
our proposed cost function design guideline. We evaluate
the performance of our new routing algorithm DCFR
through extensive simulation using various performance
metrics. We compare DCFR with three well-known routing
algorithms, i.e., DC (Direct Communication) [7,8], mini-
mum transmission energy (MTE) [9], and distributed en-
ergy balanced routing (DEBR) [5]. Our simulation
confirms that DCFR indeed has significantly better perfor-
mance than these existing algorithms in network lifetime
elongation and energy balancing.
2. Related work

To prolong the lifetime of a WSN, a number of routing
algorithms have been proposed. They mainly aim to mini-
mize total energy usage in the network. However, sensors
along paths with minimized total energy cost are repeat-
edly used and deplete their energy quickly, resulting in
short network lifetime. Thus, researchers found that rout-
ing algorithms should consider not only total energy con-
sumption, but also the amount of remaining energy in
each sensor. By giving preference to sensors with high
remaining energy during route selection, per node energy
usage peaks are flattened, and network lifetime is im-
proved. Existing routing algorithms can be divided into
distributed routing algorithms and centralized routing
algorithms. In the distributed routing algorithms, the rout-
ing path selection depends only on local information, thus
this kind of algorithms have good scalability for large-scale
networks. Instead, the centralized routing algorithms gen-
erally need global information to assist route selection.
This type of algorithms may find optimal routing paths,
but they generate extra communication overhead and have
poor scalability. Related research about these two types of
routing algorithms is summarized as follows:
2.1. Centralized routing algorithms

In centralized routing algorithms, the network topology
and energy consumption are known as a prior to sensor
nodes. Wireless networks are modeled as graphs, in which,
a vertex represents a wireless device and an edge between
two vertices indicates that they are in direct communica-
tion range. The weight on a vertex indicates the node
remaining energy and the weight on an edge (u,v) repre-
sents the energy consumption for node u (resp. v) to trans-
mit one unit data to node v (resp. u). Therefore, graph
theory is used in centralized routing algorithm to find
paths which consume minimum energy (metrics 1) and
paths which avoid energy hotspots nodes (metrics 2). In
early research, Ettusand et al. proposed the so-called min-
imum transmission energy (MTE) routing scheme [9],
which selects the route that uses minimum energy to
transport one packet from the source to the destination.
However, its network lifetime is not good due to the early
death of energy efficient route. Zytoune et al. proposed an
uniform balancing energy routing protocol (UBERP) [10]. In
this protocol, the path selection for multi-hop transmission
is done using the minimum energy transmission over net-
work nodes which have a remaining energy greater than a
threshold. The target is to balance the transmission energy
consumption over the entire network so as to avoid energy
depletion of the shortest routes nodes, therefore, this
threshold should equal to the average network energy.
UBERP protocol actually reflects the main idea of most cen-
tralized routing algorithm, i.e., nodes with lower remaining
energy and edges with lower energy efficiency are ex-
cluded in the candidate set, and then use the Dijkstra’s
algorithm to calculate the optimal routing. However, glo-
bal information is needed to exclude such nodes and edges,
thus the system cost is increased and its extensibility is
limited. Moreover, it is required to re-calculate the graph
to make routing decisions. The complexity of the algorithm
is O((m + n) logn.

Li et al. described the max–min zPmin algorithm [11].
The max–min zPmin algorithm attempts to balance met-
rics 1 and 2 by first calculating a path based on the remain-
ing energy levels, and then rejecting any path whose total
energy is z times of the minimum energy path. The quality
of the solution provided by the max–min zPmin algorithm
depends on the empirically generated parameter z, and
this does not always provide an optimal solution. Chang
and Tassiulas combined metrics 1 and 2 into a single met-
ric and run Dijkstra’s algorithm on this new metric [12].
This method does not actually optimize any metric and
the performance of the approach closely depends on the
empirical values assigned to the parameters.

Park and Sahni presented the online maximum lifetime
(OML) heuristic [13], which is an enhancement of the CMAX
algorithm presented by Kar et al. [14]. OML initially re-
moves edges with low remaining energy from the graph.
Then the edge weight is modified so that a high cost (and
thus a heavy penalty) is associated with edges having low
remaining energy or high communication cost. Dijkstra’s
algorithm runs on the modified graph so that the selected
paths always use nodes with high energy levels and edges
with low energy costs. They reported that OML gives the
best network lifetime among all routing approaches in the
current literature. Mohanoor et al. presented three polyno-
mial time combinatorial techniques to provide a good
tradeoff between metrics 1 and 2 [15]. The first technique,
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called the shortest widest path, first maximizes the concave
metric (the remaining energy of a path) and then minimizes
the additive metric (energy consumed along a path). The
second technique, called the shortest width constrained
path, finds paths with a suitably high remaining energy
(may not be the maximum), and then minimizes the total
energy consumed along such a path. Lastly, the third ap-
proach (shortest fixed width path) is similar to the second
approach in the sense that it finds a minimum energy path
among the paths that have a high remaining energy. How-
ever, it does not change the remaining energy in each route
calculation and the remaining energy level is changed only
when it becomes infeasible to find paths between the
source and the destination at the current remaining energy
level. They claimed that the proposed distributed tech-
niques outperform the algorithm proposed by Park and
Sahni [13].

2.2. Distributed routing algorithms

Distributed routing algorithms do not rely on any global
information. In such algorithms, each node makes inde-
pendent routing decisions merely based on its local knowl-
edge. Thus, the system communication cost is greatly
reduced, and the computing complexity is reduced from
nlogn to a constant k so it is more promising. Distributed
routing algorithms usually calculate the communication
cost of each neighbor node using a predefined cost function
and choose the node with the smallest cost as next hop.

Chang et al. presented an interesting approach named
maximum lifetime energy routing [12]. The key idea of this
approach is to maximize the network lifetime by defining
link cost as a function of node remaining energy and the
required transmission energy. The authors give two maxi-
mum remaining energy path algorithms. The two algo-
rithms differ in the defining method of link costs and the
incorporation of nodes remaining energy. Instead of using
the consumed energy eij, when a packet is transmitted be-
tween node i and node j, the following link costs are used:

Cij ¼
1

Ei � eij
; Cij ¼

eij

Ei
ð1Þ

where Ei is the remaining energy at node i. Using those
algorithms, the average network lifetime can be extended
in the best case, by a factor of 3.26 compared to the MTE
[9]. DEBR algorithm [5] extended the above algorithm,
DEBR defines the energy cost ECij for a transmission from
node i and node j as

ECij ¼
Required energy from node i to j

Available energy at node i
¼ eij

Er
i

ð2Þ

The total energy cost (TECik) of a neighboring node k at
sensor i is the sum of the energy costs from node i to k and
from node k to the base station

TECik ¼ ECik þ ECk;BS ð3Þ

Based on this definition, sensor i can select the best can-
didate, node K

K ¼ Arg min
j2Niþfig

ðTECijÞ ð4Þ
Compared with Ref. [12], this algorithm takes the en-
ergy cost of the entire routing path into consideration.
They claimed this algorithm can establish energy suffi-
ciency as well as efficiency. Since the cost function ECij is
transmission energy cost relative to available energy, its
value is low in the case that the required transmission en-
ergy is low and available energy is high. Rahme et al. pro-
posed a representative cost function [6], which includes
four cost functions. The main difference between these
four cost functions and previous research is that they take
into consideration the current node energy consumption,
the remaining energy of nodes within one hop and two
hops, and the energy consumption due to signal interfer-
ence within two hops. In addition, Ok et al. also proposed
a routing algorithm named MaxEW [16]. It adopts the so-
cial welfare function from social sciences to compute en-
ergy welfare as a measure for energy populations. When
each sensor tries to maximize energy welfare of its local
society, it collectively leads to globally efficient energy-
balancing.

From the above discussion, nodes can only make rout-
ing decisions based on the information of itself and its
neighbors, leading to only a few limited parameters to
form the cost function. This paper attempts to give the gen-
eral principles of cost function construction, and proposes
an energy aware routing strategy based on the cost func-
tion, with better performance to improve the network
lifetime.
3. Sensor network model

3.1. Network topology

We adopt the same network model as [5,16]. The net-
work is composed of n homogenous sensors randomly
and uniformly distributed over a target area. Events occur
uniformly such that every sensor has one packet to report
periodically. The neighboring distance is defined as the
maximal reachable distance of radio frequency with the
maximum transmission power. Each sensor can be aware
of the current energy level of its neighbors and the energy
required to transmit data from each of its neighboring sen-
sors to the base station [17]. We assume a perfect trans-
mission model, i.e., a sensor’s neighbors can receive all
the messages that the sensor transmits. When a sensor
transmits a message to one of its neighbors or the base sta-
tion, the sensor attaches the information of its remaining
energy to the message so that all of the neighbors can up-
date its energy level. This updating process guarantees that
information of neighboring sensors for the routing decision
is available for sensors. The lifetime of the network is the
time elapsed till the first sensor node in the network uses
up its energy. The goal is to maximize the network lifetime
by designing an energy-efficient routing algorithm.
3.2. Energy consumption model

Sensors consume energy when they are sensing, receiv-
ing and transmitting [18]. The amount of energy consumed
for sensing is not related to routing [19]. Therefore, we



Table 1
Network parameters.

Parameter Value

Threshold distance (d0) (m) 87
Sensing range rs (m) 15
Eelec (nJ/bit) 50
efs (pJ/bit/m2) 10
eamp (pJ/bit/m4) 0.0013
Initial energy (J) 0.5
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consider only the energy usage for transmitting and receiv-
ing messages. According to the radio model used in [7], en-
ergy consumption for transmitting is given by Eq. (5)

Emember ¼ lEelec þ lefsd
2 if d < d0

Emember ¼ lEelec þ leampd4 if d > d0

(
ð5Þ

where Eelec is transmitting circuit loss. Both the free space
(d2 power loss) and the multi-path fading (d4 power loss)
channel models are considered in the model, depending
on the distance between transmitter and receiver. efs and
eamp are the energy required by power amplification in
these two models, respectively. The energy spent for
receiving a l-bit packet is

ERðlÞ ¼ lEele ð6Þ

The above parameter settings are given in Table 1 [7].

4. Analysis and design principles of cost function

4.1. A case study of existing cost function based routing

We use an example to illustrate that existing cost func-
tion based routing strategies can be farther improved. In
Fig. 1, there are two obstacles in a rectangular WSN. As-
sume that each sensor initially has the same amount of en-
ergy enough for transmitting and receiving m = 10,000
data packets. The area covered by the network is
s = L �W(115 � 75) m2; node density is q = 0.06/m2; no
sensor is deployed in the obstacle areas. There are
n = 400 sensors in the network. The number of sensors in
the red area is n1 = 280. In each round of data collection,
each sensor generates one data packet.

We first look at the minimum transmission energy
(MTE) routing algorithm proposed by Ettus and Shepard
[9,20]. This algorithm selects the route that uses the least
amount of energy to transport one packet from source to
ObstacleObstacle -1

Route-1

Route-2

hotspot

Sink

ObstacleObstacle-2

A

A’

B

B’

y

Fig. 1. Network topology 1.
destination. Data in the red area can be sent to the sink
via Route-1 and Route-2. Route-1 consumes less energy
than Route-2 since it is shorter, and therefore is selected
by the MTE algorithm. The path segment B � B0 in Route-
1 can also be used by many other routes, thus B � B0 is
called hotspots, which determines the lifetime of the entire
network. Assume that there are k = 3 nodes in the hotspots,
they have to forward data from n1 = 280 nodes in the red
region to the sink. The network lifetime by MTE can be cal-
culated as

l1 ¼
m

n1=k
¼ km

n1
¼ 10000

280=3
¼ 107 ðroundsÞ:

We examine the distributed energy balanced routing
(DEBR) algorithm proposed by Chang recently [5]. Eqs.
(2)–(4) are used in DEBR. In Fig. 1, assume that the number
of hops in the hotspot part B � B0 in Route-1 is 1

x of that in
the A � A0 portion in Route-2. We have results about the
energy consumption and network lifetime in Lemma 1.

Lemma 1. In Fig. 1, when the TEC (see the definition in Eq.
(3)) of Route-1 equals to the TEC of Route-2, i.e., when the
route is balanced (i.e., the probabilities that nodes transmit
data via different routes are the same), the remaining energy
of Route-1 in the hotspot is just 1

x of that of Route-2.
Proof. Let

TECroute�1 ¼
X

i;j2route�1

ECij; TECroute�2 ¼
X

i;j2route�2

ECij:

When the network begins to operate, nodes have the
same amount of initial energy. As Route-1 is shorter than
Route-2, we have TECroute�1 < TECroute�2. Therefore, data in
the red zone is routed through Route-1, and TECroute�1

increases rapidly. This results in TECroute�1 = TECroute�2 after
a period of time. We have the following analysis about the
energy consumption of Route-1 and Route-2.

Route-1 and Route-2 can be divided in the following
way. Route-1: S ? B ? B0 ? Sink; Route-2: S ? A ? A0 ?
Sink. We can consider that traffic load is basically the same
for all sensors. So the difference of TEC between Route-1
and Route-2 is due to the different energy consumptions in
hotspot B ? B0 and A ? A0. The number of hops in B ? B0 is
n, and that in A ? A0 is x � n. To make TECroute�1 =
TECroute�2, we should haveX
i;j2B!B0

ECij ¼
X

i;j2A!A0
ECij ð7Þ

In ECij ¼ eij=Er
i ; eij is the energy consumed for transmitting

one packet, which can be considered the same for both
routes. For simplicity, let us assume that the remaining en-
ergy Er

i is the same for nodes in B ? B0 and nodes in A ? A0.
Eq. (7) can be transformed as follows

n
eij

Er
B�B0
¼ xn � eij

Er
A�A0
) Er

B�B0 ¼
1
x

Er
A�A0 �

From Lemma 1, in DEBR, the network remaining energy
is not balanced in different routes. For example, only when
the remaining energy of B � B0 in Route-1 is 1/x of Route-2,
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the data in red area can be routed through Route-2. Even
worse, the energy consumption is more imbalanced if the
path length of Route-2 is longer than its currently path
length. In Fig. 1, there may be y-1 paths longer than
Route-2 in the left side of Route-2 (i.e., the size of obsta-
cles-2 in Fig. 1 and size of the narrowest region in network
on the left are y times of the hotspot). We have the follow-
ing Lemma 2.
Lemma 2. The ratio of DEBR network lifetime to the optimal
network lifetime is ud ¼ 1� ðx�1Þy

lo
:

0.0030

0.0035

0.0040

TC(new1)
Proof. When hotspot nodes can transmit data for one
round of collection in the red area, Route-2 can transmit
(x � 1) rounds. According to the routing principles of DEBR,
Route-1 will be chosen. Then nodes in the hotspots area die
fast. At the time of their death, Route-2 can still transmit
for (x � 1) rounds, and there are y paths similar to Route-
2. Therefore, after the death of nodes in hotspots, the net-
work can carry out more than (x � 1)y rounds of data
transmission before the entire network dies. In other
words, the network using DEBR dies (x � 1)y rounds earlier
than that of the optimal algorithm. Denote the optimal life-
time of the network by l0. The network life using DEBR
algorithm is ld = lo � (x � 1)y. We have

ud ¼
lo � ðx� 1Þy

lo
¼ 1� ðx� 1Þy

lo
�

If energy consumption can be balanced, data collection
will be performed along both route-1 and route-2. Then,
there are y + 1 paths that can be used to transmit data from
320 nodes (see Fig. 1). The optimal network lifetime can be
estimated as

lo ¼
10000

320=30
¼ 937 ðroundsÞ:

In Fig. 1, let x = 12 and y = 9, then the network lifetime by
DEBR is ld = 838. Fig. 2 shows the performance comparison
of network lifetime of these algorithms. We can see that
the shortest path algorithm has the minimum lifetime,
and DEBR can be improved by 11% compared to the opti-
mal algorithm. Meanwhile, the larger x and y, the farther
the lifetime is from the optimal lifetime.
shortest route DEBR Optimization Route
0
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300

400

500

600

700

800

ro
un

ds  lifetime

Fig. 2. The lifetime under different routing algorithms.
4.2. Design principles of cost function

Most of existing cost function based routing algorithms
are designed according to designer’s experience. It is diffi-
cult to justify the rationality of their introduced cost func-
tions. Below we present an analysis of a few existing
routing algorithms and derive several cost function design
principles.

In general, the cost function can be represented as
f(xi) = ki/xi, where xi is the nodal remaining energy or a con-
stant such as 1, ki a constant such as 1 or eij (energy con-
sumption for sending unit data from i to j). The total
energy cost is calculated as TEC ¼

P
i2pathf ðxiÞ. We analyze

two typical cost functions, one is f ðAÞ ¼ 1=Er
i , where Er

i is
the nodal remaining energy (i.e., ki ¼ 1; xi ¼ Er

i Þ, the other
is f(B) = eij (i.e., ki = eij, xi = 1). The state of the network can
be divided into two stages.
4.2.1. Expansion stage of non-balanced energy consumption
At this stage, the nodal remaining energy between

Route-1 and Route-2 is increasingly different. Figs. 3 and
4 show the total energy cost (TEC) and remaining energy
of Route-1 and Route-2 under cost functions f(A) and f(B).
The evolution of the network state under f(A) is as follows.
At the beginning, since Route-1 is much shorter than
Route-2, its TEC is low, and data in the red area are routed
through Route-1. Thus, its energy consumption rate is very
high. Fig. 4 shows that the remaining energy of Route-1 de-
creases quickly. Since few data are routed through Route-2,
the energy consumption of Route-2 is low (the remaining
energy of Route-2 goes down slowly, as shown in Fig. 4).
However, since the remaining energy of Route-1 decreases
very fast, its TEC increases fast; whereas, the remaining en-
ergy of Route-2 changes slightly, and its TEC increases
slowly. When the network passes 102 data collection
rounds, it reaches a turning point A where TECroute�1 =
TECroute�2. At this point, the gap between the remaining en-
ergy of Route-1 and Route-2 is the largest. Under the effect
of the cost function f(B), TEC gap between Route-1 and
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Route-2 exists when the algorithm starts, and it remains
until nodes in Route-1 die. After that, it comes to a turning
point B, from which the remaining energy gap keeps
growing.

4.2.2. Energy consumption gap reduction
At this stage, routing paths with different distances to

the sink have relatively stable cost difference, and the
remaining energy gap no longer increases, as shown in
Figs. 3 and 4. Under cost function f(A), when the network
reaches a turning point A where TECroute�1 = TECroute�2,
the data in the red region are also routed through Route-
2, which makes the TEC curve of Route-2 steeper and the
TEC curve of Route-1 slower. Equilibrium is eventually
reached. Thus, after the turning point A, TECroute�1 and
TECroute�2 converge to the same point. Which of TC
(new1) and TC (new2) is the total cost depends on the
parameter y, as depicted in Fig. 3. A large y means that
there are many possible routing paths available for selec-
tion, leading to a moderate TEC (thus TC (new2) in
Fig. 3). A small y will on the contrary lead to a steeper
TEC curve (i.e., TC (new1) in Fig. 3). The remaining energy
at this stage is shown in Fig. 4. After the turning point A,
the energy consumption rate of Route-1 slows down (the
remaining energy of Route-1 curve is flatter), and the en-
ergy consumption rate of Route-2 increases fast (the
remaining energy of Route-2 curve is steeper). There is a
gap between the remaining energy levels of Route-1 and
Route-2. This gap becomes small as the algorithm runs.
When the remaining energy is low, the cost function can
map a relative small difference into a bigger cost differ-
ence. Therefore, the nodes in Route-1 die first, and then
nodes in Route-2.

From the above analysis we can see that cost function
design must take into account the remaining energy vari-
able. The cost function f(B) does not include this variable
and ends up with poor performance. The cost function
f(A) contains the remaining energy variable, and therefore
has relatively better performance. However, cost functions
that consider nodal remaining energy are not necessarily
the optimal ones. An optimal cost function balances the
energy consumption among nodes and maximizes network
lifetime. Hence, the general principle of cost function de-
sign can be summarized as follows:

Principle 1. A cost function should have the following
properties: small changes in nodal remaining energy can
lead to large changes in the function value. h

Such a function can increase sharply the cost of a path
whose nodal remaining energy is small, forcing nodes to
select the path with more remaining energy and balancing
energy usage. Among the cost functions in line with this
principle, those in which small energy change can result
in a large change in function value is more favorable. In
the following, we propose two energy aware routing
algorithm.

4.3. Exponential and sine cost function based routing (ESCFR)

The cost function of DEBR is essentially equivalent to
function f(x) = k/x, where x ¼ Er

i (remaining energy), k = eij.
The function of MTE is f(x) = k, where x = 1, k = eij. Accord-
ing to principle 1, we can design some functions with bet-
ter performance than f(x) = k/x. Below is an illustrating
example. It also shows the efficiency of principle 1 to sim-
plify cost function design and enhance performance.

Exponential and sine functions are the kind of func-
tions where small changes in variables can cause large
changes in function values. We put these two types of
functions together and construct an exponential function,
as represented by Eq. (8). The following illustrates the
correctness of principle 1 through the exponential and sine
function.

f ðxÞ ¼ expð1= sinðxÞÞ ð8Þ

Exponential and sine function are functions with period
p, and the cost function only needs to be a function from p/
2 to p. Therefore, a cost function is needed to map nodal
remaining energy to [p/2,p]. Assume the nodal initial en-
ergy is E0, the current remaining energy is Er

i . The mapping
function can be given by

s ¼ f Er
i

� �
¼ p� p

2
Er

i

E0
ð9Þ

Then its cost function is

Cij ¼ eij expð1= sinðsÞÞ ¼ eij exp 1= sin p� p
2

Er
i

E0

� �� �
ð10Þ

TCik ¼ Cik þ Ck;BS ð11Þ

Based on this metric, a sensor i can select the best can-
didate neighbor K as next hop

K ¼ Arg min
j2Niþfig

ðTCijÞ ð12Þ

We check whether the cost function Cij in Eq. (10) is
more effective than ECij of DEBR in Eq. (2). Figs. 5 and 6
show the total cost and the remaining energy of Route-1
and Route-2, respectively. In Fig. 5, the turning point A is
obtained according to ECij. When the network starts to
operate, Route-1 has a smaller TEC due to its shorter
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length, and thus the data in red region (Fig. 1) is routed
through Route-1. This make Rout-1 have higher energy
consumption than Route-2. Since the TEC gap between Cij

and ECij is large under the same energy gap, the cost func-
tion using exponential and sine function reaches a turning
point B earlier. The remaining energy of nodes in Route-1
and Route-2 is shown in Fig. 6. We can see that, when
the cost function in Eq. (2) is deployed, the remaining-en-
ergy gap expands from the beginning till turning point A,
while with the cost function based on exponential and sine
function, the remaining-energy difference begins to shrink
from point B. It is clear that the energy consumption is
more balanced for cost function based on exponential
and sine function, the routing performance is better and
the network lifetime is longer. Meanwhile, the exponential
and sine function can be further improved. Eq. (8) maps
remaining energy to [p/2,p]. In interval [p/2,3p/4], the
exponential and sine function does not increase as fast as
the independent variable, but it increases faster than the
independent variable in [3p/4,p]. Thus, the nodal remain-
ing energy can be instead mapped into [3p/4,p], and Eqs.
(9) and (10) can be replaced by the following Eqs. (13)
and (14), respectively. If Eqs. (11) and (12) do not change,
we can get the turning point C in Figs. 5 and 6, then the en-
ergy consumption is more balanced, and the network life-
time is further improved.

s ¼ f Er
i

� �
¼ p� p

4
Er

i

E0
ð13Þ

Then the cost function is

Cij ¼ eij expð1= sinðsÞÞ

¼ eij exp 1 sin p� p
4

Er
i

E0

� ��� �
ð14Þ
Lemma 3. The energy-balancing performance of exponential
and sine cost function based routing (ESCFR) is no worse than
DEBR.
Proof. Suppose that there are two different routes Route-a
and Route-b in the network. When the calculation results
of the cost function are the same for DEBR and ESCFR,
nodes can select the two paths with the same probability.
The network is stable and the energy consumption rate of
the routing paths is the same. If the remaining energy of
these two paths is the same, then ESCFR and DEBR will
clearly have the same energy-balancing performance.
Since the routing paths are not the same, for the two cost
functions to produce equal result, the remaining energy
should not be equal. In this case, we assume that the
remaining-energy difference between these two paths is
De1 under ESCFR, and De2 under DEBR. We have De1 < De2

as ESCFR maps a small energy different into a larger cost
function. Because the cost function values are equal, ESCFR
only needs a small energy consumption difference to trig-
ger energy balancing. Therefore, the energy-balancing per-
formance of ESCFR is not inferior to that of DEBR. h
4.4. Double cost function based routing (DCFR)

According to the above analysis, ESCFR is not necessar-
ily able to eliminate energy imbalance between estab-
lished routing paths. We have the following Lemma 4.

Lemma 4. Routing strategy based on mapping remaining
energy into cost function cannot completely eliminate the
energy consumption imbalance between routing paths with
different hop counts.
Proof. No matter which routing strategy (based on map-
ping remaining energy into cost function) is selected, as
for two routing paths with length difference Dx, their
energy consumption must not be balanced. This is because
if they are balanced, there must be TC(short) < TC(long)(TC
is the total cost of routing path), then the routing algorithm
must select the shorter path, making the shorter path have
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to consume De more energy to guarantee TC(short) = TC
(long). That is, the shorter path must consume additional
De energy to make up for the cost function difference Dx,
i.e., f(De) = TC(Dx). h

In a distributed routing algorithm based on cost func-
tion, although a better cost function can result in more bal-
anced energy consumption, the algorithm can only reduce
the difference in energy consumption to some limited ex-
tent. Note that the energy consumption rate of nodes in
hotpots is surely high. If this factor is included in the cost
function, we can then further improve the energy-balanc-
ing performance of the routing algorithm. The energy con-
sumption rate of a node can be defined as follows

esi ¼
Er

ti
� Er

tj

tj � ti
ð15Þ

We need to map esi into [p/2,p]. Assume the maximum
esi is Rmax. The mapping function can be easily obtained as
follows

rsi ¼ f ðesiÞ ¼
p
2
þ p

2
esi

Rmax
ð16Þ

Then the new cost function is

RCi ¼ eij expð1= sinðrsÞÞ

¼ eij exp 1= sin
p
2
þ p

2
esi

Rmax

� �� �
ð17Þ

TRCij ¼ RCi þ
X

k2pathjj...base

RCk ð18Þ

Based on this metric, sensor i can select the best candi-
date, neighbor K as the next hop

K ¼ Argminj2NiþfigðTCij þ TRCijÞ ð19Þ

Below we will analyze how the cost function in Eq. (19)
can further improve network performance. Figs. 7 and 8
show the cost and energy consumption changes during
network lifetime with the new cost function. In Fig. 7,
the calculation of TC cost is the same as in Fig. 5, while
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the cost calculated in Eq. (18), which is according to energy
consumption rate, is added to the total cost. TRC(R1) and
TRC(R2) respectively represent the cost calculated accord-
ing to energy consumption rate in Route-1 and Route-2.

When the network starts to operate, the total cost of
Route-1 T(R1) < T(R2), all data in the red region is routed
through Route-1, thus the energy consumption rate of
nodes in Route-1 is high, but its energy consumption rate
remains at a fixed level, so TRC(R1) at this stage maintains
at a basic level, but higher than TRC(R2) (due to cost func-
tion sensitive to the independent variables). Since
T(R1) = TC(R1) + TRC(R1) and T(R2) = TC(R2) + TRC(R2), it
is clear that no matter how cost TC is computed, the new
cost function shifts the turning point (where
T(R1) = T(R2)) from C to D. As shown in Fig. 8, the remain-
ing energy of the two routing paths is reduced from the
gap-line C � C0 to D � D0.

The new cost function makes the network process the en-
ergy balance in advance. After reaching the equilibrium
point D, energy consumption rate of Route-1 declines, and
that of Route-2 increases. At the end, these two paths have
the same energy consumption rate (the energy consumption
rate equals at point E in Fig. 7). As ESCFR, this new algorithm
only considers remaining energy difference. Therefore, we
improve it by changing the cost function as Rule 1:

Rule 1: We calculate the cost caused by energy con-
sumption rate in an increasing mode instead of declining
mode, i.e., no matter the energy consumption rate of cur-
rent node is increasing or declining, the cost of energy con-
sumption rate is calculated as the highest energy
consumption rate so far. h

From Fig. 7, Route-1 has non-declining TRC(R1) (the
blue line), although the actual energy consumption rate
declines after the turning point E (the brown line). While
TRC(R2) increases as the energy consumption rate in-
creases after the turning point E, it is always smaller than
TRC(R1). It is because the two paths undertake the same
amount of data, and as the number of routing paths in-
creases, the amount of data undertaken per path decreases
and so does the energy consumption rate. With Rule 1
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being applied, whether the energy consumption rates of
the paths are equal or not, the cost of energy consumption
rate is higher for the paths with more remaining energy,
which may further reduce remaining-energy difference
and achieve more balanced energy usage.

We demonstrate that DCFR’s cost function is effective
and able to adapt to the complex network through an
example shown in Fig. 9. The cost changes of the three
routing paths are shown in Fig. 10. Initially, since the node
remaining energy is the same, the cost calculation of TC
can be calculated according to the path length, thus
TC(R1) < TC(R2) < TC(3), so the data amount undertaken
by each path meets R1 > R2 > R3 and as a result we have
TRC(R1) > TRC(R2) > TRC(R3). After a period of time, the en-
ergy of R1 goes down quickly, and TC (R1) increases fast,
resulting in T(R1) and T(R2) meet at the equilibrium point
C. The data amount undertaken by R1 declines, and that by
R2 increases; whereas, according to Rule 1, TRC(R1) does
not decrease, and TRC(R2) increases. These three paths
achieve a balance at time of D, i.e., T(R1) = T(R2) = T(R3).
After point D, the data amount of R1 and R2 continues to
decline, and that of R3 keeps increasing. Since there will
be some delay to balance these three paths, the data
amount balance points B and A occur later than the cost
R1

R2

R3

sink

obstaclesobstacles

obstacles

obstacles

Fig. 9. Network topology 2.
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balance points C and D. Therefore, the energy consumption
along these three paths is balanced after D. It is clear that
DCFR reaches energy consumption balance status earlier
than the algorithms considering only remaining energy.

Lemma 5. DCFR is not inferior to ESCFR in energy balancing.
Proof. Suppose that there exist two paths Route-a and
Route-b to select. If Route-a and Route-b have the same
energy consumption rate, then DCFR and ESCFR have the
same performance. Without loss of generality, we examine
the case that the energy consumption rate of Route-a is
greater than that of Route-b at some time. Assume that
the rate difference between the two paths is Ds > 0. The
cost in Route-a is small, so more energy needs to be con-
sumed to make its total cost increase faster than Route-b
and achieve balanced energy consumption rate. In DCFR,
Route-a can have its total cost to be equal to Route-b only
by relying on energy consumption difference, while in ESC-
FR the cost of energy consumption rate difference is TRS
(Ds) > 0. Thus, Route-a may consume less energy to bal-
ance energy along the two paths, namely, the energy con-
sumption difference needed is not so big as in ESCFRR.
Therefore, the performance of DCFR is not inferior to
ESCFR. h

The pseudo code of DCFR is given as follows:

(1) Discovery of neighbors and establishment of the ini-
tial routing table.
Each sensor broadcasts a setup message to neighbor-
ing nodes using a pre-set transmission power. This
setup message includes node identifier (NI), mini-
mum total cost (MTC) to the base station, remaining
energy (RE), current energy consumption rate (CES).
If a node is connected directly to the sink, it sets
MTC = 0. After a source node S receives the informa-
tion of each neighbor, it constructs a neighbor node
table as shown in Table 2, where RE, CES, MTC is
based on the message broadcasted by neighbor
nodes, eij is the optimal transmit power based on
signal power of S, and max energy speed (MES) the
node largest energy consumption rate so far.

(2) Calculation: For each neighboring nodes j 2 Ns, calcu-
late the cost to the sink according to Eq. (19). As for
each row in Table 2, calculate Csj according to Eqs.
(9) and (10), compare CES and MES, and make MES
the largest value. Then map MES into RCi according
to Eq. (17); Calculate Cij according to Eq. (10) or Eq.
(14), put the calculation result of RCi + Cij + MTC into
the last column, indicting the cost of routing through
this node to sink.After the above calculation, select
Table 2
Neighbor node table of node S.

Node id RE CES MES eij MTC Cost

S
N1 50000 75 98 170 300 410

� � � � � � � � � � � � � � � � � �
Nk 80000 88 97 213 320 530
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node Ni that has minimum cost as the next hop and update
the row of node S as follows: put the ID number of Ni in the
cost column and the cost of Ni in the MTC column, to show
the minimum cost for S to route to the sink. At last, update
the RE, CES columns.
(3) Broadcast: In each fixed period, S broadcasts its Ni,
MTC, RE, CES to neighbors.

(4) For each message received from a neighbor, S node
does the following:
Fig. 11. Scene-1: Circular network with sink located at (0,0).
(a) if it is the new neighbor, then add the informa-
tion (NI,MTC,RE,CES) as a new line to the neigh-
bor information table, and make MES = CES, and
calculate eij.

(b) Otherwise, means the node is already in the
neighbor table, then replace the original items
(NI, MTC, RE, CES) with corresponding items
received, and MES in this line is updated to the
bigger one of new CES and MES.

(c) No matter what the situation is, recalculate MTC
of the updated line according to step 2. Then
decide whether to update corresponding value
of Cost and MTC according to the result.
Fig. 12. Scene-2: Circular network with sink located at (0,200).

Fig. 13. Scene-3: Network with two obstacles.
(5) As for each packet received, node S select Ni from the
cost column as the next hop to forward.

(6) End.

5. Experimental results

In this section, we provide experimental results to vali-
date the effectiveness of exponential and sine cost function
based routing (ESCFR) and double cost function based rout-
ing (DCFR) algorithm. We compare them with three exist-
ing algorithms discussed in [7,8]: direct communication
(DC), minimum transmission energy (MTE), and distrib-
uted energy balanced routing (DEBR). In DC, every sensor
simply transmits data directly to the base station without
considering any energy efficiency. MTE considers multi-
hop routing to save sensor power, but always chooses
the path with the least total energy cost of transporting a
packet to the sink. DEBR, ESCFR, DCFR all select the next
hop based on the cost function value. We measure the net-
work lifetime by the time when the number of dead nodes
reaches 1% of the total nodes. We use this approximation
to avoid the experimental randomness brought by prema-
ture death in random deployment of nodes. We consider
that all nodes die when the number of dead nodes or nodes
that cannot send data to the sink reaches 99% of the total
nodes.

We carry out experimental verification using OMNET++
[21]. The main simulation parameters are given in Table 1.
We use a simplified MAC layer where message losses, col-
lisions, and duplications are not considered, as in [22,24].
Four different network scenarios are considered (see
Figs. 11–14). The first is a network of 457 random-
uniformly-deployed nodes in a circular area whose radius
is 300 m with the sink located at (0,0). The second has
the same topology as the first one, but it does not have
the sink at the center, but at (0,200). The other two net-
works are rectangular networks, (0,0) is located at the
upper-left corner, x direction is on the right and y direction
is straight down. The third network is deployed in an
805 � 525 m area with the sink being located at
(294,469). The fourth is a network whose area is



Fig. 14. Scene-4: Network with four obstacles.
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550 � 550 m with the sink located at (370,475). 457 nodes
are randomly uniformly deployed in these two networks,
and in these two networks, there are obstacles where
nodes cannot be deployed.
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Fig. 17. The number of alive sensors over time under scene 3.
5.1. Lifetime of sensor network

This experimentation evaluates the performance of the
algorithms with r = 85 m (r is the maximum reachable
distance for nodal transmission power, called node trans-
mission radius) in the above four network scenarios.
Figs. 15–18 plots the number of living sensors against the
number of rounds for each algorithm. In each data commu-
nication round, every sensor sends a single data packet to
the base station.

We can have the following conclusions from experi-
mental results in Figs. 15–18. (1). In all the scenes, ESCFR
and DCFR both have longer lifetime than the other three
algorithms. In Scene-1, the lifetime difference between
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ESCFR, DCFR, MTE and DEBR is small. This is because the
sink is located at the center, and the routing paths by these
algorithms are basically the same. Because ESCFR, DCFR,
DEBR consider the energy efficiency of the next hop
(through eij

Er
i
Þ, theses lead to a network lifetime slightly long-

er than MTE. In the other three scenes, energy balancing
plays an important role in the network lifetime. In an en-
ergy-balanced network, the routing algorithm mainly im-
proves the network lifetime through energy saving, while
in an energy-imbalanced network (for example, different
routing paths have the same routing length and their prob-
abilities to be chosen as routing path by nodes are the
same), mainly through energy balancing to improve net-
work lifetime. (2) In different networks, nodes die in differ-
ent ways. In networks whose lifetime is relatively short,
nodes die very early. After the death of some nodes, the
network load is decreased, and the data amount under-
taken by remaining nodes decreases, and these nodes last
long and die slow as a result. While in networks whose life-
time is relatively high and energy balancing is better, few
nodes die at the beginning, but most nodes die at the same
time in the later period. It is worth noting that in this
experiment, dead nodes including nodes disconnected
from the sink for having no paths to the sink. In Scene-1
and Scene-2, when nodes around the sink all die and the
range of the dead zone around the sink is larger than r,
there are no path from outside nodes to the sink, they
are considered to be dead nodes. For this reason, in the
experimental results of Scene-1 and Scene-2, we can see
that lots of nodes die at the same time at last in the energy
consumption balanced routing paths. In Scene-3 and
Scene-4, when nodes die, nodes away from the sink are
separated from the sink, resulting in a sharp increase of
death rate of nodes.

Fig. 19 shows the network lifetime of different algo-
rithms in these four scenes. The network lifetime by DC
is very short, and ESCFR, DCFR, DEBR have an improved
network lifetime than MTE. Further, ESCFR, DCFR can im-
prove the network lifetime more than DEBR.
5.2. Energy balancing

Figs. 20 and 21 show the load of Route-1 and Route-2 in
Scene-3 with different algorithms (vertical axis refers to
the number of packets in 10 rounds). Since DC has no con-
cept of routing, therefore, we simply compare the other
three routing algorithms. As can be seen from the results,
MTE only focuses on energy saving, its Route-1 bears a
great amount of data at the beginning stage, therefore,
Route-1 dies soon. After the death of Route-1, data amount
and energy consumption rate of Route-2 rise rapidly, and
Route-2 dies soon, and dead zones spread outward quickly.
DEBR, ESCFR, DCFR have similar characteristics, that is, at
the beginning, Route-1 has less cost, and therefore Route-
1 has bigger load and consumes more energy (similar to
MTE at this time). However, as the network operates, the
cost of Route-1 increases rapidly, therefore, Route-1 and
Route-2 achieve a routing balance (meaning, having equal
routing cost). DCFR reaches such a balance first, then ESC-
FR, the last is DEBR. After achieving the routing balance,
Route-1 and Route-2 share the network load, and thus
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Fig. 23. Network remaining energy in Scene-3 (all nodes die under MTE).
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ESCFR).
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make the nodal load to the average level. Since the total
amount of data in the network is fixed, algorithms that
achieve balanced routing first can balance the nodal data
load well, and they have the longest network lifetime.
Therefore, the network lifetime by these tested four algo-
rithms is DCFR > ESCFR > DEBR > MTE.

We can calculate nodal remaining energy according to
the load condition of different routing paths. Figs. 20–22
show the remaining energy of Route-1 and Route-2 by ESC-
FR and DEBR in Scene-3. It can be seen that our theoretical
analysis results are consistent with the results given in
Fig. 6, namely, our proposed algorithm not only reduces
the uneven energy consumption of the two routing paths
earlier, but also make the energy consumption difference
among nodes in the two routing paths smaller.

Figs. 23 and 24 compare the nodal residual energy of
MTE and ESCFR after all nodes die in Scene-3. In MTE, each
node sends data to the sink along the shortest path, since
the sink is located at (0,200), nodes on the side near the
sink consume a little energy and still have a lot of remain-
ing energy when nodes on the other side dies early. In ESC-
FR data will be routed to the other side such that, when the
network dies, nodes near the sink consume all the energy
and only nodes far away the sink have lots of remaining
energy. This confirms the energy balancing performance
of our proposed algorithm. Fig. 25 shows the network
remaining energy in Scene-4 under ESCFR, and Fig. 26
shows nodal data amount in Scene-2 under MTE when all
nodes die. Due to space limitation, other experimental



Fig. 26. Node data amount in Scene-2 (all nodes die under MTE).
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results are not reported, but they are consistent with our
previous analysis.

5.3. The effects of network parameters on performance

5.3.1. Varying the network scale
First we evaluate how the network shape in Scene-3 af-

fects the cost function. We expand the width of y in Fig. 13
to test its influence. Fig. 27 shows the data amount under-
taken by nodes of Route-1 and Route-2 with ESCFR under
different y. It can be seen, after doubling y, the time to
reach balance point is almost the same. But after the bal-
ance point, since there are more paths (the larger y, the
more paths) to take data, nodes in Route-1and Route-2
undertake a declining amount of data. Fig. 28 shows the
remaining energy of Route-1 and Route-2 before and after
the expansion of y. It can be seen that after increasing y,
the remaining energy of Route-1 and Route-2 declines
more moderately, which means the time needed for
remaining energy to drop to 0 is longer.

Fig. 29 shows the network lifetime under different net-
work scale. The circular network’s radius was varied be-
tween (200,300,400,500), and the sink located at (0,200).
To maintain the same node density, the number of nodes
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Fig. 27. The data amount when y is doubled.
deployed is respectively (203,457,812,1269). It can be
seen that the network lifetime has declined for all these
algorithms. But ESCFR and DCFR are still higher than the
other algorithms, and with the network expansion, they
have an increased network lifetime.

5.3.2. Varying the sink location and transmission radius r
Fig. 30 shows the network lifetime in Scene-3 when the

sink is located at (0,0), (0,50), (0,100), (0,150), (0,200),
(0,250), (0,300). When the sink is located at the circle cen-
ter, the network has highest lifetime. The farther the sink is
away from the circle center, the shorter the network life-
time. Similarly, the performance of DCFR and ESCFR is still
better than the other algorithms. The underlying causes
are: the farther the sink is off the circle center, the more
variation in the length of the routing paths to the sink,
and therefore the more obvious the effect of these algo-
rithms on energy balancing.
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Fig. 31 shows the network lifetime under different
transmission radius r when the sink is located at the centre
of a circular network whose radius is 500. Since the nodal
energy consumption is 2 or 4 power of the transmission
distance (d2,d4), different transmission radius r can lead
to different network lifetime. By carefully selecting of node
transmission power (namely transmission radius r), we can
optimize the network lifetime.

5.3.3. Varying the number of sensor nodes
The network discussed in this section is a circular net-

work with a radius of 500 m, and the sink is located at
the circle center. The number of randomly deployed nodes
are (600,800,100,1200,1400,1600,1800,2000). Fig. 32
shows that although the number of nodes in the network
varies greatly, the network lifetime difference is not large
under the same transmission radius, indicating that the
node density has little effect on the network lifetime. This
result is consistent with the results in Ref. [23–25]. As node
density goes up, the total amount of data transmitted
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Fig. 31. Network lifetime under different transmission radius.
grows, and the number of routing paths increases. In this
case, with uniform node distribution, the work load per
node changes barely on average, and as a result, the net-
work lifetime remains roughly unchanged.

5.3.4. Routing system overhead
System overhead is defined as the data packets to the

total packets (including system messages and data
packets. System messages include four segments (NI,MT-
C,AE,CNS)). System messages are assumed to have the
following length in our simulation: 1 data packet long, 1/2
data packet long, 1/4 data packet long. Each node in one
data collection round broadcasts each of these messages
(NI,MTC,AE,CNS) only once. So if each node forwards only
one data packet in one round, the ratio of useful message
load is 1/2 = 50%, 1/1.5 = 66.67%, 1/1.25 = 80%.

Fig. 33 represents the number of nodes under different
system useful ratio in a circle network with radius
R = 300 m, R = 400 m, the sink is located in (0,200). It can
be seen from Fig. 33, a large part of nodes only send a
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single packet in one data collection cycle, the number of
nodes are 192,423 (if the length of system message and
data packet equals, then the node whose useful load ratio
is 50% must only send a single packet in one data collection
cycle, and the number of such nodes is respectively 192,
423). This is because for nodes who are within the distance
r = 85 m from the network border, they do not need to
forward data from other regions. These nodes constitute
a large portion of the network. Since there are a fixed
number of system messages transmitted by each node in
a data collection round, the more data packets a node
forwards, the higher the useful ratio. Experimental
scene in Fig. 34 is to count the useful ratio of the entire
network (i.e., the average useful ratio) in the network with
radius (200,300,400,500) and the sink being located at
(0,200).
6. Conclusion

In this paper, we have studied cost function based en-
ergy-aware routing. We proposed the general principles
of cost function design and evaluation criteria. Further,
we presented two novel energy aware cost based routing
algorithms, named exponential and sine cost function-
based routing (ESCFR) and double cost function based rout-
ing (DCFR). These two algorithms aim at maximizing the
lifetime of the network by means of power consumption
equalization. Comprehensive simulation results demon-
strate that the algorithm can significantly improve net-
work lifetime comparing with the best solution known in
the literature, such as DC, MTE, and DEBR.
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