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Summary

In this paper, we propose a novel multidimensional privacy-preserving data aggregation scheme for improving
security and saving energy consumption in wireless sensor networks (WSNs). The proposed scheme integrates
the super-increasing sequence and perturbation techniques into compressed data aggregation, and has the ability
to combine more than one aggregated data into one. Compared with the traditional data aggregation schemes, the
proposed scheme not only enhances the privacy preservation in data aggregation, but also is more efficient in terms
of energy costs due to its unique multidimensional aggregation. Extensive analyses and experiments are given to
demonstrate its energy efficiency and practicability. Copyright © 2009 John Wiley & Sons, Ltd.
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1. Introduction

Wireless sensor networking has been subject to
extensive research efforts in recent years, and has
been well recognized as a ubiquitous and general
approach for some emerging applications such as
real-time traffic monitoring, ecosystem and battlefield
surveillance [1–3]. A wireless sensor network (WSN)
is usually composed of a large number of sensor nodes
which are interconnected through wireless links to
perform distributed sensing tasks. Each sensor node
is cheap and with low battery power and computation
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capacity, but is equipped with sensing, data processing,
and communicating components. When sensor nodes
receive a certain query from the data collection unit
(also known as sink), the sensor nodes will report their
sensing results through predetermined paths.

Due to the large scale of WSNs and resource
constraints of the sensor nodes, reporting the raw data
sensed by each sensor node may significantly increase
the energy consumption for communication. In case
that each sensor node can compress and aggregate
the sensed data before launching it in the network,
the communication overhead can be largely decreased
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at the expense of some computation efforts, which,
nonetheless, will result in overall energy saving at
each sensor node [4]. Therefore, data aggregation‡

is considered as an important operation at each
sensor node in a large-scale WSN for saving energy
consumption and prolonging the network lifetime.

Recently, several data aggregation schemes have
been proposed for WSNs [4–9]. The nature of
unattendedness makes each sensor node susceptible to
capture and compromise by a malicious adversary. If
there is no privacy protection in a data aggregation
scheme, the compromised nodes can overhear the
transmissions and obtain the sensitive data. Therefore,
privacy preservation has become an important security
requirement for secure data aggregation in WSNs [10].
In most previously reported secure data aggregation
schemes, some nodes are chosen and each in
charge of data aggregation for a number of other
nodes nearby. Since the data is encrypted, an
aggregation node has to first decrypt the received
data before aggregation according to the corresponding
aggregation function, and then it has to encrypt
the aggregated data and send it to the sink. Such
a privacy protection strategy is straightforward and
effective, but it takes high computation cost at
the aggregation node. Concealed Data Aggregation
(CDA) was introduced in Reference [9] to mitigate
the limitation by adopting homomorphic encryption
ciphers and allowing efficient aggregation of encrypted
data without decryption involved in each aggregation
node. However, since the scheme has all sensor nodes to
share a common secret key with the sink, an adversary
can get the secret key and access to the encrypted
aggregated data by compromising any one of the sensor
nodes. Clustered-based Private Data Aggregation
(CPDA) scheme was proposed to overcome the
weakness [10], however the aggregated data will
be known to the aggregation node. Most recently,
two perturbation-based data aggregation schemes have
been presented [11,12], which can improve the privacy
preservation. However, the studies of [11,12] are
limited to the traditional single-dimensional data
aggregation. In reality, a sensor node may be in charge
of more than one data, i.e., multidimensional sensing.
For example, humidity sensors from EnviroMon [13]
are capable of sensing both humidity and temperature.

In order to further improve the performance and
enhance the privacy preservation, in this paper,

‡The data aggregation under consideration in this paper refers
to compressed data aggregation, i.e., ‘sum’ and ‘average’.

we propose a novel MultiDimensional Privacy-
preserving data Aggregation scheme (MDPA) for
WSNs. The proposed MDPA scheme integrates the
super-increasing sequence and perturbation techniques
[11] into data aggregation, and has the ability to
combine more than one aggregated data into one, i.e.,
multidimensional data aggregation, to improve not only
the energy efficiency but also the privacy preservation
of data aggregation. The main contributions of this
paper are as follows:

First, we propose a novel privacy-preserving
multidimensional data aggregation scheme. With the
scheme, when the aggregation result arrives at the
sink, the sink can recover all aggregated data from
the single result. To the best of our knowledge, this is
the first effort on multidimensional privacy-preserving
data aggregation.

Second, we study the theoretical upper limit for
parameter k in k-neighbor aggregation, i.e., for any
n sensor nodes’ uniform deployment, max(k) is
1
2 +

√
2n − 7

4 . This result is very useful in system
initialization of WSNs.

Third, we develop a Java simulator to study the
contamination issue of aggregated data caused by
sensor node compromise attack.

The remainder of this paper is organized as follows.
In Section 2, we introduce the system model and design
goal. In Section 3, we present the MDPA scheme.
The security and performance analyses are given in
Sections 4 and 5, respectively. Finally, we draw our
conclusions in Section 6.

2. System Model

In this section, we characterize the multidimensional
privacy-preserving data aggregation in WSNs and
identify the design goal.

2.1. System Model

We consider a heterogenous sensor network which
consists of a sink and large numbers of, i.e., n, sensor
nodes arbitrarily deployed in a certain area, as shown
in Figure 1. These sensor nodes are further divided
into two categories: ordinary sensor nodes N =
{N1, N2, . . . , Nn1} and aggregation (sensor) nodes
A = {A1, A2, . . . , An2}, where Ni, Aj ∈ {0, 1}∗ are
uniquely identifiers for each ordinary sensor node and
aggregation node, respectively, and n1 + n2 = n. Each
ordinary sensor node Ni ∈ N is stationary, monitoring
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Fig. 1. Heterogenous sensor network under consideration.

the immediate surroundings and periodically collecting
the sensed data. To save energy, the sensed data
will be first sent to an aggregation node Aj ∈ A for
aggregation with the other received data, and then the
aggregation node Aj will report the aggregated data
to the sink over a predefined path. We assume that
each aggregation node Aj ∈ A is different from the
ordinary sensor node in heterogenous sensor networks
[14]. The tasks of an aggregation node mainly include
aggregating the sensed data and forwarding the result
to the sink. The sink, compared to the sensor nodes, is
a trust and powerful device, which is either static or
mobile, responsible for collecting the information with
a certain query to the sensor nodes.

2.2. Design Goal

Before describing our design goal, we first make some
necessary assumptions in our model, which are similar
as those in Reference [14].

Assumption 1. The sink is expensive and actively
powered, and will not be compromised by the
adversary.
Assumption 2. The number of the aggregation nodes
A = {A1, . . . , An2} is much smaller compared
with the ordinary sensor nodes, and thus each
aggregation node Aj ∈ A can be powerful
and equipped with tamper-resistant hardware.
Consequently, it is reasonable to assume an
adversary cannot compromise an aggregation node.
Assumption 3. The number of sensor nodes N =
{N1, . . . , Nn1} is large, and each sensor node Ni ∈
N can sense more than one data. However, due
to cost constraints, these sensor nodes are not
equipped with tamper-resistant hardware. Then,
assume that if an adversary compromises a sensor
node, she/he can extract all key materials, data and
stored codes.

Assumption 4. The sink is in charge of initializing all
sensor nodes and aggregation nodes, i.e., each node
∈ A ∪ N is time synchronized, uniquely identified,
and preloaded with some system parameters, and
has a symmetric shared key with the sink.

Our design goal is to develop a multidimensional
privacy-preserving data aggregation scheme for WSNs.
Specifically, the multidimensional aggregation scheme
should achieve the desirable requirements on enhanced
privacy preservation and better energy efficiency,
which are explicitly defined as follows.

1. Multidimensional aggregation and better energy
efficiency: The goal of data aggregation in WSNs is
to reduce the communication overhead. The goal of
multidimensional aggregation is to further improve
the energy efficiency.

2. Enhanced privacy preservation: In multidimen-
sional aggregation, each sensor node only knows
its own sensed data, and the aggregated data is only
known to the sink. It is hard for an adversary to
obtain the aggregated data even though it launches
the possible attacks listed in the paper, namely
the passive attack and sensor node compromise
attack. Since our goal is to enhance the privacy
preservation of aggregation data, other active attacks
that are irrelative to the privacy preservation, such
as some denial-of-service (DoS) attacks are outside
the scope of this paper.

3. Proposed MDPA Scheme

In this section, we present the proposed MDPA scheme
for WSNs. The scheme consists of four phases:
system initialization phase, sensor and aggregation
nodes initialization phase, deployment and neighbor-
key discovery phase, and multidimensional privacy-
preserving data aggregation phase.

3.1. System Initialization

In the system initialization phase, to establish a
WSN, the sink first runs the similar operations in
Reference [15] to generate the bilinear parameter 5-
tuple (q,G,GT , e, P), where q is a prime number,
G, GT are two cyclic groups of the same order
q, e : G×G→ GT is an admissible bilinear map
and P is a generator of G. Then, the sink chooses
a random number s ∈ Z∗

q as the master key, and
computes the system public key Ppub = sP . To achieve
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multidimensional aggregation, the sink also initializes
the following parameters:

� p: a large prime, which denotes the required
aggregation space. Usually, p is 1024-bit length same
as that in digital signature algorithm (DSA) [16].

� n: the aggregation dimension, which means each
sensor node can collect and report n dimensional data
to the sink. In this paper, we assume that 1 ≤ n ≤ 5.

� k: the possible maximal k-neighbor aggregation,
which denotes that maximal k ordinary sensor nodes
will be involved in an aggregation query.

� d: a constant number, which denotes the maximal
value for all data sensed by a node. For example,
a group of collected data (d1, d2, . . . , dn) ∈ Zn will
satisfy 1 ≤ di ≤ d for all 1 ≤ i ≤ n. (Note that some
collected data may not be integer in its original form,
but they can be easily transformed into an integer
[12].)

� a = (a1, a2, . . . , an): a super-increasing sequence
such that

∑i−1
j=1 aj · k · d < ai for i = 1, 2, . . . , n,

and
∑n

i=1 ai · k · d < p. That is,




a1 · k · d < a2

(a1 + a2) · k · d < a3

· · · < · · ·
(a1 + a2 + · · · + an−1) · k · d < an

(a1 + a2 + · · · + an−1 + an) · k · d < p

(1)

� H, h: two secure cryptographic hash functions
[16], where H : {0, 1}∗ → G and h : {0, 1}∗ →
{0, 1}log2 q.

At the end of this phase, the sink keeps the master key
s secretly and sets the public parameters as params =
(q,G,GT , e, P, Ppub, p, n, k, d, a, H, h).

Discussion on k-neighbor aggregation. From
Equation (1), the parameter k is important, which
denotes the possible maximal k-neighbor aggregation.
Therefore, given the total number of sensor nodes n
in some deployment, it is significant to determine the
theoretical upper limit of k.

Lemma 1. Let n nodes (n ≥ 3) N1, N2, · · · , Nn ∈
N ∪ Abe deployed in an area such that any three nodes
Ni, Ni+1, Ni+2 ∈ N are not collinear. If, for each node
Ni ∈ N ∪ A in some deployment scheme, there are at

Fig. 2. An example for K-neighbor network topology
connection for n = 6 and K = max(k) = 3.

least k nodes having the same distance to Ni
§, then k

subjects to

k ≤ 1

2
+
√

2n − 7

4
(2)

Proof. See appendix. �

Example. As shown in Figure 2, when n = 6,

k ≤ 1

2
+
√

2 × 6 − 7

4
≈ 3.7 ⇒ K = max(k) = 3

(3)

Lemma 1 provides the necessary condition for k-
neighbor aggregation but not the sufficient condition.
Therefore, for different values of n, the lemma does not
ensure the existence of K = max(k) in Equation (2).
In addition, though the deployment of sensor nodes
in WSNs is assumed to be uniformly distributed, the
local density of sensor nodes may vary throughout the
network [17], which also makes it more difficult to
deploy the K-neighbor aggregation. Therefore, Lemma
1 just gives us a theoretical upper limit of k. In
practical application scenarios, since the upper limit

K = ⌊ 1
2 +

√
2n − 7

4

⌋
could not be researched for a

WSN with n sensor nodes, we can choose the parameter
k such that k = K in system initialization phase, which
ensures that Equation (1) can adapt to most aggregation
nodes in the whole WSNs.

§Here, at least k nodes have the same distance to Ni means
that at least k nodes are within the transmission range of node
Ni and can directly communicate with Ni.
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3.2. Sensor and Aggregation Nodes
Initialization

In this phase, the sink initializes all sensor nodes N =
{N1, N2, . . . , Nn1} and all aggregation nodes A =
{A1, A2, . . . , An2}, which are going to be deployed.
The detailed initialization algorithm is described in
Algorithm 1. After all sensor nodes and aggregation
nodes are preloaded with their key materials and
necessary energy, they can be deployed.

3.3. Deployment and Neighbor-Key
Discovery

In this phase, all sensor nodesN = {N1, N2, . . . , Nn1}
and aggregation nodes A = {A1, . . . , An2} will be
deployed at a geographical area by the sink in various
ways such as by air or by land. Given the rich literature
in sensor nodes deployment, here we do not address
the detailed deployment operations. Without loss of
generality, we assume that all nodes will be almost
uniformly distributed after deployment as shown in
Figure 1, then most aggregation nodes in A have k
neighboring sensor nodes, where k ≤ k.

To guarantee the secure subsequent data transmis-
sions, after identifying the closest aggregation node
Aj ∈ A, each sensor node Ni ∈ N computes the
neighbor key keyij as

keyij = h(e(Si, H(Aj))) (4)

Likewise, after identifying its k neighbors
{N1, . . . , Nk} ∈ N , each aggregation node Aj ∈ A

will generate its corresponding k neighbor keys
Kj = {keyj1, . . . , keyjk}, where

keyji = h(e(Sj, H(Ni))) for 1 ≤ i ≤ k (5)

Here, each neighbor key keyji is symmetrically shared
by Aj and Ni, since

keyji = h(e(Sj, H(Ni))) = h(e(sH(Aj), H(Ni)))

= h(e(H(Aj), sH(Ni))) (∵ bilinearity of e)

= h(e(sH(Ni), H(Aj))) = keyij (6)

At the same time, due to the hardness of Bilinear Diffie-
Hellman (BDH) problem [15], each neighbor key keyji

is secure against the external attacks.
Discussion. Since the pairing operation is a time-

consuming operation, the neighbor key establishment
requires more energy than that with the traditional key-
pool based key-distribution schemes [18]. However,
compared with the key-pool based key distribution
scheme, the neighbor key establishment protocol saves
much more storage spaces. For example, in a random
key distribution mechanism where the size of key pool
is K = 5000, and each sensor node randomly chooses
Nk keys from the key pool, the probability that any two
pair of sensor nodes hold at least one common key is

Pr(the number of shared keys ≥ 1)

= 1 −

(
K

Nk

)(
K − Nk

Nk

)
(

K

Nk

)(
K

Nk

) = 1 − ((K − Nk)!)2

(K − 2Nk)! · K!

(7)

Figure 3 shows the probability Pr varies with the
number of chosen keys Nk, when the size of key
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Fig. 3. The probability Pr versus the number of chosen keys
Nk, when the size of key pool is K = 5000.
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Fig. 4. Multidimensional privacy-preserving data aggregation in WSNs.

pool is K = 5000. We can see when the probability
reaches 99.5%, each sensor node should be preloaded
at least 160 keys. Assume the size of each key is
[128, 160] bits, the storage space for 160 keys in
key pool based schemes is about [2560, 3200] bytes,
while the method adopted here only requires 500
bytes or so (cf. Section 5.1). In addition, since the
pairing operations are only executed in non-interactive
neighbor key establishment, the energy costs of pairing
is therefore not critical to the latter privacy-preserving
data aggregation in WSNs. Recently, Zhang et al.
[19] conducted a comprehensive security analysis on
neighbor key establishment, which strengthens our
inference.

3.4. Multidimensional Privacy-Preserving
Data Aggregation

As shown in Figure 4, the proposed multidimensional
data aggregation scheme mainly consists of two
parts: private data aggregation (focusing on additive
aggregation) and recovery of aggregated data. We
describe the two parts below.

3.4.1. Private data aggregation

When the sink queries an aggregation node Aj ∈ N
with an aggregation request E, where E is an unique
identifier only for this query, the aggregation node Aj

takes the role of an aggregator and broadcasts E to its
k neighbor sensor nodes {N1, N2, . . . , Nk}.

After receiving E, each neighbor sensor node Ni,
1 ≤ i ≤ k, will send its sensed data (mi1, mi2, . . . , min)
to the aggregation node Aj . The sending procedure is

Fig. 5. Neighbor sensor node Ni sending its sensed data
(mi1, mi2, . . . , min) to the aggregation node Aj .

shown in Figure 5, and the detailed steps are described
as follows:

Step 1. Ni first applies its private key Si and
a = (a1, a2, . . . , an) preloaded by the sink
to computes ci =∑n

j=1 aj · (mij + bi) mod p,
where bi = h(E‖Si). Ni then gains the current
timestamp T and computes the hash value
hi = h(ci‖keyij‖T ). In the end, Nj sends the
message formatted as 〈Ni‖T‖ci‖hi〉 to the
aggregation node Aj .

Step 2. When receiving the message 〈Ni‖T‖ci‖hi〉
from the neighbor sensor node Ni at timestamp
T ′, the aggregation node Aj first checks |T ′ −
T | ≤ �T , where �T is the expected valid
time interval for transmission delay. If it
holds, the aggregation node Aj proceeds to
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the next operation, and stops otherwise. Aj

then uses the neighbor key keyji to verify
hi = h(ci‖keyji‖T ). If it holds, the aggregation
node Aj accepts the encrypted message ci, and
rejects otherwise.

After receiving k valid encrypted data (c1, . . . , ck)
from its neighbor sensor nodes {N1, N2, . . . , Nk}, the
aggregation node Aj runs the following steps:

Step 1. Compute c =∑k
i=1 ci mod p, set NI =

{N1‖ · · · ‖Nk} as the neighbor information of
Aj , gain the current timestamp T, and compute
hj = h(c‖NI‖Sj‖T ).

Step 2. Use the self-encryption technique [20]
to encrypt the plaintext message m =
〈E‖Aj‖NI‖T‖hj〉 as (c′

1 = rP, c′
2 = h(rPpub) ·

m mod p), where r ∈ Z∗
q. Note that since

(rP, h(rPpub)) are irrelative to m, they can
be offline computed for improving online
efficiency. Send the formatted encrypted
aggregation message C = 〈c‖c′

1‖c′
2〉 to the

sink.

Discussion. We can see the self-encryption technique
can hide the nodes information with Ppub, then no
one, except the sink, can know the aggregation area
information from C. Additionally, when an aggregation
node Aj sends out an encrypted aggregation message
C, no one can distinguish C is generated by Aj

itself or received from the downstream aggregated
nodes. Therefore, only if the adversary is not a
global adversary, the location privacy of aggregation
area, which may be sensitive in some applications, is
achieved.

3.4.2. Recovery of aggregated data

After receiving the message C = 〈c‖c′
1‖c′

2〉 at the
timestamp T ′, the sink performs the following steps
to recover the aggregated data.

� Recover m = 〈E‖Aj‖NI‖T‖hj〉 by computing m =
c′

2
h(s·c′

1) = h(rPpub)·m
h(rPpub) mod p to identify the message C

comes from the aggregation node Aj concerning the
event E.

� Check |T ′ − T | ≤ �T . If it does not hold, the
message c will be rejected to resist the replay
attack.

� Use Aj’s private key Sj = sH(Aj) to compute h′
j =

h(c‖NI‖Sj‖T ) and compare it with hj . If h′
j is not

equal to hj , the message c is rejected too.
� According to the neighbor information NI =

{N1‖ · · · ‖Nk} of Aj , determine their private keys
(S1, S2, . . . , Sk) of k neighbor sensor nodes, and
compute (b1, b2, . . . , bk), where bi = h(E‖Si), for
1 ≤ i ≤ k.

� Compute M = c −∑n
j=1 aj ·∑k

i=1 bi mod p and
invoke the Algorithm 2 with M to recover
all aggregated sum values SUM(m∗j) =∑k

i=1 mij

and the corresponding aggregated average values

AVG(m∗j) =
∑k

i=1
mij

k
, for 1 ≤ j ≤ n.

Correctness. From the recovery phase, we know

M = c −
n∑

j=1

aj ·
k∑

i=1

bi mod p

=
k∑

i=1

ci −
n∑

j=1

aj ·
k∑

i=1

bi mod p

=
k∑

i=1

n∑
j=1

aj · (mij + bi) −
n∑

j=1

aj ·
k∑

i=1

bi mod p

=
n∑

j=1

aj ·
k∑

i=1

(mij + bi) −
n∑

j=1

aj ·
k∑

i=1

bi mod p

=
n∑

j=1

aj ·
k∑

i=1

mij mod p (8)
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Since
∑k

i=1 mij < k · d ≤ k · d, according to Equa-
tion (1), we have M < p. Therefore

M =
n∑

j=1

aj ·
k∑

i=1

mij =
n∑

j=1

aj · SUM(m∗j) (9)

Because a = (a1, a2, . . . , an) is a super-increasing
sequence, i.e.,

∑i−1
j=1 aj · k · d ≤∑i−1

j=1 aj · k · d < ai

for i = 1, 2, . . . , n, the correctness of the Algorithm 2
follows.

Parameters discussion. It is well known that for
a 1024-bit p, it will have the same ciphertext space
as that of the classical 1024-bit RSA algorithm [16].
We demonstrate that this ciphertext space can adapt to
our multidimensional data aggregation. Let total n =
30 000 nodes be deployed at some area and each sensor
node Ni ∈ N can at most support n = 5 dimensional
data aggregation (since large n will increase the costs
of sensor nodes), and each aggregation node Aj ∈ A
has at most k = 28 neighbor sensor nodes based on the
relation in Equation (2). Then, from Equation (1), we
have the following relations




a5(1 + 28 · d) < 21024, a4(1 + 28 · d) < a5

a3(1 + 28 · d) < a4, a2(1 + 28 · d) < a3

a1 · 28 · d < a2

(10)
Furthermore, we have

a1 · (28 · d)5 < a1 · 28 · d · (1 + 28 · d)4 < 21024

(11)

⇒ log2(a1 · (28 · d)5) < log2 21024 (12)

⇒ log2 a1 + 5 · log2 d < 984 (13)

From Equation (13), for a1 ≈ 2160 considering
security, we have d ≈ 2164, which is large enough
to support most practical application scenarios.
Therefore, the proposed MDPA is feasible.

3.5. Numerical Example

To demonstrate the implementation of MDPA, we
present a numerical example as follows:

� Parameters setting: Assume that the system
parameters are initialized as

{
(p, n, k, d, s) = (153763, 3, 3, 10, 600)

a = (a1, a2, a3) = (5, 160, 4960)
(14)

For a specific query E, there are three sensor nodes
N1, N2, N3 ∈ N reporting their sensed data to the
sink. The data sensed by N1 is (m11, m12, m13) =
(4, 6, 3) and assume b1 = h(E‖S1) = 105, then

c1 =
3∑

j=1

(m1j + b1) · aj mod p

= (4 + 105) · 5 + (6 + 105) · 160

+ (3 + 105) · 4960 mod 153763

= 553985 mod 153763 = 92696 (15)

The data sensed by N2 is (m21, m22, m23) = (2, 4, 5)
and assume b2 = h(E‖S2) = 156, then

c2 =
3∑

j=1

(m2j + b2) · aj mod p

= (2 + 156) · 5 + (4 + 156) · 160

+ (5 + 156) · 4960 mod 153763

= 824950 mod 153763 = 56135 (16)

The data sensed by N3 is (m31, m32, m33) = (6, 8, 7)
and assume b3 = h(E‖S3) = 185, then

c3 =
3∑

j=1

(m3j + b3) · aj mod p

= (6 + 185) · 5 + (8 + 185) · 160

+ (7 + 185) · 4960 mod 153763

= 984155 mod 153763 = 61577 (17)

� Aggregation:

c =
3∑

i=1

ci mod p

= 92696 + 56135 + 61577 mod 153763

= 56645 (18)
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� Recovery:

M = c −
3∑

j=1

aj

3∑
i=1

bi · modp

= 56645 − (5 + 160 + 4960)

· (105 + 156 + 185) mod 153763

= (56645 − 2285750) mod 153763

= 77340 (19)

The following results are obtained by running
Algorithm 2.

x = M = 77340, a3 = 4960

SUM(m∗3) = (x − (x mod a3))/a3 = 15
AVG(m∗3) = SUM(m∗3)/3 = 5

x = x mod a3 = 2940, a2 = 160

SUM(m∗2) = (x − (x mod a2))/a2 = 18
AVG(m∗2) = SUM(m∗2)/3 = 6

x = x mod a2 = 60, a1 = 5

SUM(m∗1) = (x − (x mod a1))/a1 = 12
AVG(m∗1) = SUM(m∗1)/3 = 4

4. Security Analysis

In this section, we analyze the security of the proposed
MDPA scheme, especially on the privacy preservation
of data aggregation. In addition, we discuss the
contamination issue of aggregated data caused by
sensor node compromise attack.

4.1. Privacy Preservation on Data
Aggregation

We first discuss the data aggregation in the proposed
MDPA scheme is privacy-preserving against passive
attack and sensor node compromise attack.

� Privacy-preserving against passive attack: In
MDPA, each sensor node Ni encrypts the sensed data

(mi1, mi2, . . . , min) into

ci =
n∑

j=1

aj · (mij + bi)

=
n∑

j=1

aj · mij

︸ ︷︷ ︸
part 1

+
n∑

j=1

aj · bi

︸ ︷︷ ︸
part 2

modp (20)

with the randomized sequence a = (a1, a2, . . . , an)
and a shared key bi = h(E‖Si). Due to the
perturbation of part 2, without knowing the value of
bi = h(E‖Si), it is impossible for a passive adversary
to recover part 1. Similarly, for the aggregated
ciphertext

c =
k∑

i=1

ci =
k∑

i=1

n∑
j=1

aj · mij

︸ ︷︷ ︸
part 1

+
k∑

i=1

n∑
j=1

aj · bi

︸ ︷︷ ︸
part 2

modp

(21)

without knowing all shared keys bi = h(E‖Si),
where 1 ≤ i ≤ k, it is also impossible for a passive
adversary to get part 2 and recover part 1. From
these analyses, we can know only the sink, due
to having the master key s, can recover the
aggregated values, any other nodes including the
aggregation node, cannot break the privacy of the
aggregated data. As a result, the proposed MDPA
scheme is privacy-preserving against the passive
attack.

� Privacy-preserving against sensor node compromise
attack: In MDPA, since the sensor nodes are
inexpensive, an active adversary could compromise
some sensor nodes. Thus, we discuss the effect
of this kind of attack on privacy-preserving data
aggregation.

1. Compromising a sensor node doesn’t disclose the
data sensed by other nodes or aggregated data. With
CDA in Reference [9], all sensor nodes share the
same secret key and use the secret key to encrypt
the sensed data. Therefore, once a sensor node is
compromised by an adversary, the adversary can
break the privacy of each sensed data and aggregated
data. Different from CDA, MDPA has each sensor
node Ni to share a unique secret key Si = sH(Ni)
with the sink. Therefore, even though an adversary
compromises one of the sensor nodes, still cannot
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know other sensor nodes’ sensed data and the
aggregated data.
2. Compromising a sensor node also does not
disclose other sensor nodes’ private key. Dur-
ing an aggregation query E, a sensor node
Ni reads (mi1, mi2, . . . , min), and its neighbor-
ing node Ni+1 possibly senses the same data
(m(i+1)1, m(i+1)2, . . . , m(i+1)n), i.e., m(i+1)j = mij ,
for j = 1, 2, . . . , n. In this special scenario, we
consider whether Ni+1’s private key will be
disclosed when Ni is compromised. Since


ci =∑n

j=1 aj · mij +∑n
j=1 aj · bi mod p

ci+1 =∑n
j=1 aj · m(i+1)j +∑n

j=1 aj · b(i+1) mod p

m(i+1)j = mij, for j = 1, 2, . . . , n
(22)

we have

bi+1 = bi + ci+1 − ci∑n
j=1 aj

(23)

If bi+1 is computed only from Ni+1’s private key
Si+1, i.e., bi+1 = h(Si+1) is applied to all queries.
Then, only if the above scenario takes place,
Ni+1’s private key bi+1 = h(Si+1) will be disclosed.
However, in MDPA, bi+1 is actually derived not only
from Ni+1’s private key Si+1 but also from E, i.e.,
bi+1 = h(E‖Si+1). Since one-wayness of h() and the
identifer E is distinct in different query, the above
scenario does not affect Ni+1’s private key Si+1.
Therefore, compromising a sensor node also does
not disclose other sensor nodes’ private keys.

4.2. Contamination Issue on Aggregated
Data

Based on the above analyses, compromising a sensor
node does not disclose the aggregated data. However,
if an adversary compromises at least one sensor nodes
involved in the query E, then the compromised node
could report false data. Since the compromised node
still holds a valid private key, the aggregation node
cannot detect the false data, then the aggregated data
will be contaminated. Therefore, in this subsection, we
will study the contamination in the proposed MDPA
scheme, using a simulator built in Java.

In this simulation, 2500 ordinary sensor nodes and
150 aggregation nodes with a transmission radius
of 20 m are deployed to cover an interest area of
200 m × 200 m. We divide the total simulation time
into 10 time slots. At each time slot, we assume the

compromise rate (CR) is given, saying µ = 5, 10, 15,
20 ordinary sensor nodes are compromised per time
slot. We test three kinds of experiments with parameter
k = 5, 10, 15, respectively. Each experiment conducts
the simulation 10 000 times with different random
value seeds. Therefore, each of the following results
are an average of repetition.

Figure 6 shows the contamination probability of
aggregated data under different time slots with compro-
mise rate µ = 5, 10, 15, 20 and neighbors k = 5, 10, 15,
from which we can make the following observations:
(1) the contamination probability increases along with
the increase of time slots; (2) when the compromise
rate µ increases, the contamination probability will
quickly increase; (3) the bigger the parameter k, the
larger the contamination probability. However, for the
AVG aggregation, the bigger the parameter k, the higher
accurate the aggregated data. Therefore, there is a
tradeoff between the accuracy of average value and the
contamination when choosing the parameter k.

5. Performance Evaluation

In WSNs, energy saving is a key issue for
multidimensional data aggregation. In this section, the
performance of the proposed MDPA is evaluated in
terms of energy efficiency.

5.1. Time and Energy Cost in Neighbor Key
Establishment

Compared with the symmetric key cryptography, the
public key cryptography is more expensive in terms
of computation, and has been taken not suitable in
WSNs in the past. However, recent reports [21] showed
that the public key techniques with only software
implementation is very viable on sensor nodes, and a
number of subsequent studies following a public key
technique have appeared in References [19,21–23].

In the proposed MDPA scheme, although the ID-
based public key techniques are adopted, the expensive
public key operations are only performed in non-
interactive neighbor key establishment in the sensor
node deployment phase. Therefore, the adoption of
public key infrastructure does not increase the load of
the privacy-preserving data aggregation in WSNs. In
our design on neighbor key establishment, the bilinear
parameters (q,G,GT , e, P) in Reference [24] are
adopted with |q| = 160 bits, |P | = 512 bits. According
to Reference [15], such bilinear parameters can achieve
the same security level as 1024-bit RSA. We assume
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Fig. 6. The contaminations probability of aggregated data versus time slots with different compromise rate µ and k.

that each sensor node is equipped with a low-power
high-performance 32-bit Intel PXA255 processor at
400 MHz [25]. According to References [19,22], this
type of processor has been widely applied in many
sensor products such as Sensoria WINS 3.0 and
Crossbow Stargate. According to Reference [25], the
typical power consumption of PXA 255 in active
and idle modes are 411 and 121 mW, respectively.
Also, it was reported in Reference [26] that the
processor takes 752 ms to compute the Tate pairing
with similar parameters as ours on a 32-bit ST
22 smartcard microprocessor at 33 MHz. Therefore,
the computation of Tate pairing on PXA255 can
be roughly estimated as 33/400 × 752 ≈ 62.04 ms,
and the energy consumption Ep is approximately
25.5 mJ. According to the Algorithm 1, the Tate pairing
evaluation e by far takes the most running time of one
neighbor key establishment. Therefore, the evaluation
on pairing is taken to approximate the time cost and

Table I. Time and energy costs in key establishment.

Time cost Energy cost

Sensor node 62.04 ms 25.5 mJ
Aggregation node k × 62.04 ms k × 25.5 mJ

energy cost of each sensor node and aggregation node.
Table I thus shows the time cost and energy cost for
each sensor node and aggregation node.

5.2. Energy Cost in Privacy-Preserving Data
Aggregation

To evaluate the energy cost, the hash function h :
{0, 1}∗ → {0, 1}160 is implemented by SHA-1, which
has good energy consumption performance with Eh =
5.9 �J/byte [21]. We also omit the energy cost on the
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modulus addition operation and assume the energy
costs on the modulus multiplication operations is
Em = 2 mJ. In addition, we denote Etr and Ere by
the hop-wise energy consumption for transmitting and
receiving one byte, respectively. Based on Reference
[21], when the effective data rate is 12.4 kb/s, we have
Etr = 28.6 �J/byte and Ere = 59.2 �J/byte.

Let the size of the identifier of a sensor node,
the event E, and the timestamp T, be all 8 bytes.
Thus, 〈Ni‖T‖ci‖hi〉 is 164 bytes, and C = 〈c‖c′

1‖c′
2〉

is 320 bytes. Each sensor node then performs the
following three activities that are considered in the
energy consumption evaluation: receiving the event E,
encrypting the sensed data, and transmitting the sensed
data. Therefore, the total energy consumption is given
by Esensor = 8 × Ere + n × Em + 156 × Eh + 164 ×
Etr = 2 × n + 6.08 mJ.

For the energy consumption at the aggregation node,
the aggregator first costs 8 × (Ere + Etr) = 0.70 mJ
on receiving E from the sink before broadcasting
the received data to its k neighbor sensor nodes.
Then, the aggregator takes k × (164 × Ere + 156 ×
Eh) = k × 9.74 mJ on receiving and authenticating
the encrypted sensed data from its k neighbor sensor
nodes, and (k × 8 + 156) × Eh + Em + 320 × Etr =
k × 0.05 + 12.07 mJ on aggregating and sending the
aggregated data to the sink. Therefore, the total amount
of energy consumed at the aggregation node is given
by Eagg = k × 9.79 + 12.07 mJ.

Assume the aggregated data requires α hops to reach
the sink. Then, we get the total energy consumed
by intermediate aggregation nodes is Ehop = α ×
320 × (Etr + Ere) = α · 28.10 mJ. The total energy
consumed for one aggregation query in MDPA is

EMDPA = k × Esensor + Eagg + Ehop (24)

= k · (n · 2 + 15.87) + α · 28.10 + 12.07 mJ

(25)

Figure 7 shows the energy costs in MDPA n-
dimensional aggregation as well as in the tradition
data aggregation when k = 8 and α = 10. n reflects
aggregation dimension. From the figure we can
see that the energy costs are same when n = 1.
With the increase of n, MDPA costs almost the
same energy, the slight difference is caused by the
modulus multiplication operations in involved sensor
nodes; while the energy costs in the traditional
data aggregation will increase linearly. This result
demonstrates the MPDA is particularly efficient.
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Fig. 7. Energy comparisons between MDPA n-dimensional
aggregation and traditional aggregation, k = 8, α = 10.

6. Conclusions

In this paper, we have proposed a novel multidi-
mensional privacy-preserving data aggregation scheme
for WSNs, named MDPA. The proposed MDPA em-
ploys the super-increasing sequence and perturbation
techniques to achieve multidimensional aggregation,
which not only enhances the confidentiality but also
improves the communication performance. Extensive
analyses and experiments have also been conducted to
demonstrate that the proposed MDPA is more secure
and efficient than those existing aggregation schemes.

Appendix

We will show that the relation k ≤ 1
2 +

√
2n − 7

4 in
Lemma 1 holds. Consider n nodes as n vertices of
a graph G(V, E), i.e., V = {N1, N2 . . . , Nn}. Assume
that for any two vertices Ni, Nj ∈ V , the edge NiNj ∈
E always exists, which means they can directly
communicate with each other. Then, G(V, E), denoted
by Kn, is a complete graph that has total

(
n

2

)
= n(n − 1)

2
(25)

edges. We can also consider the graph Kn from another
view of point. For any vertex Ni ∈ V , there are at least
k neighboring vertices in V having the same distance to
Ni. Then, these at least k vertices forms the neighbors
of Ni, denoted by N (Ni). Because Kn is a complete
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graph, N (Ni) then totally contains

(
k
2

)
= k(k − 1)

2
(26)

edges. For any two distinct vertices Ni, Nj ∈ V , each
vertex in N (Ni) ∩ N (Nj) has the same distance to
vertices Ni and Nj . Then, the vertex number inN (Ni) ∩
N (Nj) could be 0, 1 and 2. Therefore, there is at most
1 edge in Kn contained in N (Ni) ∩ N (Nj).

Because there are total n vertices in Kn, the total edge
number in these neighbors is then at least

n ·
(

k
2

)
− 1 ·

(
n

2

)
= nk(k − 1)

2
− n(n − 1)

2
(27)

Since the relation between Equation (25) and (27) is
Equation (27) ≤ Equation (25), we have

nk(k − 1)

2
− n(n − 1)

2
≤ n(n − 1)

2
(28)

By computing Equation (28), we have

k ≤ 1

2
+
√

2n − 7

4
. (29)

This completes the proof. �
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