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a b s t r a c t

In this paper, we propose a new approach for localization in wireless sensor networks
based on semi-supervised Laplacian regularized least squares algorithm. We consider
two kinds of localization data: signal strength and pair-wise distance between nodes.
When nodes are close within their physical location space, their localization data vectors
should be similar. We first propose a solution using the alignment criterion to learn an
appropriate kernel function in terms of the similarities between anchors, and the kernel
function is used to measure the similarity between pair-wise sensor nodes in the networks.
We then propose a semi-supervised learning algorithm based upon manifold regulariza-
tion to obtain the locations of the non-anchors. We evaluate our algorithm under various
network topology, transmission range and signal noise, and analyze its performance. We
also compare our approach with several existing approaches, and demonstrate the high
efficiency of our proposed algorithm in terms of location estimation error.

Crown Copyright � 2011 Published by Elsevier B.V. All rights reserved.
1. Introduction

Recent technological advances in micro-electro-
mechanical systems and wireless communication have
led to the development of tiny, low-power, low-price sen-
sor nodes for observation tasks in a wide range of environ-
ments [1]. There has been an increase number of wireless
sensor networks (WSNs) applications for monitoring envi-
ronmental information, e.g., healthcare monitoring [2],
environmental monitoring [3] and target tracking [4],
across an entire physical space, where the sensor network
localization problem has received considerable attentions
recently [5]. Typical networks of this type consist of a large
2011 Published by Elsevier
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number of densely deployed sensor nodes which can gath-
er local data and communicate with other nodes. The sen-
sor data from these nodes are relevant only when the
location they refer to is known. Therefore, knowledge of
the node positions becomes imperative.

On the other hand, sensor nodes could be equipped
with a global positioning system (GPS) to provide them
with their absolute position, and this is currently a costly
solution or impossible solution to some indoor cases.
Therefore, it is often the case with a general assumption
that the positions of some nodes (called anchor), are known
exactly, so that it is possible to find the absolute positions
of the remaining nodes (called non-anchor) in the WSNs.
The main task of WSNs localization algorithm is to deter-
mine the positions of sensor nodes in a network given
incomplete and noisy pairwise time-of-arrival (TOA),
time-difference-of-arrival (TDOA), received signal strength
(RSS) and/or angle-of-arrival (AOA) measurements [6–11],
which are acquired by the sensor nodes during communi-
cations with their neighbors.
B.V. All rights reserved.
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The well-known techniques used for localizing sensor
nodes to handle these noisy measurements are based
upon multidimensional scaling (MDS) [12] or semidefinite
programming (SDP) [13]. The MDS algorithm uses connec-
tivity information or inner-distance to derive the location
of each node by applying an orthogonal basis transforma-
tion. However, if the data are linked to coordinate by an
unknown nonlinear function (e.g., signal strength in noisy
environment), MDS fails to accurately estimate the node
locations. In the SDP approach, measurements between
nodes are expressed as geometric convex constraints.
The location estimation problem can be solved by SDP.
Although the SDP approach can achieve high localization
accuracy, solving SDP is time consuming, which is not
suitable for large scale deployment. Recently, several algo-
rithms making use of kernel-based machine learning have
been proposed for the localization problem based on inac-
curate measurement in WSNs [14,15]. They employ kernel
function to measure the similarities between sensor
nodes, and then train an estimator based upon the
locations and measured similarities of the anchors. The
locations of non-anchors are obtained from the measure-
ments between the anchors and the non-anchors by
employing the trained estimator. Wang et al. [16] formu-
late the localization problem as a graph embedding prob-
lem, and then use the kernel locality preserving projection
technique to estimate the relative locations of all sensor
nodes. Nguyen et al. [14] divide the interested region into
overlapping subregions, and then use support vector ma-
chine (SVM) to select a set of subregions where the sensor
nodes are possibly located. The SVM model is trained
based upon the similarity between anchors. Finally, they
calculate the centers of the selected subregions as the
estimated location. Kuh et al. [17] and Brunato et al.
[18] also formulate the localization problem as a kernel-
based regression problem, and use both least squares ker-
nel regression (LSKR) and support vector regression (SVR)
for training location estimators. Essoloh et al. [19] con-
sider an alignment criterion to learn the optimal parame-
ter of a given kernel function, and then use incremental
kernel principal component analysis to build the nonlin-
ear manifold model linking anchors. The locations of
non-anchors are estimated by the pre-image projections
of the trained model. Because of the nonlinear property
of the kernel function, most kernel-based localization
algorithms can capture the nonlinearity of the measured
data [14,19].

In this paper, we propose a viable kernel-based algo-
rithm to solve the localization problem based on noisy
measurements. To reduce the calibration effort in the
localization process, the number of anchors is always
small, even if less than 10% in some real sensor network
applications. Such small sample size makes some kernel-
based localization approaches fail to accurately achieve
the locations of non-anchors, e.g., the SVM-based method
proposed by Nguyen et al. [14], LSKR-based method pro-
posed in [17]. On the other hand, how to choose an optimal
kernel function is also a challenging problem in most ker-
nel-based localization algorithms. We consider two kinds
of data model for localization: received signal strength
and measured pair-wise distance between nodes. In gen-
eral, when two sensor nodes are close in their physical
locations, their measured location features should be sim-
ilar, i.e., the high dimensional localization data lies
(roughly) on a low-dimensional manifold. Our algorithm
has two stages. In the first stage, we train a suitable kernel
function based upon kernel alignment criterion [20]. In the
second stage, we construct a mapping between the locali-
zation data space and the physical location space under the
semi-supervised learning framework, and then determine
the locations of the sensor nodes based upon the mapping.
We will show the first stage is a kernel learning problem.
The optimal kernel function exists in a kernel conical hull
which is spanned by a set of basis kernel functions, and
their corresponding Gram matrices are determined in
terms of the measurements between anchors. By consider-
ing the kernel alignment criterion, this problem is reduced
to finding a set of coefficients, and can be formulated as a
quadratically constrained quadratic programming (QCQP)
problem, which can be efficiently solved by standard
optimization tools. The second stage is a semi-supervised
kernel regression problem [21]. We use the optimal kernel
function, which is a weighted combination of basis kernel
functions, to measure the similarity between all of the sen-
sor nodes, and then employ the semi-supervised Laplacian
regularized least squares (S2LapRLS) algorithm to build the
relationship between the signal space and the physical
location space, or the measured pair-wise distance space
and the physical location space. The location of non-an-
chors can be estimated by this relationship. Compared
with the related kernel-based localization algorithms
[14,17,18] or the traditional range-based localization
algorithms [12,22], our algorithm is under the semi-super-
vised framework and takes into consideration the manifold
property of the localization data. In other words, we use
the non-anchor information to train the model for improv-
ing the localization accuracy.

The remainder of the paper is organized as follows.
Section 2 introduces the semi-supervised Laplacian
regularized least squares regression algorithm. Section 3
presents the main contribution of this paper, which
consists of the optimal kernel selection procedure and
the sensor node location estimation algorithm. Extensive
simulation results are given in Section 4. Finally, Section
5 concludes the paper.
2. Semi-supervised laplacian regularized least squares
regression

Consider a 1-dimensional regression problem which is
to learn a function f : X ! Z, where X denotes the input
or instance space, which is a subspace of Rp, and Z# R de-
notes the output space. An input–output pair (v,z) is called
an example, if v 2 X and z 2 Z. We assume that the exam-
ples are drawn randomly and independently from an un-
known, but fixed, underlying distribution over X � Z. Let
j : X � X ! R be a Mercer kernel that satisfies the finite
positive property, i.e., there is an associated reproducing
kernel Hilbert space (RKHS) Hj with the corresponding
norm k�kj [23]. Suppose there is a set of m labeled exam-
ples fvi; zigm

i¼1 and n �m unlabeled examples fvign
i¼mþ1.
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The learning problem corresponds to solve the following
optimization problem:

min
f

1
m

Xm

i¼1

kf ðviÞ � zik2 þ mkfk2
j þ

c
n2 f̂ T Lf̂ ; ð1Þ

where f̂ ¼ f ðv1Þ; . . . ; f ðvnÞ½ �T and L is the graph Laplacian
matrix [24], m and c are the trade-off parameters, m is cor-
responding to the regularization term [23], and c is corre-
sponding to the smoothness term [21]. This is the so-called
semi-supervised Laplacian regularized least squares
regression algorithm. The first term is the fitting over the
labeled examples. The second term is used to avoid poor
generalizabilities due to limited labeled data. The third
term is called the manifold regularization term, which ex-
ploits the geometric structure of the marginal distribution
of the data. The basic underlying assumption is that if two
points are close in the intrinsic geometry of the marginal
distribution, their regression function values are similar.

The extended Representor theorem [25] states that the
optimal f⁄ exists in Hj and can be written as

f �ðvÞ ¼
Xn

i¼1

aijðvi;vÞ: ð2Þ

Then the problem (1) can be reduced to find an optimal
solution over the finite dimensional space of the coeffi-
cients ai, and can be rewritten as follows

mina
1
m

Xm

i¼1

Xn

j¼1

ajjðvi;vjÞ � zi

�����
�����

2

þ maT Kaþ c
n2 aT KLKa:

ð3Þ

By setting the partial derivative of (3) to zero, we obtain
the optimal solution a� ¼ a�1; . . . ;a�n

� �T .

a� ¼ ðJK þ CI þ qLKÞ�1Jz; ð4Þ

where K is the Gram matrix over all n examples with
Kij = j(vi,vj), J is a n � n diagonal matrix given by J = di-
ag(1, . . . ,1,0, . . . ,0) with the first m diagonal entries equal
to 1 and the rest being 0, I is a n � n identity matrix,
C = mm, s = cm/n2, and z is a n-dimensional label vector gi-
ven by z = [z1, . . . ,zm ,0, . . . ,0]T.

3. Sensor node location estimation

3.1. Problem statement

Consider a p-dimensional localization problem (p = 2 for
planar localization). Suppose there are n sensor nodes
fXign

i¼1 placed in a geographical region C# Rp. Let xi 2 Rp

denote the location of the node Xi. Without loss of genera-
bility, let the first m (m� n) sensor nodes be anchors,
whose locations are known. We assume that each sensor
node is capable of transmitting localization data to each
of its neighbors, up some communication range, and there
are two kinds of locations data, i.e., signal strength and
measured pair-wise distance.

� Signal strength. We use sij to denote the signal strength
that node Xi receives from node Xj. We set sii = 1 for all
i = 1, . . . ,n. If Xi is out of the communication range of
Xj, the signal strength is missing, we simply set sij = 0
in this case.
� Measured pair-wise distance. For every pair of nodes Xi

and Xj, we use dij denote their measured Euclidean
distance,
dij ¼
Xp

k¼1

ðxik � xjkÞ
2

 !1
2

: ð5Þ
If node Xi is out of the communication range of node Xj, dij

cannot be obtained directly, and therefore, we denote
dij =1.

Our objective is to determine the locations fxign
i¼mþ1 of

the n �m non-anchors based upon the locations of anchors
fxigm

i¼1 and the localization data (signal strength fsijgn
i;j¼1 or

pair-wise distance fdijgn
i;j¼1). Note that localizations using

pair-wise distances are known as range-based methods,
while those using signal strengths are range-free methods.

3.2. Localization algorithm

We try to build a mapping between the localization
data space and the physical location space under the
semi-supervised learning setting. Intuitively, there are
two main characteristics about the localization data.

� Consider sensor nodes Xi and Xj. If they are close in the
physical location space, their localization data vectors
should be similar. Suppose si = [si1, . . . ,sin] and sj =
[sj1, . . . ,sjn] are the signal strength vectors that Xi and
Xj received from all other nodes. If kxi � xjk is small,
then ksi � sjk should be small. Similarly, this should also
hold for the measured pair-wise distances.
� If sensor nodes Xi and Xj are spatially close, the signal

strength between them is likely to be high, and the
measured distance between them is likely to be small.

These characteristics are related to the assumption of
manifold techniques: When the locations of some sensor
nodes are close, their localization data are similar, i.e.,
the high dimensional localization data lie on a low-dimen-
sional manifold determined by the physical location space.
In other words, when the locations of some sensor nodes
are known, we can ground the unknown locations by
exploiting the geometry of the distribution of localization
data, assuming their conditional distributions are similar.

More specifically, we can estimate the locations of non-
anchors by using S2LapRLS algorithm. We first define the
Gram matrix K ¼ ðjðxi;xjÞÞni;j¼1. Following the work pro-
posed in [14], we envision a hierarchy of kernels based upon
the localization data matrix. Take the radial basis function
(RBF) kernel function for example, for a parameter wg,

� if the localization data is the signal strength, then
jðxi;xjÞ ¼ exp �kUðxiÞ �UðxjÞk2

2w2
g

 !

¼ exp �
PN

l¼1ðsil � sjlÞ2

2w2
g

 !
; ð6Þ
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where k�k is the Euclidean norm, and U(�) is the image
of the input vector in Hj;
� if the localization data is the measured pair-wise dis-

tance, then
jðxi;xjÞ ¼ exp �kUðxiÞ �UðxjÞk2

2w2
g

 !

¼ exp �G2ðxi;xjÞ
2w2

g

 !
; ð7Þ
where G(xi,xj) is the geodesic distance [26], which contains
the shortest path distance between nodes Xi and Xj. The
geodesic distance matrix G can be obtained by two steps.
First, we set G(xi,xj) = dij if node Xi is within the communi-
cation range of node Xj or Xj is within the communication
range of Xi; G(xi,xj) =1 otherwise. Second, for each value
of l = 1, . . . ,n, replace all entries G(xi,xj) in turn by
min{G(xi,xj),G(xi,xl) + G(xl,xj)}. The final matrix [Gij]n�n is
the geodesic distance matrix.

Next, we the calculate the graph Laplcian matrix L. Let
Xi be connected to its k nearest neighbors, where the dis-
tance is measured by the Euclidean norm of their localiza-
tion data. Suppose W is the weight matrix with Wij being
the weight of the edge between Xi and Xj. If Xi is connected
to Xj, we choose heat kernel to calculate Wij [27], otherwise
we simply set Wij = 0. Then

L ¼ D�W; ð8Þ

where D is a degree matrix with Dii ¼
Pn

j¼1Wij and reflects
the weighted degree of each sensor node.

Finally, for our localization problem, the objective func-
tion will be

min
ak

1
m

Xm

i¼1

Xn

j¼1

aðkÞj jðxi;xjÞ � xðkÞi

�����
�����

2

þ maT
k Kak

þ c
n2 aT

k KLKak; ð9Þ

where aðkÞj is the jth element of ak, and xðkÞi is the ith ele-
ment of xk, for all k = 1, . . . ,p. By solving the above problem
p times, we obtain the p coefficient vectors. The coordi-
nates of non-anchors can be estimated by these vectors.
Furthermore, the problem can be rewritten in matrix form.

A� ¼ argmin
A2Rn�p

; ðKA� XAÞT JðKA� XAÞ þ CAT KAþ qAT KLKA;

ð10Þ
where XA corresponds to the coordinates of the anchors gi-
ven by XA = [x1, . . . ,xm,0, . . . ,0]T.

Setting the derivative of Eq. (10) to zero yields

JðKA� XAÞ þ CAþ qLKA ¼ 0;

and the optimal solution is given by

A� ¼ ðJK þ CI þ qLKÞ�1JXA: ð11Þ
The location of the non-anchor Xj can be estimated by

~xðkÞj ¼
Xn

i¼1

A�ikjðxj;xiÞ; j ¼ mþ 1; . . . ;n ð12Þ

where ~xðkÞj is the kth column of vector ~xj.
3.3. Optimal kernel selection via anchor similarities

In order to have a valid RKHS, an appropriate kernel
function should be selected. Most of the related methods
choose the RBF kernel function, because the RBF kernel
has the ability of universally approximating any distribu-
tion [28]. However, the localization data in a complicated
environment usually attenuates in a way that is highly
nonlinear and uncertain. Even if we choose the RBF kernel,
how to determine an appropriate parameter wg is still a
challenge. To alleviate the kernel selection and kernel
parameter determination procedure, a strategy based upon
the kernel alignment criterion is proposed in this
subsection.

The kernel alignment criterion is a measurement of
similarity between two Mercer kernels or between a kernel
and a target matrix [20]. Let K� 2 Rm�m be the target func-
tion, and Ka 2 Rm�m be the Gram matrix over all m anchors.
The alignment between these two matrices is defined by

bAðKa;K
�Þ ¼ hKa;K

�iFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hKa;KaiFhK

�;K�iF
p ; ð13Þ

where h�, �iF is the Frobenius norm with
hKa;K

�iF ¼
Pm

i;j¼1Kaði; jÞK�ði; jÞ. The target matrix K⁄ is
defined in terms of the similarity between anchors. Here,
we give its definition with respect to signal strength and
pair-wise distance, respectively.

� Let the localization data be the signal strength, we
define
K�ði; jÞ ¼
1; if Xj 2 VðiÞ;
0; otherwise:

�

for all i, j = 1, . . . ,m, where VðiÞ is the set of anchor-neigh-
bors of anchor Xi, the distance of which can be measured
by the Euclidean norm of the signal strength vectors.
� Let the localization data be the pair-wise distance, we

define
K�ði; jÞ ¼ exp �kxi � xjk2

2w2
g

 !
;

for all i, j = 1, . . . ,m.

Note that hK⁄,K⁄iF is constant in Eq. (13), hence the
alignment criterion can be rewritten as

bAðKaÞ ¼
hKa;K

�iFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hKa;KaiF

p :

Let K be a convex set of kernel functions, the problem of
finding the optimal kernel over K in terms of maximum
alignment can be written as

max bAðKaÞ
s:t: Ka 2 K:

ð14Þ

In this paper, we study the case in which K consists of
convex combinations of given kernel functions j1, . . . ,jq:

K ¼ j : X � X ! R j ¼
Xq

i¼1

hiji; hi P 0

�����
( )

:
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Let KðaÞi be the Gram matrix of ji over all anchors, i.e.,
KðaÞi ðj; kÞ ¼ jiðxj;xkÞ for all j, k = 1, . . . ,m, where ji(xj,xk)
can be defined base on the localization data (as shown in
Eqs. (6) and (7)). The Gram matrix of anchors is

Ka ¼
Xq

i¼1

hiK
ðaÞ
i ;

where hi P 0. The optimization problem (14) can be
rewritten as

max
h

Pq
i¼1

hiK
ðaÞ
i ;K�

� 	
F

;

s:t:
Pq
j¼1

hjK
ðaÞ
j ;
Pq
i¼1

hiK
ðaÞ
i

* +
F

6 1;

hi P 0; i ¼ 1; . . . ; q:

ð15Þ

Expending Eq. (15) yields

Pq
i¼1

hiK
ðaÞ
i ;K�

� 	
F

¼
Pq
i¼1

hi KðaÞi ;K�
D E

F
¼ cTh;

Pq
j¼1

hjK
ðaÞ
j ;
Pq
i¼1

hiK
ðaÞ
i

* +
F

¼
Pq

i;j¼1
hihj KðaÞi ;KðaÞj

D E
F
¼ hT Qh

with ci ¼ KðaÞi ;K�
D E

F
¼ trace KðaÞi


 �T
K�

� 

and Q ij ¼

KðaÞi ;KðaÞj

D E
F
. We obtain the final learning problem

max
h

cTh;

s:t: hT Qh 6 1;
hi P 0; i ¼ 1; . . . ; q:

ð16Þ

Note that this is a QCQP problem, which can be solved effi-
ciently with optimization tools such as SeDuMi or Mosek.
The worst-case time complexity is O(qm3) [29].

After obtaining the optimal kernel coefficient h⁄, the
optimal f⁄ (in Eq. (2)) in Hj can be rewritten as

f �ðxÞ ¼
Xn

i¼1

ai

Xq

j¼1

h�j jjðxi;xÞ: ð17Þ

Let Ki be the Gram matrix of ji over all sensor nodes. The
optimal solution in Eq. (11) of the localization problem is
given by

A� ¼ J
Xq

i¼1

h�i Ki þ CI þ qL
Xq

i¼1

h�i Ki

 !�1

JXA; ð18Þ

while the estimated location of non-anchor Xj can be ob-
tained by

~xðkÞj ¼
Xn

i¼1

A�ik
Xq

k¼1

h�kjkðxj; xiÞ; k ¼ 1; . . . ;p; ð19Þ

where ~xðkÞj is the kth column of ~xj.
A summary of our algorithm is provided in Algorithm 1.
Algorithm 1: Node location estimation algorithm

Input: Xa = [x1, . . . ,xm]: location matrix of the anchors.
fsign

i¼1: signal strength vectors, or fdign
i¼1: pair-wise

distance vectors.
Outpur: f~xign

i¼mþ1: estimated location of the non-
anchors.
1:
 For i = 1, . . .,n, set sii = 1 or dii = 0.
2:
 Compute the basic Gram matrix fKigq
i¼1 based

upon fsign
i¼1 or fdign

i¼1 (as shown in Eqs. (6)

and (7)), then KðaÞi ¼ Kið1 : m;1 : mÞ.

3:
 Calculate the vector c and the matrix Q in

terms of fKðaÞi g
q
i¼1.
4:
 Solve the optimization problem (16) for

optimum h⁄.

5:
 Define the weight matrix W based upon

fsign
i¼1 or fdign

i¼1.
6:
 Calculate the graph Laplacian matrix L by
Eq. (8).
7:
 Find the optimal coefficient matrix A⁄ by
Eq. (18).
8:
 For j = m + 1, . . .,n, the estimated location

f~xign
i¼mþ1 is obtained by Eq. (19).
4. Performance evaluation

We simulate the localization algorithms with Matlab.
To evaluate the performance of the proposed algorithm
S2LapRLS, we suppose the sensor nodes are randomly
placed in 2-dimensional (2D) and 3-dimensional (3D) envi-
ronment. We consider two kinds of localization data, signal
strength and pair-wise distance, respectively. We choose
RBF for the basis kernel functions with different parame-
ters. For the signal strength localization data, we choose
14 RBF basis kernel functions with wg varying from
0.0001 to 1.0. For the pair-wise distance, we choose 20
RBF basis kernel functions with wg varying from 0.8 to 10.0.

A complete signal strength model characterizing the
effect of shadowing and fading is given in [11]. For simplic-
ity, we use the model proposed in [17], the signal strength
between two sensor nodes is inversely proportional to
their distance, and can be simulated by the noisy Gaussian
function s(xi,xj) = exp(�wskxi � xjk2 + N(0,r2)), where
N(0,r2) denotes an independently generated normal
random variable with standard deviation r, and ws is a
constant proportional to determine the fading of the signal
strength. We set ws = 1 in our simulations.

For pair-wise distance between sensor nodes, in order to
simplify the ranging process, we assume that the measured
pair-wise distance is ~dðxi;xjÞ ¼ dðxi;xjÞð1þ Nð0;r2ÞÞ,
where d(xi,xj) is the real distance and r is the standard
deviation of noise. If Xi is out of the communication range
of Xj, we set ~dðxi;xjÞ ¼ 1. Note that the sensor nodes are
placed in complicated environments for most real applica-
tions. The localization data are always affected by various
noises. For example, in most urban environments, the
buildings or cars may block the sensor nodes, which in turn
makes the obtained signal strengths or pair-wise distances
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inaccurate. Hence, we assume that the standard deviation r
is greater than or equal to 0.05 in all of our simulations.

In the simulations, when the localization data is signal
strength, we compare S2LapRLS with three related kernel-
based localization algorithms: (1) Least squares kernel
regression (LSKR) proposed in [17]; (2) Kernel matrix
regression (KMR) method proposed in [30]; and (3) SVR,
a simplified variant of a kernel-based method used for
location estimation [18]. If the localization data is pair-
wise distance, we compare our algorithm with the two re-
lated range-based localization algorithms: (1) MDS-MAP,
which is proposed in [12] and (2) ISOMAP localization
algorithm proposed in [22]. All of the reported simulation
results are the average over 50 trials.
4.1. 2D Results

Let the geographical region be marked by a 10 � 10
grid. There are L2 anchors placed approximately on the grid
Fig. 2. Root-mean-square error on locations based upon signal strength
in 2D environment.

Fig. 3. Performance of different algorithms by using signal strength in 2D
environment.

Fig. 1. Localization results with signal strength in 2D environment.
and the locations are perturbed by additive Gaussian noise.
400 nodes are placed randomly in the area.

Fig. 1 shows the location results of first group of 2D
environment using signal strength. The squares are an-
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chors and the circles denote the non-anchors. Each line
connects a true node location and its estimation. The
length of each line denotes the estimation error. In this
group of simulation, we suppose the maximum communi-
cation of each sensor node is fixed R = 3. We set L = 4,
r = 0.05, and plot the location result of each sensor node
in Fig. 1(a). The root-mean-square (RMS) error is about
0.76. We also take L = 6, r = 0.1, and show the final estima-
tion of each sensor node in Fig. 1(b). The final RMS error is
about 0.78.

We present a quantitative analysis of the effect of r and
the number of anchors in Fig. 2. Fig. 2(a) plots the RMS error
as a function of r under different values of L, while Fig. 2(b)
shows the resulting RMS error as a function of L under dif-
ferent values of r. It can be seen that the localization error
decreases with the number of anchors and increases with
the value of r. The localization accuracy is high, especially
when the noise is small. For instance, when L = 6 (36 an-
chors, about 9% of the nodes) and r = 0.1, the RMS error is
about 0.78. Even for L = 2 (4 anchors, about 1% of the nodes)
and r = 0.1, the RMS error is only about 1.60.

We set L = 10 and r = 0.1, 0.2, 0.3, 0.4, 0.5, respectively,
and obtain the RMS error by using various kernel-based
localization algorithms with Matlab. The results are shown
Fig. 4. Root-mean-square error on locations based upon
in Fig. 3. We can see that S2LapRLS always obtains the best
localization accuracy.

In the second group of 2D environment, we use the
measured pair-wise distance as the localization data. Let
the maximum communication range be R. Similar to the
first group of experiments, we show location results of
each sensor node in Fig. 5. We set R = 3, L = 6, r = 0.05,
and depict the estimated location of each sensor node in
Fig. 5(a). The RMS error is about 1.05. We take R = 3.5,
L = 8, r = 1.0 and plot the final estimated location in
Fig. 5(b). The final RMS error is about 1.25.

We also present a quantitative analysis of the effects of
r, L and R in Fig. 4. We set R = 3 and L = 8, 10, 12, 14, 16,
respectively, and plot the RMS error under different values
of r in Fig. 4(a). Meanwhile, we set R = 3 and r = 0.1, 0.2,
0.3, respectively, and show the RMS error with different L
in Fig. 4(b). It can be seen that the RMS error increases with
larger r and decreases with larger L. These two observa-
tions are similar to the results plotted in Fig. 2. However,
when r is large, using pair-wise distance will result in bet-
ter localization accuracy. Take r = 0.4 and L = 10 for in-
stance, the RMS error is about 0.91 by using pair-wise
distance, while the RMS error is about 1.51 with the signal
strength.
measured pair-wise distance in 2D environment.



Fig. 5. Localization results with pair-wise distance in 2D environment.

Fig. 6. Performance of different algorithms by using pair-wise distance in
2D environment.
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Fig. 7. Root-mean-square error on locations based upon signal strength,
as a function of L and r.
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We set L = 10 and choose R = 3, 4, 5, 6, 7, respectively
and plot the resulting RMS error as a function of r in
Fig. 4(c). We also set L = 10 and choose r = 0.1, 0.2, 0.3,
0.4, 0.5, and depict the resulting RMS error as a function
of R in Fig. 4(d). For a given value of R, it can seen that
the RMS error is increasing with the value of r. For a fixed
r, appropriately reducing the communication range R will
not drop the localization accuracy. This property is very
helpful since reducing R means reducing the transmission
power, which in turn conserves the energy of the sensor
nodes and extends the life cycle of the whole WSNs.

We also compare S2LapRLS with the two related range-
based algorithms. We set R = 3, L = 10, and report their RMS
error under different r in Fig. 6(a). We set L = 10, r = 0.4
and plot their RMS error under different R in Fig. 6(b). As
expected, S2LapRLS always achieves the best results. The
key is that S2LapRLS used non-anchor information in addi-
tion to anchor information to train the estimator.

4.2. 3D Results

The simulation setup is similar to that for the 2D envi-
ronment except that the sensor nodes are randomly placed
in 10 � 10 � 10 grid and there are L3 anchors. We also con-
sider two kinds of localization data: signal strength and
measured pair-wise distance.

In the first group of 3D environment, we choose signal
strength as the localization data. We set the maximum
communication range of each sensor node to be 3, and
evaluate the influence of both the number of anchors and
the standard deviation of the noise on the localization error
by taking L = 2,3, . . . ,10 and r = 0.1,0.2, . . . ,1. Fig. 7 shows
the resulting RMS error as a function of L and r. As ex-
pected, the localization error decreases with the increase
of the number of anchors, as well as the decrease of the va-
lue of r.
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We also compare our algorithm with the three related
kernel-based localization algorithms in the 3D environ-
ment. We take L = 8, and r = 0.1, 0.2, 0.3, 0.4, 0.5, respec-
tively. The RMS errors are shown in Fig. 8. It can be seen
that our algorithm obtains the best results with various r.

In the second group of 3D environment, we employ the
measured pair-wise distance as the localization data. We
Fig. 9. Root-mean-square error on locations based upon
consider the maximum communication range to be equal
to a pre-given distance R, and show a quantitative analysis
of the effects of r, L and R, respectively (as shown in Fig. 9).
Firstly, we set R = 3.5, and study the effects of r under dif-
ferent L. The results are shown in Fig. 9(a). It can be seen
that the RMS error increases with the value of r. When
r P 0.4, the RMS error increases little and will reach a
stable value. Secondly, we take R = 3.5 and exploit the
influence of L under different r. We plot the final RMS error
in Fig. 9(b). As expected, the localization accuracy
monotonously increases with the number of anchors.
Thirdly, we study the effect of the communication range
R. We set L = 5, r = 0.1,0.2, . . . ,1.0 and R = 3,4, . . . ,10,
respectively. We plot the resulting RMS error in Fig. 9(c)
and (d). It can be seen that appropriately reducing the
value of R will not cause significant drop of the localization
accuracy. This observation is in consistence with the
results in 2D environment.

The comparison results of different algorithms by using
the measured pair-wise distance are shown in Fig. 10. We
first set R = 3 and L = 5, and compare S2LapRLS with MDS-
MAP and ISOMAP under different r. The resulting RMS
error is plotted in Fig. 10(a). Secondly, we take r = 0.05,
L = 5, and R = 3, . . . ,7, respectively. Fig. 10(b) shows the
measured pair-wise distance in 3D environment.



Fig. 10. Performance of different algorithms by using pair-wise distance
in 3D environment.
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localization error. It can be seen that our algorithm has the
lowest error in the 3D environment.
5. Conclusion

We have studied the location estimation issue for wire-
less sensor networks by using signal strength or measured
pair-wise distance, and proposed a novel localization algo-
rithm under the semi-supervised framework. We first
choose kernel alignment criterion to select an optimal ker-
nel function from a kernel conical hull with the help of the
similarities between anchors. We show that the kernel
selection can be formulated as a QCQP problem, which
can be efficiently solved by standard optimization tools.
Then the selected kernel function is employed by the
semi-supervised Laplacian regularized least squares
regression algorithm to train a model for estimation of
the locations of non-anchors. Our future work will focus
on the ad hoc network localization and cooperative mobile
target tracking in wireless networks.
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