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Summary

This paper studies a joint optimization problem of sub-carrier assignment and power allocation in orthogonal
frequency division multiple access (OFDMA) wireless networks. A major challenge in solving the optimization
problem is non-convexity caused by the combinatorial nature of sub-carrier assignment problem and/or non-convex
objective functions. To address the combinatorial complexity, we formulate the resource allocation problem as
an optimization problem with continuous variables. We propose a novel approach based on a penalty function
method and an interior point method (PM/IPM) to solve the problem. In specific, using a two-step implementation,
the penalty method is applied first to convert the non-convex feasible region to a convex one. Then, the interior
point method is deployed to solve the problem which is non-convex only in the objective function. To evaluate the
performance of PM/IPM, we apply a genetic algorithm (GA) that achieves near optimal solutions of the problem
by iterative searching. Copyright © 2009 John Wiley & Sons, Ltd.

KEY WORDS: resource allocation; OFDMA; non-convexity; utility function

1. Introduction

In wireless networks with orthogonal frequency divi-
sion multiple access (OFDMA), concurrent resource
allocation problems, sub-carrier assignment to users
and power allocation to sub-carriers, referred as
OFDMA resource allocation, affect the network per-
formance dramatically. Since sub-carriers have diverse
channel gain on each user’s channel, due to fading
effect, transmitting a specific amount of data on each
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†E-mail: xshen@uwaterloo.ca

sub-carrier demands different amount of power. There-
fore, to allocate optimal power to sub-carriers, an
OFDMA resource allocation problem is formulated as
an optimization problem where the constraints along
with the objective function represent the OFDMA
restrictions, users’ requirements, and the network’s
objectives.

In practice, OFDMA resource allocation opti-
mization problems are categorized into non-convex
problems where either the feasible region, i.e.,the set
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of feasible allocations that satisfy all constraints, or
the objective function are non-convex.‡ The restric-
tions imposed by OFDMA network specifications and
users’ requirements determine the feasible region. A
major restriction of OFDMA network is exclusive
sub-carrier assignment which does not allow a sub-
carrier to be allocated to more than one user. The
exclusive sub-carrier assignment causes the feasible
region to be discrete and consequently non-convex
(See Appendix A). The objective function of the opti-
mization problem depends on users’ demand and the
network service provider’s goals. A variety of linear
convex to nonlinear non-convex objective functions (of
rate), such as maximizing sum of allocated rate to users
and maximizing aggregate users’ utilities, respectively,
can be considered in practice [1,2]. Deploying nonlin-
ear or non-convex objective functions along with the
non-convexity of the feasible region contribute to the
difficulty and non-convexity of OFDMA optimization
problems.

In general, non-convex optimization problems are
NP-hard [3], and there is no polynomial time algo-
rithm to find their global optimal solutions. Therefore,
OFDMA optimization problems are usually solved for
a local optimal solution by either search algorithms or
some convex optimization techniques when the fea-
sible region and objective function are approximated
with convex ones [1,2,4,5]. Search algorithms span
almost the entire feasible region of the problem to find
the highest local maximum (or lowest local minimum).
As they do not stop searching after finding a local
optimum, it is expected that the algorithms achieve
near optimal solutions when searching time approaches
infinity. However, the long response time of search
algorithms limits their usage for real-time applications.
On the contrary, using convex optimization techniques
usually shortens the execution time to obtain the solu-
tion. Nevertheless, convex relaxation of the objective
function is not practical for many applications, such as
network utility maximization (NUM) problems where
utilities represent users’ perceived quality of service
(QoS) and can be non-convex.

The shortcomings of search algorithms and convex
relaxation approaches in solving non-convex prob-
lems limit the developing of elaborated OFDMA
resource allocation schemes, while OFDMA is emerg-
ing in broadband wireless networks, and the OFDMA

‡A function f is convex if the domain of f , Df , is a convex
set, i.e., (1 − t)x + ty ∈ Df for every x, y ∈ Df and t ∈ [0, 1],
and f (θx + (1 − θ)y) ≤ θf (x) + (1 − θ)f (y).

resource allocation arises in many contexts. In this
paper, we investigate new optimization approaches that
can treat the non-convexity of the OFDMA optimiza-
tion problem, specifically when the objective function
is non-convex. The rationale is that many problems
in network flow control [6], utility fairness [7,8], and
resource allocation for heterogeneous traffic types are
formulated by an OFDMA optimization problem with a
non-convex objective function which cannot be relaxed
with a convex one. Although a great success has been
achieved in solving the OFDMA optimization problem
when the objective function is convex [2,9–18], solving
the problem without convex relaxation of the feasible
space or the objective function has not been addressed
in the literature.

Our approach to treat the non-convexity of the
OFDMA optimization problem is based on continuous
optimization approaches. It is highly expected that
interior point methods will be successful in solving
continuous nonlinear problems, particularly with
convex feasible regions [19–21]. Accordingly, we
focus on formulating the OFDMA resource allocation
problem into continuous optimization one [22], and
propose an interior point penalty method to solve the
problem. More precisely, using a penalty function
method, non-convex constraints multiplied by a large
coefficient, which penalizes the constraints deviations,
are added to the objective function. Then, the new
problem with convex feasible region is solved by the
interior point penalty method. The penalty function
method combined with an interior point method
(PM/IPM) is applied to the OFDMA resource alloca-
tion in a comprehensive form so that users can have
heterogeneous rate requirements and the objective
function of the resource allocation scheme can be non-
convex. To compare the solutions obtained by PM/IPM
with near optimal solutions obtained by an iterative
search algorithm, we implement a genetic algorithm
(GA). We allow for a large number of search iterations
to ensure that the solutions offered by GA are closed to
global optimal solutions with a high level of confidence
[23] and can be considered as benchmarks to assess
the performance of the solutions obtained by PM/IPM.

The contribution of the paper is threefold. First, it
presents a continuous optimization problem formula-
tion for the OFDMA sub-carrier assignment and power
allocation. Second, it deploys a continuous nonlinear
technique based on a combination of a penalty method
and an interior point method, PM/IPM, to solve the
problem. Third, it implements a GA to compare the
performance of the resource allocation obtained by
PM/IPM with the ones obtained from the GA.

Copyright © 2009 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2010; 10:1493–1508

DOI: 10.1002/wcm



RESOURCE ALLOCATION IN OFDMA NETWORKS 1495

Figure 1. Network platform.

The remainder of the paper is organized as follows.
The problem formulation for the resource allocation
problem is presented in Section 2, followed by a discus-
sion about the problem complexity and performance.
In Section 3 the proposed method, PM/IPM, for solv-
ing the resource allocation problem is presented. An
iterative algorithm based on GA is described in Sec-
tion 4, and numerical results are presented in Section
5. The paper is concluded in Section 6.

2. Problem Formulation

We consider a network consisting of a central con-
troller, named base station (BS), and several users
located in one hop neighborhood from BS in a point
to multi-point (PMP) manner. A resource allocator in
the BS assigns sub-carriers and allocates a fraction of
the total BS power, PBS, to each user based on the
users’ requirements and resource constraints, as shown
in Figure 1. In Subsection 2.1, we present two opti-
mization programming formulations for the resource
allocation scheme in this network: a mixed integer non-
linear programing (MINLP) problem and a nonlinear
programming (NLP) problem. A discussion about the
computational complexity of the problems is followed
in Subsection 2.2.

2.1. MINLP and NLP Problems

Due to discrete nature of sub-carriers and continuous
nature of power, first, we formulate the problem as an

MINLP problem, i.e., a mathematical programming
problem with both integer and continuous variables,
whose constraints or objective function are nonlinear.
Then, we prove that the set of constraints including the
integer variables, in the MINLP problem, can be substi-
tuted by a set of nonlinear constraints with continuous
variables. Accordingly, we propose an NLP problem
that unifies sub-carrier assignment and power alloca-
tion in a rate (or power) allocation problem. For more
readability of formulas, the network parameters used
in the optimization problems are given in Table I.

A solution of the resource allocation problem is
denoted by a rate allocation vector r or a power allo-
cation vector p as below:

r = [r11, r12, · · · , r1K, · · · , rM1, · · · , rMK]T (2.1)

p = [p11, p12, · · · , p1K, · · · , pM1, · · · , pMK]T (2.2)

Table I. Notations descriptions.

Notation Description

M Total number of users in the network
K Total number of sub-carriers in the network
i User index belongs to M := {1, 2, · · · , M}
j Sub-carrier index belongs to K := {1, 2, · · · , K}
αij Channel gain of user i on sub-carrier j

pij Allocated power to user i on sub-carrier j

rij Allocated rate to user i on sub-carrier j

ri Total allocated rate to user i

Ri
min Minimum service rate requirement of user i

B Network bandwidth
PBS BS total power budget
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Similarly, the sub-carrier assignment vector is denoted
by c, where

c = [c11, c12, · · · , c1K, · · · , cM1, · · · , cMK]T (2.3)

and cij is

cij =
{

1 if sub-carrier j is assigned to user i

0 otherwise
(2.4)

Every user can use several sub-carriers, but each
sub-carrier can be assigned to at most one user. Math-
ematically, this restriction is given by

M∑
i=1

cij ≤ 1 ∀j ∈ K (2.5)

If sub-carrier j has not been assigned to user i, then
allocated power to user i on sub-carrier j must be zero.
Therefore, for every user i ∈ M and every sub-carrier
j ∈ K, we must have the following condition:

if cij = 0 then pij = 0 (2.6)

We include this restriction through the following con-
straint:

pij ≤ PBScij ∀i ∈ M, ∀j ∈ K (2.7)

Note that, if cij = 0, (2.7) implies pij ≤ 0 that along
with the non-negativity constraint pij ≥ 0 yields pij =
0 and satisfies (2.6). When cij = 1, (2.7) is reduced
to the redundant constraint pij ≤ PBS, because of the
existence of the following constraint, which assures
total allocated power to the sub-carriers in each time
slot is limited to PBS:

M∑
i=1

K∑
j=1

cijpij ≤ PBS (2.8)

As (2.7) includes (2.6), variables cij’s can be removed
from (2.8) as follows:

M∑
i=1

K∑
j=1

pij ≤ PBS (2.9)

If noise spectral density is equal to one and rate adapta-
tion is assumed to be continuous [24], the approximate

transmission rate for user i on sub-carrier j, rij , is given
by:

rij = B

K
log2

(
1 + αijpij

)
. (2.10)

Moreover, QoS requirements are projected on the
objective function and constraints. Ri

min, the minimum
service rate requirement of user i with rate ri is guar-
anteed through the following constraint:

ri =
K∑

j=1

rij ≥ Ri
min ∀i ∈ M (2.11)

Also, QoS requirements of users can be taken into
account through users’ utilities, which represent users’
satisfaction of allocated rate. However, to present a gen-
eral problem that unifies most of the existing problems
for OFDMA resource allocation, a general objective
function F(r), is used in this subsection. F(r) can be
substitute by any function of rate, such as, sum of
users’ weighted rate,

∑
ωiri, or sum of users’ utilities,∑

ui(ri), where ωi and ui are the assigned weight and
utility to user i. The optimization problem becomes:

P1: max
c,p

F(r) (2.12a)

s.t rij = B

K
log2

(
1 + αijpij

) ∀i ∈ M, ∀j ∈ K
(2.12b)

ri =
K∑

j=1

rij ≥ Ri
min ∀i ∈ M (2.12c)

M∑
i=1

K∑
j=1

pij ≤ PBS (2.12d)

M∑
i=1

cij ≤ 1 ∀j ∈ K (2.12e)

0 ≤ pij ≤ PBScij ∀i ∈ M, ∀j ∈ K (2.12f)

cij ∈ {0, 1} ∀i ∈ M, ∀j ∈ K (2.12g)

Problem P1 is an MINLP problem. We eliminate inte-
ger variables cijs and formulate the problem as a
continuous nonlinear one-stage programming problem
P2:

P2: max
p

F(r) (2.13a)
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s.t rij = B

K
log2

(
1 + αijpij

) ∀i ∈ M, ∀j ∈ K
(2.13b)

ri =
K∑

j=1

rij ≥ Ri
min ∀i ∈ M (2.13c)

M∑
i=1

K∑
j=1

pij ≤ PBS (2.13d)

pîjpij = 0 ∀j ∈ K, ∀i ∈ M \ {î} (2.13e)

0 ≤ pij, ∀i ∈ M, ∀j ∈ K (2.13f)

Proposition 2.1. There is a one-to-one correspon-
dence between the set of feasible solutions of P1 and
the set of feasible solutions of P2.

Proof. We prove it by showing that from each fea-
sible solution of P2, a feasible solution of P1 is obtained
and vice versa.

Let p∗ be a feasible solution of P2. For every i ∈ M
and j ∈ K, define c∗

ij as follows:

c∗
ij =

{
1 if p∗

ij > 0

0 otherwise
(2.14)

Clearly p∗ and c∗ satisfy (2.12b), (2.12c), (2.12d),
(2.12f) and (2.12g). We claim that this solution also sat-
isfies (2.12e). If this is not true, there exists some j ∈ K
so that

∑M
i=1 c∗

ij ≥ 2. This implies that there are at least
two i1 and i2 such that c∗

i1j
= c∗

i2j
= 1. However, the

derivation of c∗
ij from p∗

ij in (2.14) yields p∗
i1j

> 0 and
p∗

i2j
> 0. Hence p∗

i1j
p∗

i2j
> 0 which is in contradiction

to the fact that p∗ satisfies (2.13e). So p∗, c∗ must also
satisfy (2.12e).

Next, assume that (p∗, c∗) is a feasible solution
of P1. Thus p∗ satisfies (2.13b), (2.13c), (2.13d) and
(2.13f). If p∗ does not satisfy (2.13e), then there
must be ī, ǐ ∈ M and j̄ ∈ K such that p∗̄

ij̄
p∗

ǐj̄
> 0 or

equivalently p∗̄
ij̄

> 0 and p∗
ǐj̄

> 0 for some ǰ. Con-

straint (2.12f) implies that c∗̄
ij̄

= 1 and c∗
ǐj̄

= 1. Thus∑M
i=1 c∗

ij̄
≥ c∗̄

ij̄
+ c∗

ǐj̄
≥ 2, which is in contradiction to

the assumption that (p∗, c∗) satisfies (2.12e). Thus p∗
also satisfies (2.13e) and therefore, is a feasible solution
of P2. �

For every feasible solution ofP1 and associated feasible
solution of P2, the rate allocation vectors are identical.

Thus, Proposition 2.1 implies there is a one-to-one cor-
respondence between the set of optimal solutions of P1
and P2; As a result, they have the same optimal value.

Problem P2 can be written only in terms of allo-
cated rates rij , if an equivalent constraint of rij replaces
constraint (2.13e). It can be shown that the following
constraints are equivalent to (2.13e):

rîjrij = 0 ∀j ∈ K, ∀i ∈ M \ {î} (2.15a)

rîj + rij = max{rîj, rij} ∀j ∈ K, ∀i ∈ M \ {î}
(2.15b)

|rîj − rij| = rîj + rij ∀j ∈ K, ∀i ∈ M \ {î}
(2.15c)

(rîj − rij)2 = (rîj + rij)2 ∀j ∈ K, ∀i ∈ M \ {î}
(2.15d)

We use (a) in the rest of the paper, because they are
differentiable and have a simple representation. Thus,
P2 can be restated as follows:

P3: max
r

F(r) (2.16a)

s.t
K∑

j=1

rij ≥ Ri
min ∀i ∈ M (2.16b)

M∑
i=1

K∑
j=1

1

αij

(
2

rijK

B − 1
) ≤ PBS ∀i ∈ M, ∀j ∈ K

(2.16c)

rîjrij = 0 ∀i ∈ M \ {î} ∀j ∈ K (2.16d)

0 ≤ rij, ∀i ∈ M, ∀j ∈ K (2.16e)

The feasible region of P3 is closed and bounded. Thus,
when the objective function is a continuous function
of r, Weierstrass Theorem [25] implies that P3 has
global optimal solution(s). Although Weierstrass
Theorem guarantees that the global optimal solution
exists, finding such a global solution for a general
continuous objective function is hard, i.e., there is no
polynomial time algorithm for obtaining the global
optimal solution.

2.2. Related Works and Discussion

In general, objective function F is a function of users’
rates. The choice of F along with the set of constraints
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affect both computational complexity of P3 and the
network performance. The following discussion will
provide an insight into the problem and review the
approaches which have been proposed in the literature
for OFDMA problem with different objective functions
and constraints.

2.2.1. Linear objective function

Common linear objective functions, used in the
OFDMA optimization problems, areF(r) = ∑

i ri and
F(r) = ∑

i ωiri. The former maximizes total users’
data rate and the later maximizes aggregate users’
rate multiplied by a vector of weights, ωi’s. Although
the objective function is linear, the feasible region of
the problem is still non-convex. To simplify the prob-
lem, a decomposition method that separates sub-carrier
assignment problem from power allocation problem
has been suggested in the literature [11–16], and variant
schemes have been proposed for each separate problem
depending on constraints and problem formulation. For
instance, [13] proposes a two-step approach, where in
the first step, a sub-carrier is assigned to only one user
who has the best channel gain on that sub-carrier. In the
second step, the amount of transmit power to be allo-
cated to each sub-carrier is determined by water-filling
scheme [26] to maximize overall data rate. To reduce
computational complexity of water-filling, equal power
allocation scheme may be adopted. It has been shown
that water-filling and equal power allocation schemes
have only marginal performance difference [27].

2.2.2. Nonlinear objective functions
and constraints

To providing QoS and fairness or maximizing resource
utilization, some OFDMA resource allocation schemes
have been proposed that use nonlinear objective func-
tions or add a set of nonlinear constraints in the
optimization problem. Following, we survey some of
these schemes.

First, the objective function can be chosen properly
to achieve a specific object. For example, an objec-
tive function that maximizes minimum users’ data rates
achieves max–min fair rate allocation [5], and an objec-
tive function that maximizes aggregate logarithm of
users’ data rate [28,29] achieves rate proportional fair-
ness. Similarly, aggregate users’ utility, a function that
corresponds a user’s resource requirement, e.g., rate,
to the user’s satisfaction of service, may be maximized
that obtains maximum resource utilization [1,22,29].

Second, a set of constraints can be added to the
problem to force a notion of fairness or QoS. For
instance, using a set of nonlinear constraints, [15] main-
tains a fixed rate ratio among users to achieve fair rate
allocation. Similarly, an associated set of constraints
to a specific QoS characteristic can be considered to
guarantee the required QoS, e.g., [30] provides users’
minimum rate requirements, and [16] guarantees tol-
erable signal to noise ratio of the users’ receivers by
including corresponding rate and signal to noise ratio
constraints to the optimization problem.

3. Penalty Function and Interior
Point Methods

We propose a solution based on a combination of
penalty function and interior point methods for the
NLP problem. Mainly, the approach takes advantage
of an interior point method, which can be successfully
applied to NLP problems [20]. The success of inte-
rior point methods in solving a non-convex nonlinear
problem strongly depends on how non-convexity of the
problem is treated. We apply a penalty function method
to deal with non-convexity of P3. In other words, by
using a penalty function method, we convert P3 to a
new problem with a convex feasible region, and then,
we apply an interior point method to solve the problem.

In P3, all constraints except (2.16d) are convex. We
add this set of constraints to the objective function as
a penalty term, which is negative when one of the con-
straints in (2.16d) is violated, and zero otherwise. After
adding the penalty term to the objective function, the
new objective becomes:

PL: max
r

f (r) = F(r) − L

2

M∑
î=1

M∑
i=1,i�=î

K∑
j=1

rîjrij

(3.1)

where positive constant L is the penalty parameter. The
new objective function along with the constraints of P3
form the following problem:

P4: max
r

f (r) (3.2a)

s.t C(r) ≥ 0, (3.2b)

where C(r) is the vector of inequality constraints
(2.16b), (2.16c) and (2.16e), and is represented as
follows:
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C(r) =




∑K
j=1 r1j − R1

min

...∑K
j=1 rMj − RM

min

− ∑M
i=1

∑K
j=1

1
αij

(
2

Krij
B − 1

) + PBS

r11

...

rMK



(3.3)

Instead of solving P3, we solve P4 whose feasible
region is convex. However, an optimal solution of P4
with a positive L will not be an optimal solution of P3,
unless the (positive) penalty term is zero. By making L

larger, we penalize constraint violations more severely,
thereby forcing the minimizer of the penalty function
to be smaller. We formally prove this statement in the
following proposition:

Proposition 3.1. The value of penalty term∑M
î=1

∑M
i=1,i�=î

∑K
j=1 rîjrij at an optimal solution of

Problem PL decreases, as L increases.

Proof. Let L1 and L2 be two penalty parameters
so that L1 ≤ L2. Denote optimal solutions of Problems
PL1 and PL2 , with r1 and r2, respectively. Since r1 is
an optimal solution associated with parameter L1, the
value of the objective function of PL1 at r1 is larger
than the value of the objective function of PL2 at r2, so

F(r2) − L1

2

M∑
î=1

M∑
i=1,i �=î

K∑
j=1

(r2)îj(r2)ij

≤ F(r1) − L1

2

M∑
î=1

M∑
i=1,i �=î

K∑
j=1

(r1)îj(r1)ij (3.4)

and consequently

L1

2


 M∑

î=1

M∑
i=1,i �=î

K∑
j=1

(r1)îj(r1)ij

−
M∑
î=1

M∑
i=1,i�=î

K∑
j=1

(r2)îj(r2)ij


 ≤ F(r1) − F(r2)

(3.5)

Similarly, since r2 is an optimal solution of PL2 , the
value of the objective function of PL2 at r2 is greater
than its value at r1. Hence

F(r1) − L2

2

M∑
î=1

M∑
i=1,i�=î

K∑
j=1

(r1)îj(r1)ij

≤ F(r2) − L2

2

M∑
î=1

M∑
i=1,i�=î

K∑
j=1

(r2)îj(r2)ij (3.6)

and consequently

L2

2


 M∑

î=1

M∑
i=1,i�=î

K∑
j=1

(r1)îj(r1)ij

−
M∑
î=1

M∑
i=1,i�=î

K∑
j=1

(r2)îj(r2)ij


 ≥ F(r1) − F(r2)

(3.7)

Inequalities (3.5) and (3.7) imply that

L2

2


 M∑

î=1

M∑
i=1,i�=î

K∑
j=1

(r1)îj(r1)ij

−
M∑
î=1

M∑
i=1,i�=î

K∑
j=1

(r2)îj(r2)ij


 ≥ F(r1) − F(r2)

≥ L1

2


 M∑

î=1

M∑
i=1,i �=î

K∑
j=1

(r1)îj(r1)ij

−
M∑
î=1

M∑
i=1,i�=î

K∑
j=1

(r2)îj(r2)ij


 (3.8)

Hence

(
L2

2
− L1

2

) 
 M∑

î=1

M∑
i=1,i�=î

K∑
j=1

(r1)îj(r1)ij

−
M∑
î=1

M∑
i=1,i�=î

K∑
j=1

(r2)îj(r2)ij


 ≥ 0 (3.9)
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Using the assumption that L1 ≤ L2, we have

M∑
î=1

M∑
i=1,i�=î

K∑
j=1

(r1)îj(r1)ij ≥
M∑
î=1

M∑
i=1,i �=î

K∑
j=1

(r2)îj(r2)ij

(3.10)

which completes the proof. �

Therefore, the larger L is, the more penalized the con-
straint violations of penalty term is, and the smaller
the penalty term will be. Indeed, for a large enough
choice of L, global optimal solution(s) of P4 is (are)
the optimal solution(s) of P3 (Theorem 17.1 of [20]).§

Theorem 3.1 [20]. Suppose that each r(k) is the exact
global maximizer of Problem P4 corresponding to the
penalty parameter Lk. Then every limit point r∗ of the
sequence {r(k)} is a global solution of the problem P3.

However, the maximization of f (r) in PL becomes
more difficult as L becomes large [20]. In this paper, we
find an appropriate value for L through a simple search
method. Even though the objective function of P4 is a
non-concave nonlinear function, but its feasible region
is convex. Convexity of the feasible region motivates
us to use some interior point methods to solve P4.

Before applying the interior point method, we first
convert the inequality constraints in C(r) to equality
constraints by associating a positive slack variable to
each constraint. Denote the (2M + 1)K vector of slack
variables with s. Hence, P4 is converted to the follow-
ing minimization problem:

P5: min
r

−f (r) (3.11a)

s.t C(r) − s = 0 (3.11b)

s ≥ 0 (3.11c)

A necessary condition for a feasible solution of P5 to
be optimal is to satisfy the following conditions, called
Karush–Kuhn–Tucker (KKT) conditions:

∇f (r) − AT (r)z = 0 (3.12a)

C(r) − s = 0 (3.12b)

Sz = 0 (3.12c)

s ≥ 0, z ≥ 0 (3.12d)

§Notice that the statement of Theorem 17.1 in [20] is slightly
different from the one presented here, but the proof is the
same.

In the aforementioned KKT conditions, S is a diago-
nal matrix with diagonal elements given by vector s,
and vector z contains (2M + 1)K Lagrange multipliers
used in the definition of the Lagrangian function of P5:

L (r, s, z) = f (r) − zT (C(r) − s) (3.13)

The matrix A in (3.12a) is the Jacobian matrix of C(r)
represented by:

A =




�

−K ln(2)2
Kr11

B

Bα11
· · · −K ln(2)2

KrMK
B

Bα
MK

I


 (3.14)

where I is an identity matrix of dimension MK × MK,
and � is the following M × MK matrix:

� =




1(1,K) 0(1,K) · · · 0(1,K)

0(1,K) 1(1,K) · · · 0(1,K)

...
...

. . .
...

0(1,K) 0(1,K) · · · 1(1,K)


 (3.15)

where 1(1,K) and 0(1,K) are K vectors of 1 and 0,
respectively.

To find an approximation for a local optimum of the
nonlinear problem, interior point methods solve a series
of perturbed KKT conditions in which only the right-
hand-side in Equation (3.12c) is replaced by a vector
µe:

∇f (r) − AT (r)z = 0 (3.16a)

C(r) − s = 0 (3.16b)

Sz = µe (3.16c)

s ≥ 0, z ≥ 0 (3.16d)

with e = (1, 1, · · · , 1)T and µ > 0. Interior point
methods start with an initial interior point in the feasi-
ble region that satisfies perturbed KKT conditions for
some µ and proceeds to find another interior point that
satisfies perturbed KKT conditions (3.16a)–(3.16d) for
a smaller value of µ. As the method proceeds, µ is
decreased, and consequently the solution of the per-
turbed KKT conditions approaches the solution of the
KKT conditions, in which µ = 0. It is expected that
after several iterations the solution will converge to a
point that satisfies the KKT conditions of the problem
[20].
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In each iteration of interior point method, the direc-
tions and lengths of movements are updated based
on the first and second order gradients of the objec-
tive function and constraints. The vector of movement
directions for variables r, s, and z, denoted by b =
[br, bs, bz]T , is computed by solving the following
linear system of equations:




∇2
rrL 0 −AT (r)

0 Z S

A(r) −I 0







br

bs

bz




=




∇rf (r) − AT (r)z

Sz − µe

C(r) − s


 (3.17)

where, Z denotes the diagonal matrix whose diagonal
elements are given by vector z. As matrices ∇2

rrL and
∇rf (r) depend on the objective function chosen for the
problem, we provide their descriptions in Appendix B
for a chosen objective function.

After obtaining movement directions, the length of
movement in each direction, step length, denoted by
αmax
s and αmax

z , are specified as below:

αmax
s = max {α ∈ (0, 1] : s + αbs ≥ (1 − τ) s}

(3.18a)

αmax
z = max {α ∈ (0, 1] : z + αbz ≥ (1 − τ) z}

(3.18b)

where τ ∈ (0, 1). A large value of τ close to one, e.g.,
τ = 0.995, is usually chosen to avoid s and z approach-
ing zero too quickly. The new interior point, slack
variables, and Lagrange multipliers, (r+, s+, z+), are
determined with the information of movement direc-
tions and step lengths accordingly:

r+ = r + αmax
s br (3.19a)

s+ = s + αmax
s bs (3.19b)

z+ = z + αmax
z bz (3.19c)

For the next iteration, µ is updated to a smaller value,
say µ+ < µ. There are several strategies to choose µ+.
Among them we use a linear equation to update µ:

µ+ = σµ σ ∈ (0, 1) (3.20)

Since σ < 1, µ approaches zero over several itera-
tions. However, choosing a very small σ or a very large

σ will cause faster or slower convergence, respectively.
Although fast convergence is always desired, it may
cause some parameters of the method, such as s and
z, approaching zero too quickly. This may reduce the
performance of the method, e.g., the offered solution
may be infeasible or far from optimality.

The implementation of the interior point method is
terminated when a stopping criterion is achieved. In this
paper, the initial value of µ0 = 1 has been chosen, and
when µ approaches to a very small value or the change
in allocated rate vector, r, is negligible, the implemen-
tation stops. Algorithm 1 presents a summary of the
interior point method used in our simulation.

Algorithm 1 The interior point method for P5

Input: M, K, PBS, B, α, Ui, initial r, s0, µ0, τ, σ
Result: r
begin

Setting up and initialization:
Choose initial r and compute s0 > 0
Choose µ0 > 0 and compute z0 > 0 accordingly
Set parameters τ ∈ (0, 1) and σ ∈ (0, 1)
Set k = 0 and Exit flag = 0
while Exit flag == 0 do

Solve (3.17) to obtain movement direction b =
(br, bs, bz)
Compute αmax

s , and αmax
z using (3.18a) and

(3.18b)
Compute (rk+1, sk+1, zk+1) using (3.19a) to
(3.19c)
Set µk+1 ← µk and k ← k + 1
Compute Exit flag

end
return r

end

4. Genetic Algorithm

4.1. Genetic Algorithm Methodology

In our simulation, we use GA as an intelligent search
algorithm to find near-optimal solutions. GA is a ran-
domized adaptive search method that processes a large
number of search points at each iteration, then gener-
ates a new set of feasible points based on characteristics
of the old search points. GA deploys a randomization
search technique that avoids searching process being
stopped when a local optimum is attained and continues
searching the feasible region for a better local optimum
[31]. Also, adaptive search based on the previous search
points limits computational complexity, i.e., the com-
putational burden does not necessarily increase with an
increase in dimensions of search region [32].

In GA context, feasible solutions of a problem are
represented by a data structure named chromosome,
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and a fitness function is defined to evaluate feasible
solutions. The algorithm begins with forming an initial
population (first generation) of random feasible solu-
tions. Then, the initial population is improved toward
the optimal solution by generating a new population
from the current chromosomes through several itera-
tions. The new population is generated in each iteration
through the following operators:
� Selection: The operator chooses better chromo-

somes of current generation to form a population of
parent chromosomes.

� Crossover: The operator generates new chromo-
somes (children) by selecting a point on the
chromosomes of the two parents and swapping the
chromosomes beyond that point.

� Mutation: The operator probabilistically changes an
arbitrary element of a chromosome to a new value
hoping to find new chromosomes which may have a
better fitness value.

4.2. Genetic Algorithm Implementation

The specifics of chromosomes and fitness function
as well as operators implementation depend on the
problem to be solved. A K × M vector is chosen for
the chromosome in our implementation, where K and
M are the numbers of sub-carriers and users, respec-
tively. Chromosome y of the population is a vector
[xy

1 · · · xy
j · · · xy

K] of x
y
j , where j ∈ K represents a sub-

carrier index, as shown in Figure 2. x
y
j is a 1 × M

allocation vector of a continuous value x
y
ij , where

i ∈ M is a user’s index, that shows allocated power to
user i on sub-carrier j, p

y
ij . Each x

y
j contains only one

non-zero element, xy
ij , due to the constraint of exclusive

sub-carrier assignment to a user.
An initial population, P0, of N chromosomes is

formed by allocating a random user to each sub-

Figure 2. The population and chromosomes representations.

carrier of each chromosome. The minimum required
power, that satisfies user’ minimum required rate, is
assigned to the users that are allocated to sub-carriers
in initial population. Each chromosome is a feasible
solution, so it should satisfy all the constraints of
the problem. If a chromosome does not satisfy the
problem constraints, the procedure of chromosome
generation will be repeated. The fitness function is
the objective function of the optimization problem.
Selection operator is a fitness proportionate selection,
also known as roulette-wheel selection, that selects
individuals with a probability proportional to their fit-
ness values. This selection operator gives a chance
to weak solutions (low fitness values) to be selected,
hoping that those weak solutions will result in some
good solutions (high fitness value) in crossover oper-
ation. Using a uniform distribution, pcross, a point j

from {M, · · · , (K − 1)M} is chosen for crossover oper-
ation. In other words, crossover is performed over
sub-carriers. Mutation operation chooses a mutating
element from {1, · · · , KM} with a uniform distribu-
tion, pmut. Actually, the mutating element indicates a
new user i for sub-carrier j, so allocated power to the
previous user of sub-carrier j is altered to zero, and
a random power is allocated to the mutating element.
Crossover and mutation are repeated if new generated
chromosomes do not satisfy the problem constraints.
Once a new population Pn is generated through selec-
tion and crossover and mutation, it replaces the old
one. However, as the chromosome with the best fit-
ness value, referred to as elite, may be lost in selection,
crossover, and mutation operators, an elitism operation
is performed before substituting Pn−1 with Pn. Elitism
operation substitutes the corresponding chromosome to
the least fitness value of Pn with elite. GA stops after
Nitr iterations or when there is no increment in elite’s
fitness value for Nfit. Numerical parameters of GA are
listed in Table II and the pseudo code of the solution is
outlined in Algorithm 2.

Table II. Simulation parameters.

Parameter Value

Maximum power budget of the BS 20 Watt
Total bandwidth 2400 Hz
Number of sub-carriers 24
Number of users 4
Minimum required rate of users with convex utility 100 bit/symbol
Minimum required rate of users with concave utility 1 bit/symbol
Number of iterations 30000
Crossover probability 0.75
Mutation probability 0.1
Initial population 200
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Algorithm 2 GA implementation for the problem

Input: M, K,Nitr,Nfit, pcross, pmut, PBS, B, α,F
Result: pij

begin
Setting up and initialization
Generate initial population, P0
Find elite0
n = 1 and Exit flag = 0
while Exit flag == 0 do

Perform selection using roulette wheel sam-
pling scheme
for y = 1 : N do

while constraints (2.13c) to (2.13f ) are not
held do

crossover with probability pcross
end
while constraints (2.13c) to (2.13f ) are not
held do

Mutation with probability pmut
end
Find elitenPn+1 = Pn

Replace the worst chromosome with
eliten−1
Exit flag = Check termin conditions
n = n + 1

end
end
return pij

end

5. Numerical Results

In this section, the convergence of GA is investigated
in Section 5.1, which then will be used as a benchmark
to evaluate the performance of PM/IPM in terms of
optimality and sensitivity to network parameters in
Section 5.2.

In our simulation, we consider a PMP network, where
the BS is centered and users are located in different
distances around it. Traffic arriving at the BS is first
buffered in separate infinite queues dedicated to each
user, then, is forwarded to users on the down-link path
using assigned sub-carriers and allocated power. We
assume the objective function is aggregate utility max-
imization. In its simplest form, the utility function of
user i may be a linear function of its rate, Ui = ri. How-
ever, for the worst case, we allow utility functions to be
non-concave and nonlinear. There are two sets of users
with concave and convex utility functions expressed
with Equation (5.1) [33].

Ui (ri) =




0 if ri ≤ l1

sink

(
π

2

ri − l1

l2 − l1

)
l1 < r ≤ l2

1 ri > l2

(5.1)

ri denotes allocated rate to user i, l1 and l2 are thresh-
olds, and k controls the shape of the utility function.
The function is concave for k < 1 and convex for k > 1.
k = 0.7 and k = 2 have been chosen for concave and
convex utility functions, respectively. Other simulation
parameters are listed in Table II.

5.1. Genetic Algorithm Convergence

To evaluate convergence performance of GA, a sce-
nario consisting of 4 users with concave utility
functions is considered. It is assumed that average
channel gains are 1 and 0.3 on the first and the sec-
ond half of the sub-carriers, respectively, for all users.
In the first iteration of GA, sub-carriers are assigned
to users exclusively and randomly; This assignment
of sub-carriers is irrespective of users’ channel gain
on sub-carriers. Then, the required power to achieve
a minimum rate requirement of each user is allocated
uniformly to the sub-carriers assigned to each user. It
is expected that more power is allocated to the sub-
carriers with better average channel gain as iterations
proceed, to gain higher rate and utility. Figure 3 depicts
the distribution of allocated power to the sub-carriers
in the first and the last iteration of GA. A compari-
son between the two distributions illustrates that GA
evolves toward allocating more power to the good
status sub-carriers and less power to the bad status
(weak) sub-carriers, i.e., evolution of the algorithm
toward maximizing the objective function by utilizing
the resource efficiently. To show the speed of conver-
gence, the best fitness value, the best users’ total utility
of a chromosomes, in each iteration is illustrated in
Figure 4. The curve is monotonically increasing due
to elitism technique, i.e., the best individual of cur-
rent population is transfered to the next population, so
the best fitness value never drops. As expected, there
is a noticeable trade off between optimality and short
solution time.

5.2. PM/IPM Performance

We evaluate the performance of PM/IPM in terms of
optimality, solution time, and sensitivity of solution
to users’ channel gain variations on sub-carriers. The
results achieved by GA is used as a benchmark. To
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Figure 3. Power allocation distribution on sub-carriers.

Figure 4. Convergence of fitness value.

increase the convergence time of GA we consider a
small number of users. Four users with the same convex
utility functions but diverse channel gain on sub-
carriers are considered. Average channel gain on sub-
carriers is higher for users 1 and 3 than users 2 and 4.

A comparison between the convergence speed of GA
and PM/IPM is shown in Figure 5. The iterations of GA

Figure 5. Convergence speed comparison of GA and
PM/IPM.

and PM/IPM stop when the improvement in rate allo-
cation vector is less than 1e − 13. GA has a very slow
convergence speed, although it starts from an initial
allocation with better aggregate utilities than the ones
of PM/IPM. In comparison, PM/IPM converges very
fast while its maximum achievable aggregate utilities
and convergence time depend on the value of σ. The
method is faster, but the results are less accurate for
smaller values of σ. The data tips on the diagram show
the time and aggregate utilities at the data tips x and y,
respectively. It can be seen that PM/IPM is much faster
than GA, and with σ = 0.99, PM/IPM obtains the same
aggregate utilities as the one that GA obtains in its con-
vergence. When σ increases beyond 0.99, PM/IPM has
no more improvement in achievable aggregate utilities
or convergence speed.

The convergence of PM/IPM is determined by the
aggregate utilities and constraints’ violations in the
penalty term. For PM/IPM convergence, aggregate util-
ities should be maximized subject to the fact that
constraints’ violations are negligible or close to zero.
Figure 6 illustrates aggregate constraints’ deviations
(from zero), for two different values of σ, when
PM/IPM iterations proceed over time. The negligible
aggregate deviations at convergence points, especially
for σ = 0.99, ensures the rate allocation satisfies the
exclusive sub-carrier allocation. Moreover, a com-
parison between Figures 5 and 6 show aggregate
constraints’ deviations and aggregate utilities con-
vergence happen simultaneously, which satisfies the
convergence requirements of the problem.

Moreover, a comparison between rate allocation of
GA and PM/IPM, shown in Figure 7, demonstrates the
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Figure 6. Aggregate penalty term constraints’ deviations in
PM/IPM.

Figure 7. Utility allocation comparison of GA and PM/IPM.

performance of PM/IPM in recognizing diverse chan-
nel status and its capability in allocating resource. Let
all users have the same channel status, except that aver-
age channel gain on sub-carriers is higher for users 1
and 3 than those for users 2 and 4. Therefore, more
resource should be allocate to the users with better
average channel quality to gain user diversity and max-
imize aggregate utilities. The numeric tables (data tips)
in Figure 7 indicate that both GA and PM/IPM allocate
more rate to users 1 and 3 than users 2 and 4. Also, it can
be seen that PM/IPM allocates equal rate to the users
with the same average channel quality on sub-carriers.

Table III. Users’s allocated rates on each sub-carrier.

Table III presents rate allocation and exclusive sub-
carrier assignment by PM/IPM, the vectors of allocated
rate to sub-carriers, n = 1, · · · , 24, for users 1 to 4,
r1 to r4, along with the corresponding channel gains
of the users on the sub-carriers, α1 to α4. The gray
rows of the table represent the assigned sub-carriers to
the users, and the sub-carriers on white rows are unas-
signed. The result confirms the success of PM/IPM in
exclusive sub-carrier assignment since no sub-carrier
has been assigned to two users. In addition, a sub-
carrier is assigned to a user that has the best channel
gain on that sub-carrier, which results in a solution
closer to the optimum. In numerical results given in
Table III, all users achieve a utility equal to one, so
some sub-carriers are not needed to be assigned to any
user.

6. Conclusions

The non-convexity of OFDMA resource allocation
optimization problem has been studied in this paper. A
framework for the resource allocation has been devel-
oped and a novel approach based on a penalty function
method and an interior point method (PM/IPM) has
been applied to solve the optimization problem.
Numerical results have demonstrated that the proposed
approach performs well in achieving near optimal
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solutions while satisfies the non-convex (sub-carrier
assignment) constraints.

In our future work, we aim to extend the proposed
approach for resource allocation in networks with alter-
native topologies, traffic requirements, and channel
models.

Appendixes

Appendix A

In the following, we show how an optimization prob-
lem with a discrete feasible region is non-convex.
Consider a network consisting of two users and three
sub-carriers. If allocated power to user i on sub-carrier
j, pij is nonzero, then allocated power to the other
users on sub-carrier j should be zero. For example,
two power allocation vectors p = [1, 0, 0, 0, 1, 1] and
p̂ = [0, 1, 1, 1, 0, 0] are feasible power allocation vec-
tors. The first three elements of the vectors represent
sub-carrier allocation to the first user, and the last
three elements indicate sub-carrier allocation to the
second user. For α ∈ (0, 1), the convex combination
of p and p̂:

αp + (1 − α)p̂ = [α, (1 − α), (1 − α), (1 − α), α, α]

(A.1)

does not belong to the feasible region, and the definition
of convex feasible region is not held.

Appendix B

The mathematical representations of∇2
rrL and∇rf (r),

required by the interior point method are presented.
The objective function of P5, based on utility functions
(5.1), is represented by:

f (r) = −(U1(r1) + · · · + UM(rM))

+ L

2


∑

i

∑
î

(rî1ri1 + · · · + rîKriK)



(B.1)

Accordingly, ∇rf (r) = ( ∂f
∂r11

, · · · , ∂f
∂rMK

)T is computed
as follows:

∇rf (r) = −




∂U1(r1)

∂r11
...

∂U1(r1)

∂rMK

...
∂UM(rM)

∂rM1
...

∂UM(rM)

∂rMK




+ L




∑
i ri1 − r11

...∑
i riK − rMK

...∑
i ri1 − rM1

...∑
i riK − rMK




(B.2)

where, for j = 1, · · · , K, and θ = π
2
r−l1
l2−l1

:

∂Uĭ

∂rij
=




kπ

2(l2 − l1)
sin(k−1)(θ) cos(θ) if i = ĭ

0 otherwise

(B.3)

To obtain ∇2
rrL, ∇2

rrf (r) and ∇2
rrC(r) are computed

first:

∇2
rrf (r) = −




G(r1) 0(K,K) · · · 0(K,K)

0(K,K) G(r2) · · · 0(K,K)

...
...

. . .
...

0(K,K) 0(K,K) · · · G(rM)




+ L




0(K,K) I(K,K) · · · I(K,K)

I(K,K) 0(K,K) · · · I(K,K)

...
...

. . .
...

I(K,K) I(K,K) · · · 0(K,K)




(B.4)

where

G(ri) =




∂2Ui

∂ri1∂ri1
· · · ∂2Ui

∂ri1∂riK

∂2Ui

∂ri2∂ri1
· · · ∂2Ui

∂ri2∂riK
...

. . .
...

∂2Ui

∂riK∂ri1
· · · ∂2Ui

∂riK∂riK




(B.5)
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0(K,K) is a K × K matrix with all zero entries, and
I(K,K) is a K × K identity matrix. The second partial
derivatives of the utility functions required for calcu-
lating G(ri) functions are:

∂2Ui

∂rij̆∂rij
= Kπ2

4(l2 − l1)2

(
(k − 1) sin(k−2)(θ) cos2(θ)

− sink(θ)
)

(B.6)

for j̆ and j ∈ {1, · · · , K}. Finally, ∇2
rrC(r) for calcu-

lating ∇2
rrL is obtained by:

∇2
rrC(r) =

(
Kln(2)

B

)2

×




2
Kr11

B

α11
0 · · · 0

0
2

Kr12
B

α12
· · · 0

...
...

. . .
...

0 0 · · · 2
KrMK

B

αMK



(B.7)
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