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Abstract: Energy-efficient transmission and bit allocation schemes are investigated in multi-
source single-sink Wireless Sensor Networks (WSNs). For transmission over Additive White 
Gaussian Noise (AWGN) channels with path loss, this work shows that the overall energy 
consumption can be minimised if each sensor transmits with the minimum power and cooperates 
with others in Time-Division Multiple Access (TDMA) mode. From the efficient correlated 
source coding perspective, the Slepian–Wolf coding theorem is applied. Jointly considering the 
two aspects, we propose a closed form bit allocation scheme to minimise the overall energy 
consumption. The underlying idea is to assign more bits to nodes with better channel conditions. 
Additionally, based on the definition of network lifetime as the time before the first sensor fails, 
we further maximise the network lifetime by developing a heuristic algorithm to balance energy 
consumption among sensors. The superiority of the proposed scheme is validated by both 
analytical and simulation results. 
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1 Introduction 

Sensors that are capable of sensing, data processing and 
communicating have enabled the realisation of Wireless Sensor 
Networks (WSNs) (Akyildiz et al., 2002). In a WSN, a large 
number of nodes are deployed in an area to monitor an 
environment by measuring some physical parameters such as 
temperature, humidity and pressure (Knaian et al., 2000; 
Mainwaring et al., 2002; Cook and Das, 2005; Lynch and Loh, 
2006; Patel et al., 2008; Li and Liu, 2009; Cheng et al., 2011). 
However, generally, wireless sensor nodes carry very limited 
irreplaceable power sources. Inspite of the significant advances 
in processor computing, little improvement has been achieved 
for the battery recharging and replacing in many scenarios. 
Consequently, two primary concerns in WSNs are to save the 
overall energy consumption and to prolong the network 
lifetime, namely the time when all the nodes are functional. 

Tremendous research efforts have been dedicated to the 
problem of maximising energy efficiency in low-power WSNs 
from several perspectives including data collecting, source 
coding and transmission. In particular, on correlated data 
gathering and source coding, Cristescu et al. (2004) proposed a 
closed form optimal rate allocation scheme to minimise some 
transmission cost function which is proportional to the distance 
from the source node to the sink, thus to decrease the overall 
transmitting power. As for the transmission (channel coding) in 
a wireless environment, Knopp and Humblet (1995) showed 
that in order to maximise the aggregate capacity with fixed 
power, only the user having the best channel condition is 
allowed to transmit at any given time, which is essentially the 
same as Time-Division Multiple Access (TDMA). Hou et al. 
(2008) provide an algorithm to maximise the sum-rate of all the 
nodes under the constraint of satisfying a given network 
lifetime requirement. Mergen et al. (2006) examine the trade-
off between improving the sum-rate and saving energy in many 
aspects of designing the sensor networks. Gastpar and Vetterli 
(2003) considered both source and channel coding to optimise 
the rate distortion function under a fixed power constraint. 
Finally, Roumy and Gesbert (2007) studied the combination of 
source and channel coding to provide an algorithm to minimise 
the overall power consumption and to maximise network 
lifetime; nevertheless, it only considers a special scenario 
where one sensor is only correlated to another sensor. 

In this paper, both source and channel coding are jointly 
considered towards the energy efficiency problem in WSNs 
where correlation exists among all sensors.1 We first consider 
the single transmission in Additive White Gaussian Noise 
(AWGN) channels with path loss. The capacity is known as 
1 log 1
2

P d
N

γ⎛ ⎞
+⎜ ⎟

⎝ ⎠
, where P is the transmitting power, d is the 

distance from the source node to the sink node, γ is the path 
loss exponent and N is the noise variance. We focus on the 
sensor network scenario where the environment and data do 
not change rapidly, so that there is enough transmitting time, 
and the transmitting rate is not a major concern. We 
demonstrate the optimal strategy for the single source is to  
 

employ minimum transmitting power in terms of improving the 
energy efficiency. Then we extend the model to consider the 
multi-source single-sink WSNs. For transmission part, it is 
further shown that when all the sensor nodes transmit in the 
TDMA mode to the common sink node, the overall energy 
consumption can be minimised. 

Besides the transmitting power P, the overall energy 
consumption also depends on the transmitting time. When the 
transmission rate is fixed, transmitting time is proportional to 
the total number of transmission bits B . Since in TDMA 
mode, the channel can be regarded as a single user channel at 
any given time, source-channel separation theorem (Cover and 
Thomas, 1991) holds. For the source coding part, the 
distributed source coding theorem (Slepian–Wolf coding) 
(Slepian and Wolf, 1973) can be applied in order to further 
improve the resource efficiency. Therefore, we propose a bit 
allocation scheme to minimise the overall energy consumption 
without loss of any information. Based on this criterion, we 
further develop an algorithm to adjust the optimal bit allocation 
scheme to maximise the network lifetime. 

The remainder of the paper is organised as follows. In 
Section 2, we present an energy-efficient transmitting 
strategy for a single sensor. If there are multiple sensors, 
Section 3 proves that TDMA transmission mode is optimal 
in terms of the overall energy saving. Section 4 presents the 
background of correlated source coding. The optimisation 
problem of minimising the overall energy consumption is 
formulated and a closed form bit allocation solution is 
obtained in Section 5. Section 6 extends the optimisation 
objective to include lifetime prolonging and provides an 
algorithm which aims at achieving the two aforementioned 
goals. Section 7 contains some numerical results. 

2 Energy-efficient method for single-sensor 
single-sink transmission 

We first consider the case where there is only one source node 
and one sink node. Suppose the sensor collects data from its 
environment during one time period and transmits the encoded 
data in the next time period. The encoded data of one time 
period is represented by B  bits where 0 < < ∞B . 

Generally, the transmitting power of each sensor is both 
lower bounded by Pmin and upper bounded by Pmax. Still, 
there are many different levels of transmitting power the 
sensor can adopt. It can use either lower power but longer 
time, or higher power but shorter time to send the same 
amount of bits. The question is; which way is better if 
energy efficiency is the primary concern? 

It is well known that for an AWGN channel, the  
reliable transmission rate is bounded by its capacity: 

( )1 log 1
2

R SNR≤ + , where SNR is the received signal-to-

noise ratio. Besides, in a wireless environment, the channel 
capacity is affected by path loss. Denote the distance from 
the source to the sink node by d and path loss exponent is a 
constant γ. Then the channel capacity is: 



 Energy-efficient transmission and bit allocation schemes 243 

1 /log 1 ,
2

P dR
N

γ⎛ ⎞
≤ +⎜ ⎟

⎝ ⎠
 (1) 

where, P is transmitting power and N is the noise variance. 
In order to fully utilise the power, the node should 

transmit at a rate as close to the capacity as possible. Thus, 
in the following analysis, without loss of generality, we 

assume that 1 /= log 1
2

P dR
N

γ⎛ ⎞
+⎜ ⎟

⎝ ⎠
. 

Theorem 1: In the single source case, given that the 
transmitting power can be chosen arbitrarily within the 
bound min maxP P P≤ ≤ , in order to transmit B  bits in total, 
using Pmin consumes the least overall energy. 

Proof: Denote the transmission time by T. Then, 

1 /= = log 1 ,
2

P dRT T
N

γ⎛ ⎞
+⎜ ⎟

⎝ ⎠
B  (2) 

where B  and N are constants. The overall energy consumption 
in this transmission is: 

= = .
1 /log 1
2

E PT P
P d

N

γ⎛ ⎞
+⎜ ⎟

⎝ ⎠

B  (3) 

Then the power that minimises the overall energy 
consumption can be obtained simply by taking derivative 
with regard to P, i.e. 

'

2

= 2
/log 1

2=
/ /log 1 1

/ / /1 log 1 log .

dE P
dP P d

N

P d P d
N N

P d P d P d e
N N N

γ

γ γ

γ γ γ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎛ ⎞

+⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞
+ +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞

+ + −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦

B

B  

Let ( ) = (1 ) log(1 ) logf x x x x e+ + − , where /= P dx
N

γ

. 

Since > 0, > 0, > 0, > 0P N d x , 

' ( ) = log(1 ) 0, > 0.f x x x+ ≥ ∀  (4) 

Taking into account the fact that (0) = 0f , we can attain 

( ) > 0, > 0,f x x∀  (5) 

which implies that 

> 0, > 0, > 0 > 0.dE P d and N
dP

∀  (6) 

 

Therefore, the energy consumption function is monotone 
increasing with transmitting power P. In other words, using 
minimum power Pmin consumes the least energy. This result 
is in consistence with our observation. Since log(1 )x+  
approaches a linear function only when 0x → , the smaller 
power we use, the more efficient is the transmission. 

3 Energy-efficient method for multi-sensor 
single-sink transmission 

For multi-source single-sink transmission, there are two types 
of transmission modes: source nodes transmitting one after 
another, i.e. every time there is only one source-sink 
connection TDMA and more than one source-sink connections 
existing at some specific time (multiple access channel). 

Consider a network with n nodes all transmitting to a 
single-sink node as depicted in Figure 1. Let N  be the set of 
sensor indices: = {1, , }nN … . Then for each node i∈N , it 
uses its minimum power Pi,min and the total bits it needs to 
transmit is some fixed value iB . Suppose the distance from 
node i to the sink node is di and path loss exponent γ is a 
constant for every path. 

Figure 1  A sensor network with n sensors and one sink node 
(see online version for colours) 

 

Theorem 2: For multi-source single-sink transmission, 
given that each node uses its minimum power and has finite 
total bits to transmit, using TDMA among all the nodes is 
more energy efficient. 

Proof: The overall energy consumption can be calculated as 

,=1

n
i min ii

P T∑ , where = /i i iT RB  is the transmission time, 

,
=1

= .
n

i
i min

i i

E P
R∑ B

 (7) 

1 Using TDMA, the instant rates of all source nodes can 
reach their separate channel capacities, i.e. 

, /1= log 1 , .
2

i min i
i

P d
R i

N

γ⎛ ⎞
+ ∀ ∈⎜ ⎟⎜ ⎟

⎝ ⎠
N  (8) 
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Notice that traditionally, the concept ‘rate’ usually 
refers to the average rate in a time frame. However, 
here we adopt the ‘instant rate’ exclusively for the 
convenience of calculation of the overall energy 
consumption. 

2 Suppose at some specific time, a set S ⊆ N  with 
| | 2S ≥  all connect to the sink node, then the rate vector 
should lie in multiple access channel capacity region. 
For any subset 1S S⊆  (We use '

iR  to differentiate): 

,
' 1

1

,

1 1

/
1 log 1
2

/1< log 1 = .
2

i min i
i S

i
i S

i min i
i

i S i S

P d
R

N

P d
R

N

γ

γ

∈

∈

∈ ∈

⎛ ⎞
⎜ ⎟

≤ +⎜ ⎟
⎜ ⎟
⎝ ⎠

⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠

∑
∑

∑ ∑

 

So, 
' < , .i iR R i S∀ ∈  

Since both Pi,min and iB  are fixed, the energy consumption 
function is reversely proportional to the instant rate. Thus, 
the overall energy consumption in Case 2 is greater than that 
in Case 1. Therefore, transmitting using TDMA is more 
energy-efficient.2 

4 Source coding for sensors gathering correlated 
data 

In general, the measurements of sensors, e.g. temperature, 
humidity, sound, etc., are highly correlated. When encoding 
those correlated sources, Slepian and Wolf (1973) showed 
that a total rate of 1 2=1

= = ( , , , )n
i ni

R R H W W W∑ … , which is 

the joint entropy of information from all sensors, is 
sufficient even if these nodes are not able to communicate 
with each other. 

More precisely, if there are multiple n sources 
1 2, , , nW W W…  drawn i.i.d according to 1 2( , , , )np w w w…  that 

are encoded separately, and there is one sink node that can 
decode them together, then the set of achievable source 
coding rate vectors must lie in Slepian–Wolf region (here, 
we use RS to represent the source coding rate): 

( ) > ( ( ) | ( )),C
SR U H W U W U  (9) 

for all {1, 2, , }U n⊆ … , where 

( ) = ,S Sj
j U

R U R
∈
∑  (10) 

and 

( ) = : .jW U W j U∈  (11) 

 

Figure 2 shows the Slepian–Wolf region for the case of two 
sources. 

Figure 2 Slepian–Wolf region for two correlated sources 

 

Suppose one time period for all the sensors to gather data is 

represented by TS and 
=1

> n
S ii

T T∑ . This is because the 

measurements of physical phenomena that are sensed by 
sensors usually do not vary rapidly, e.g. the temperature in a 
day. In other words, the source rate is much smaller than the 
instant transmitting rate, so TS is greater than the transmitting 
time. Under this assumption, all the sensors gather data in the 
first period TS, with rate RSi, then in the next period, they 
cooperate using TDMA to transmit the encoded data to the sink 
node, with larger transmitting rate Ri. 

The total information generated by sensor i is RSiT, 
which should be equal to the bits that are transmitted by 
sensor i, i.e. 

= .Si iR T B  (12) 

So iB  must satisfy: 

> ( ( ) | ( )) , {1, 2, , }.C
i

i U

H W U W U T U n
∈

∀ ⊆∑ …B  (13) 

This sophisticated result has a simple interpretation. The 
information collected by each sensor contains two parts: the 
unique information of this sensor and some common 
information that can also be conveyed by other sensors. 
When encoding these sources, each sensor must first encode 
its unique information; then this sensor cooperates with 
other sensors to divide the task of the common part. 

5 Source-channel communication in minimisation 
of energy consumption 

In this section, we consider the problem of how to allocate 
information bits, i.e. iB  among the sensor nodes for transmission 
in order to minimise the overall energy consumption. 

Intuitively, if a sensor is very far away from the destination, 
channel condition is severely degraded. The transmitting rate is 
very slow even if high power is used, which is a waste of  
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energy. Thus we tend to assign less task (bits) to this channel. 
For example, we only use this channel to transmit those 
information that is uniquely generated in this sensor and use 
other good channels to transmit those common information. 

The overall energy consumption is: 

, ,
,

,

,

= =
/1 log 1

2

= .
/1 log 1

2

i i
i min i min

i ii i min i

i min
i

i i min i

E P P
R P d

N

P
P d

N

γ

γ

⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠

⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠

∑ ∑

∑

B B

B
 

Since the coefficient of iB  is only related to i and when Pi,min 
and di are fixed, this coefficient is a constant. Let ai represent 

,

, /1 log 1
2

i min

i min i

P
P d

N

γ⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠

, this problem can be formulated as 

follows: 

min

subject to > ( ( ) | ( )) , .

i i
i

c
i

i U

a

H W U W U T U
∈

∀ ⊆

∑

∑

B

B N
 (14) 

Theorem 3: Without loss of generality, let 1 2> > > na a a… , 
then the solution to the above optimisation problem is *B : 

*
1 1 2
*
2 2 3

*
1 1

*

= ( | )
= ( | )

= ( | )
= ( ) .

n

n

n n n

n n

H W W W T
H W W W T

H W W T
H W T

− −

B
B

B
B

 (15) 

Proof: We prove Theorem 3 in two steps: 
1 First, the solution (15) satisfies all the constraints in 

optimisation problem (14). 
2 Second, this solution can minimise the overall energy 

consumption. 
Proof of Step 1: Define set = { , 1, , }jS j j n+ … , where 
1 j n≤ ≤ , so 1 =S N . 

Then for any subset U ⊆ N , 
*

1

1 1

( )

1

( )

= ( | ( ))

= ( | ( ), ( ))

( | ( ), ( ))

= ( ( ) | ( )) ,

j j j
j U j U

c
j j j

j U

a
c

j j
j U

b
c

H W W S T

H W W S U W S U T

H W W S U W U T

H W U W U T

+
∈ ∈

+ +
∈

+
∈

∩ ∩

≥ ∩

∑ ∑

∑

∑

B

 (16) 

where (a) follows from conditioning reduces entropy and 
(b) follows from the chain rule for entropy. 

Proof of Step 2: We prove this part by induction. We start 
from * = ( )n nH W TB . 

* *
1 1= ( , , )n nH W W T+ +… …B B , which has already 

achieved the Slepian–Wolf bound. If there exists another set of 
solution, say, ' '

1 , , n…B B , this set of solution must achieve the 
bound as well. Since *

nB  is already the largest value that nB  
can be, let ' = ( )n nH W T δ−B , where δ is a positive small value 
that does not affect the Slepian–Wolf conditions. Then this δ 
must be added to some *

iB , where 1 1i n≤ ≤ − . Then 

' ' '
1 1

* * * *
1 1 1 1 1 1 1 1

' '

*

=

=

= ( ) .

n n

i i i i n n

i i n n

i n

E a a

a a a a

a a

E a a δ

− − + + − −

+ +

+ + + + +

+ +

+ −

…
… …

B B

B B B B

B B
 

Since i na a≥ , ( ) 0i na a δ− ≥  and thus ' *E E≥ . So *
nB  is 

optimum. 
Given *

nB , *
1 1= ( | )n n nH W W T− −B  is the largest value that 

1n−B  can choose. By the same argument, it is obvious that 
*

1n−B  is the optimal value. 
Similarly, we can prove that *B  is the optimum 

solution. Actually, the interpretation of this solution is quite 
straight-forward. The coefficient ai is the energy 
consumption per bit. Thus, it is the most efficient if we 
transmit more bits to smaller ai and less bits to larger ai. 

6 Lifetime maximisation 

In WSNs, energy consumption and network lifetime are the 
two primary concerns. In previous section, we presented a 
bit allocation scheme that can minimise the overall energy 
consumption. However, if there is one sensor that consumes 
more energy than the rest of the sensors, this sensor is the 
first to die. And when any sensor dies, the whole network 
must lose a part of the information, so we say the network 
dies. Notice that, network lifetime has different definitions 
in various application scenarios, here we adopt the most 
commonly used notion that network lifetime is the time 
before the first node fails (Dietrich and Dressler, 2009). 
Therefore, in this section, we are looking for a scheme that 
can average the energy consumption distribution among all 
the sensors, thus prolong the network lifetime, while at the 
same time, minimising the overall energy consumption. 

The problem can be formulated by the following 
lexicographic optimisation: 

min( , )max

subject to > ( ( ) | ( )) , ,

i i
i i

c
i

i U

lex E E

H W U W U T U
∈

∀ ⊆

∑

∑B N
 (17) 

where =i i iE a B . 
This optimisation problem has a hierarchical structure, 

i.e. the first objective has higher priority than the second 
objective (Ehrgott, 2005). Under the condition that the 
highest energy consumption has been minimised, we try to 
minimise the overall energy consumption to achieve 
lexicographic optimality. 
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To minimise Ei for some i, we only need to reduce its 
corresponding iB , i.e. assign less bits that need to be 
transmitted by this sensor. Since we still desire the least overall 
energy consumption, we start from the point *B , find the node 
that consumes the most energy, reduce the bits of this node and 
reallocate these bits among the rest nodes, until the highest 
node’s information cannot be reduced anymore. This algorithm 
can achieve lexicographical optimality. 

Suppose ,1kE k n≤ ≤  is the largest, so kB  needs to be 
reduced. It can be seen that * * *

1 2 =k H+ + +…B B B  

1 2( , , , )kW W W T… , which is already the Slepian–Wolf 
bound. Thus, 1 2 1, , , k−…B B B  need to increase the same bits 
in total. However, * * *

1 >k k n Slepian Wolf++ + + −…B B B  
bound , So 1, ,k n+ …B B  may not need to change, as will be 
proved later. 

Suppose we reduce kB  by 1 bit, so this bit needs to be 
added to 1 2 1, , , k−…B B B . Since 1 2 1> > > ka a a −… , adding 
this 1 bit to node 1k −  will consume the least extra energy, 
thus is the most efficient choice. Therefore, when we need 
to transfer some bits from node k to the nodes before it, we 
prefer to add those bits to the node just before it first, and 
then two positions before it, and so on till the first node.3 
How many bits can we transfer at most to node 
,1 1l l k≤ ≤ −  without violating any of the Slepian–Wolf 

conditions? 

Lemma 1: If node k consumes the most energy, *
kB  needs to 

be reduced, and we add those bits to *
1k−B  until 1k−B  is full, 

then to *
2k−B  until 2k−B  is full, , and so on till 1B  is full.4 In 

this process, we can transfer to ,1 1l l k≤ ≤ −B  at most 

1 1 1( ; | , , , , , )l k l k k nI W W W W W W T+ − +… …  bits before it is full. 

Proof: We only need to prove the case when = 1l k − . For 
the rest ls, this result can be easily extended by induction. 

Suppose after transferring bits from *
kB  to *

1k−B  and 1k−B  

being full, *
kB  has been reduced to k̂B  and *

1k−B  has been 

added to 1k̂−B  and all the rest of *
iB s remain the same. The 

only possibility that Slepian–Wolf condition might not hold 
is that the addition of any subset of * * *

1 2 2{ , , , }k−…B B B  and 
ˆ

kB  might not be greater than the Slepian–Wolf bound. 

Thus, we are looking for the largest 1 * ˆ=k
k k kd − −B B , which 

is the bits we can transfer at most. 
Since {1, , 2}V k∀ ⊆ −… , 

* *
1

1

= ( | , , )

( | , , ) .

i k i i n
i V i V

k k n

H W W W T

H W W W T

+
∈ ∈

+

+

+

∑ ∑ …

…

B B
 (18) 

 
 

However, after *
kB  has been reduced to k̂B , according to 

Slepian–Wolf bound, 
*

1 1

ˆ = ( ( ), | ( ),

, , , ) .

c
i k k

i V

k k n

H W V W W V

W W W T
∈

− +

+∑
…

B B
 (19) 

Thus, 
1 *

1

1

1 1

ˆ=
= ( | , , )

( | , , )

( ( ), | ( ), , , , )

k
k k k

i i n
i V

k k n
c

k k k n

d
H W W W T

H W W W T

H W V W W V W W W T

−

+
∈

+

− +

−

+

−

∑
B B

…

…

…

 (20) 

( )

1

1 1

1 1

1 1

= ( | , , )

( | ( ), , , , )

( ; ( ), | , , )

( ( ), | ( ), , , , )

a

i i n
i V

c
k k k n

c
k k k n

c
k k k n

H W W W T
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∈
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…
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 (21) 

( )
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1 1

( ( ) | ( ), , , )

( | ( ), , , , )

( ( ), | ( ), , , , )
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b
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c
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c
k k k n

H W V W V W W T

H W W V W W W T

H W V W W V W W W T
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−

− +
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− +

≥

+

−

+

…
…

…
…

 (22) 

( )

1 1= ( ; ( ), | , , )
c

c
k k k nI W W V W W W T− + …  (23) 

( )

1 1( ; | , , ) ,
d

k k k nI W W W W T− +≥ …  (24) 

where (a) follows from ( ; ) = ( ) ( | )I X Y H X H X Y− , (b) 
follows from equation (16), (c) follows from 

( ) ( | ) = ( , )H X H Y X H X Y+  and (d) follows from the 
chain rule of mutual information. 

Notice that expression (24) is for the case when 
= {1, , 2}V k −… , which is the tightest bound. Thus, 1k

kd −  is 
at most 1 1( ; | , , )k k k nI W W W W T− + … , and this completes the 
proof.  

There are two remarks. First, after transferring 
1 1( ; | , , )k k k nI W W W W T− + …  bits from *

kB  to *
1k−B , kB  

becomes 

1 1 1

1 1

( | , , ) ( ; | , , )
= ( | , , , ) ,

k k n k k k n

k k k n

H W W W T I W W W W T
H W W W W T

+ − +

− +

−… …
…

 (25) 

and 1k−B  becomes 

1 1( | , , ) ,k k nH W W W T− + …  (26) 

which means that *
kB  and *

1k−B  have switched their 
positions in solution (15). If 1k−B  is full and node k still 
consumes the highest energy, we need to further transfer  
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bits from kB  to *
2k−B , which will result in that *

kB  and *
2k−B  

switch positions, and so on until *
kB  has been moved to the 

first place. 
Second, bits that can be reduced at most from *

kB  are 

1

1 1 1

1 1 1

( | , , )
( | , , , , , )

= ( ; , , | , , ) ,

k k n

k k k n

k k k n

H W W W T
H W W W W W T
I W W W W W T

+

− +

− +

−…
… …
… …

 (27) 

which exactly equals to 1 2 1k k
k k kd d d− −+ + +…  by the chain rule. 

Lemma 2: Even if kB  has been reduced to the bound, 

1 1 1( | , , , , , )k k k nH W W W W W T− +… … , 1, ,k n+ …B B  can remain 
the same and satisfy Slepian–Wolf conditions. 

Proof: Among all the summations between *
kB  and any 

subset of * *
1{ , , }k n+ …B B , * *

1k k++B B  is the closest to the 
bound. Thus, if *

kB  is reduced the most, *
1k k++B B  is still 

above the bound, so are the remaining summations. 
*

1

1 1 1

1 2
( )

1 1 1

1 1 1 2
( )

1 1 1 2

= ( | , , , , , )
( | , , )

( | , , , , , )
( | , , , , , )

= ( , | , , , , , ) ,

k min k

k k k n

k k n
a

k k k n

k k k n
b

k k k k n

H W W W W W T
H W W W T

H W W W W W T
H W W W W W T

H W W W W W W T

+

− +

+ +

− +

+ − +

+ − +

+

+

≥ +

… …
…

… …
… …

… …

B B

 (28) 

where (a) follows from conditioning reduces entropy and 
(b) follows from the chain rule of entropy. Since equation 
(28) is the Slepian–Wolf bound, the proof is complete. 

The above explanations can be summarised in the 
procedures of Algorithm 1. 

Notice that when there are multiple nodes consuming 
the highest energy, we prefer to check the one with the 
smallest index first. This is because of the chance that this 
index is 1. In this case, reducing bits of other nodes will 
only consume more overall energy without prolonging 
lifetime since the first node is always the network’s 
bottleneck. 

The value of δ is chosen based on equations (29)–(31), 
where the first and second terms are bits that 

1k
B  can be 

reduced at most until this sensor’s energy consumption is 
the same as the second highest one, and the third term is the 
total reduced bits when 

1k
B can be decreased to the Slepian–

Wolf bound. 
The outcome derived from the network lifetime 

maximisation algorithm is as the following. The most 
energy consumption node, i.e. the first node that fails, is 
either the one that has the least bits to transmit, i.e. 

( )1 1 1, , , , ,i i i i nH W W W W W T− += … …B , or the first node. In 

either case, the network lifetime has achieved maximum. 

 

 

Algorithm 1: Algorithm to maximise network lifetime 
1 Calculate the energy consumption for each node 

= 1, 2, ,i n…  to find the highest one, whose index is denoted 
by k1. If there are multiple nodes consuming highest energy, 
let k1 be the smallest index. Let k2 denote the node index 
with the second highest energy consumption; 
2 if 1 = 1k , stop since *

1B  is already the smallest and 
cannot be reduced anymore; 
3 else if 1 1k ≠ , and  

1 11 1 1 1
> ( | , , , ) ,k k k k nH W W W W T− + …B  

let  
1 12 1 1 1 1

1 2
11 1 1

1 11 1 1 1

= min{ , ,

( | , , , ) },

k k k k k
k k

k k k

k k k k n

a a a

a a a

H W W W W T

δ
− −

−

− +

−
−

+

− …

B B
B B

B

 (29) 

transfer δ bits from 
1k
B  to 11k −B ; 

4 else if  
2 1 11 1 1 1

1 11 1 1 1

( | , , , , )

< ( | , , , ) ,
k k k k n

k k k k n

H W W W W W T

H W W W W T
− − +

− +≤

…

…B
 

let  

2 22 1 1 1 1
1 2

21 1 1

2 1 11 1 1 1 1

= min{ , ,

( | , , , , ) },

k k k k k
k k

k k k

k k k k k n

a a a

a a a

H W W W W W T

δ
− −

−

− − +

−
−

+

− …

B B
B B

B

 (30) 

transfer δ from 
1k
B  to 21k −B ; 

 
5 else if 

1 1 11 1 1

2 1 11 1 1 1

( | , , , , , )

< ( | , , , , , ) ,
k k k n

k k k k n

H W W W W W T

H W W W W W T
− +

− +≤

… …

… …B
 

let 

1 12 1 1
1 2

11 1

1 1 11 1 1 1

= min{ , ,

( | , , , , , ) },

k k k
k k

k k

k k k k n

a a a

a a a

H W W W W W T

δ

− +

−
−

+

− … …

B B
B B

B

 (31) 

transfer δ from 
1k
B  to 1B ; 

6 else if 
1 1 11 1 1 1

= ( | , , , , , ) ,k k k k nH W W W W W T− +… …B  

stop since 
1k
B  is already the smallest; 

7 Go to step 1. 

7 Numerical results 

The improvement of the overall energy consumption and  
the network lifetime by our proposed schemes depends 
significantly on the geometric and initial information  
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distribution among all the sensors.5 In this section, we 
consider two specific sensor network scenarios, sensors 
distributed on a line and in a square area to illustrate the 
optimality of our proposed scheme. First, suppose all the 
sensor nodes are uniformly distributed on a line and the sink 
node is at one end. Suppose the data collected by each 
sensor is composed of two parts: =i iW W Z+ , where 

(0, )W N∼ N  is the common information and iZ ∼ N  
(0, )iN  is the noise, where 2=i iN d . 

We compare the results obtained from our proposed 
scheme with an average bit allocation scheme, where each 
sensor transmits its unique information and 1/ n  of the 
common information. Figure 3 shows the overall energy 
consumption of the proposed scheme and the average bit 
allocation scheme. It can be seen that the proposed scheme 
always achieves lower overall energy consumption. When 
the number of nodes is 50, the proposed scheme is 
approximately 30% more energy efficient. 

Figure 3 Comparison of the scheme proposed in Theorem 3 and 
the average bit allocation scheme in terms of the 
overall energy consumption when sensors are deployed 
on a line 

 

Figure 4 compares the peak energy consumption of 
Algorithm 6 and the average bit allocation scheme. It can  
be seen that the proposed algorithm effectively reduces  
the maximum energy consumption and hence prolongs the 
network life time. When the number of nodes is 50, the 
proposed algorithm reduces the peak energy consumption 
by approximately 20%. 

Second, consider the WSN environment where sensors are 
uniformly deployed in a unit area and the sink node is located 
at the centre. The area is relatively small such that all the 
measurements encounter the same disturbance. Specifically, 
the data collected by each sensor is =iW W Z+ , where 

(0, )W N∼ N  is the common information and Z ∼ N  

1(0, )N  is the noise. Comparing with the average bit allocation 
scheme, the results are depicted in Figures 5 and 6. It can be 
seen that our proposed scheme and algorithm always 
outperform the average bit allocation scheme significantly. 

Figure 4 Comparison of the maximum energy consumption of 
Algorithm 1 and the average bit allocation scheme 
when sensors are deployed on a line 

 

Figure 5 Comparison of the scheme proposed in Theorem 3 and 
the average bit allocation scheme in terms of the 
overall energy consumption when sensors are deployed 
in a unit area 

 

Figure 6 Comparison of the maximum energy consumption of 
Algorithm 1 and the average bit allocation scheme when 
sensors are deployed in a unit area 
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8 Conclusions 

In this paper, we have studied the energy efficiency issue for 
multi-source single-sink WSNs. For transmission part, we have 
proved that employing minimum transmitting power for a 
single sensor is optimal in terms of energy efficiency. In the 
multi-source scenario, transmission in the fashion of TDMA 
among all sources is most energy efficient. Exploiting source 
correlation, by Slepian–Wolf coding, we have provided a 
closed form bit allocation scheme and a heuristic algorithm for 
minimising the overall energy consumption and for maximising 
the network lifetime, respectively. 
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Notes 
1 Part of this work was presented at IEEE Globecom’10 (Zhang 

et al., 2010). 
2 For the multiple access channels, it is well known that CDMA 

is optimal in achieving the maximum rates with fixed power 
(Cover and Thomas, 1991). However, we are interested in the 
problem of sending maximum bits with fixed energy 
consumption, and it is shown that TDMA outperforms 
CDMA. 

3 Node order is based on the index. 

4 Here, lB  is ‘full’ means that it achieves its largest value 
without violating any Slepian–Wolf condition. 

5 However, this does not impair the optimality of our proposed 
schemes. 


