Peer-to-Peer Netw Appl (2010) 3:83-99
DOI 10.1007/s12083-009-0047-5

SPACE: A lightweight collaborative caching for clusters

Mursalin Akon - Towhidul Islam -
Xuemin Shen - Ajit Singh

Received: 24 September 2008 / Accepted: 22 April 2009 / Published online: 13 May 2009

© Springer Science + Business Media, LLC 2009

Abstract In this paper, we introduce Systematic P2P
Aided Cache Enhancement or SPACE, a new collab-
oration scheme among clients in a computer cluster of
a high performance computing facility to share their
caches with each other. The collaboration is achieved
in a distributed manner, and is designed based on peer-
to-peer computing model. The objective is to provide
(1) a decentralized solution, and (2) a near optimal
performance with reasonably low overhead. Simulation
results are given to demonstrate the performance of
the proposed scheme. In addition, the results show that
SPACE evenly distributes work loads among partici-
pators, and entirely eliminates any requirement of a
central cache manager.

Keywords Cluster computing - Caching -
Collaborative computing - Filesystem

1 Introduction

In recent years, computer memory and mass storage

devices are becoming large and inexpensive. How-
ever, the data access time for storage devices has not

M. Akon - T. Islam - X. Shen (X)) - A. Singh
Department of ECE, University of Waterloo,
Waterloo, Ontario, Canada

e-mail: xshen@bbcr.uwaterloo.ca

M. Akon
e-mail: mmakon@ece.uwaterloo.ca

T. Islam

e-mail: mtislam@ece.uwaterloo.ca
A. Singh

e-mail: asingh@ece.uwaterloo.ca

been improved proportionally as compared with pro-
cessor and computer memory. Hence, throughput of a
data processing application is dominated by the per-
formance of the data provider, and in most of the
cases, those mass storage devices play this significant
role. Caching is commonly used to improve the per-
formance of mass storage devices by reducing access
latency [21, 28, 35]. In a network environment, a cache
eliminates frequent expensive storage device access and
increases the efficiency in terms of service time and
throughput [15]. However, to serve a pool of clients
efficiently, the cache needs to be large enough. A way
around is to distribute the cache among the clients. The
smaller client caches can now serve many data requests
locally, without involving the central file server. This
not only helps in alleviating the server load but also
reduces the network traffic.

Today’s high speed and wider bandwidth communi-
cation hardware enables transfer of high volume of data
among clients in a very short period. Due to this efflu-
ent technology, the possibility of coordination among
the client caches emerges. The coordination can serve
a requested block which is not available at the local
cache but is present in the cache of a remote client. The
collaboration mimics the integration of all the client
caches together into a large cache, and can offset the
drawback of the storage devices up to some extent.
However, coordination in a network environment is
abstruse, especially when response time is critical. Be-
sides, efficient search mechanism is required to locate
a cache block at a remote client. The simplest solution
is to have a central database of references mapping the
storage blocks to the client-side cache blocks.

In this research, we propose a distributed collabora-
tive caching scheme for clusters (or for closely coupled

@ Springer

84

Peer-to-Peer Netw Appl (2010) 3:83-99

network workstations), namely SPACE (Systematic
P2P Aided Cache Enhancement). Here, the clients
create an environment which gives the perception of a
large pseudo global cache. To accomplish this goal, the
clients exchange information about their local caches
through gossip messages. The disseminated informa-
tion is used to unify the smaller client caches into the
pseudo global cache. If a request can not be served
from the local cache, it is looked up in the rest of the
pseudo global cache without involving the file server
or any central manager. When a locally unavailable
block is found in the pseudo global cache, the clients
cooperate in fetching the block. Moreover, through the
coordination, the performance of a busy cache can be
improved by properly utilizing a nearby idle cache.
Here, an idle cache not only helps the busy cache in
fetching blocks, but also preserves critical blocks to
reduce the cost of retrieval from the mass storage. In
addition, we propose that the clients introduce repli-
cas of frequently accessed blocks. Replication of such
blocks often reduces the bottleneck of the central
server, distributes the service load among clients, and
increases the chance of hits in the local as well as in the
pseudo global cache. However, when the system gets
busy, the clients coordinate in an elimination process to
remove one or more replicas, and make space for newly
introduced blocks.

Due to the collaboration, a client acts as a requester
for services from other clients and at the same time,
acts like a service point for other clients. As a result,
the load of the system is distributed among the partic-
ipators. In this scheme, the data server gets a service
request, only if the request can not be served by the
pseudo global cache, i.e., a miss happens in both the
local and the global cache. To achieve this coordination,
we introduce a peer-to-peer (P2P) client partnership to
model the collaborative cache. In this partnership, the
client-server relation becomes dubious, and coopera-
tion among peers (i.e., clients of the file server) emerges
to provide higher number of hits in the pseudo global
cache. With this approach, we obtain three additional
fundamental benefits: (1) low maintenance cost, (2)
easy integration with existing software platforms, and
(3) easy development platform. Note that, unlike the
research on distributed P2P storage systems, such as
CAN [32], in this research, we do not consider distribu-
tion of storage and concentrate on collaborated caching
system.

Beside introducing our scheme, we also compare the
proposed collaborated caching with an ideal Global
LRU policy and investigate the practicality of the ap-
proach. Our simulation results show that this proposed
scheme reasonably approximates the ideal Global LRU

@ Springer

caching policy which has the instantaneous view of all
the caches in the system. The results also show that
the scheme performs better than existing centralized
solutions. Additionally, the results demonstrate that
the message communication and memory overhead for
the maintenance operations are fairly low.

The reminder of the paper is organized as follows.
In Section 2, the related works with some comparisons
with the proposed caching scheme are briefly discussed.
The system model is presented in Section 3. Each
component of SPACE is elaborated in Section 4. In
Section 5, we evaluate SPACE and explain simulation
results. Finally, in Section 6, we conclude the paper
with a discussion of possible improvements and future
works.

2 Related works

We first explicitly distinguish our work by presenting
research domains with keywords similar to those of
collaborative caching. Significant research works have
already been published on Web caching where the goal
is to gracefully handle denial of service due to the band-
width limitation between a server and a client. These
works mainly concentrate on object location deter-
mination [8, 41, 46] and efficient lookup procedure
[16, 34]. In [27], similar issue is addressed using P2P
networks. In contrary, our research explores coopera-
tion between caches along with object location deter-
mination and lookup mechanism. Research in caching
of objects to facilitate multimedia on demand has re-
ceived much attention [22]. P2P computing has also
been considered to achieve efficient and low-cost solu-
tions [12, 13]. To facilitate multimedia streaming, each
peer caches few segments around its play offset. Then,
peers collaborate to arrange themselves in a pipeline
such that cached contents of a peer are useful to the
next one. Our research is completely different where
peers do not have such a linear relation. In other
researches, distributed organization is used to enable
extraordinarily large file system [17, 23, 33, 38] that are
beyond the capacity of the most advance storage me-
dia. These researches include controlled placement of
files, efficient fetching and data consistency. Some of
these distributed file system projects exploits client
caches, but none of them are collaborative. However,
collaborative caching can increase the throughput sig-
nificantly, as shown in [25]. In [26], P2P networks are
used to locate the peer caching the smallest superset
of a database to answer a specific range query. In [39]
and [42], alternates to Distributed Hash Table (DHT)
are proposed to cache indices among a group of peers

Peer-to-Peer Netw Appl (2010) 3:83-99

85

in a distributed manner. These techniques enable fast
and efficient query processing in structured P2P net-
works. Our target platform is a more tightly coupled
environment where a cache manages objects of same
size (of disk block) within a very limited cache space
without explicit control over placement. Moreover, the
demand of faster response time prohibits the caches to
employ an extra level of redirection through indexing
or to employ a rigorous and highly intelligent module,
as opposed to the Web and multimedia object caching.

The idea of distributing a huge server cache among
cooperative clients was first proposed in [15]. Here, the
server maintains a central database on precise informa-
tion about the cache blocks located at different clients.
A request to locate a block is forwarded to the server,
if a local miss occurs. The server, in turn, redirects the
request to the client caching the block. If such a client
does not exist, the server serves the block by reading
from the storage. A client can evict or replace a block
only after consulting the server. In this scheme, a single
copy of a block is allowed to relocate from a cache to
another at most N times, before removing it entirely
(hence, the name N-chance). In [36, 37], a hint based
cooperative caching is proposed, where each client
maintains references to special copies of all the blocks.
The algorithm works reasonably well when the com-
bined distributed cache is significantly smaller. In [14],
a cooperative caching scheme for clusters is proposed.
However, the scheme assumes that an instant view of
all the collaborative caches is available to all the cluster
members. As a result, the proposed procedures are not
applicable in practice without having a central man-
ager. In [25], a hierarchical cooperative caching scheme,
called Hierarchical GreedyDual, is proposed. In this
scheme, a coordinated placement and a replacement
algorithms are described. A network of client caches is
divided into clusters of caches. The representatives of
the clusters form a higher level clusters and so on, and
results in a hierarchical cluster tree. The representative
helps in coordinating the caches of the cluster members.
Object placement, look up and replacement take place
in hierarchical manner starting from the bottom of
the hierarchy. The proposed algorithms depends on
availability of object access frequencies. However, in
practice, this kind of information is rarely available.
As a solution, it was proposed to predict the future
access frequencies based on the past experiences. Main-
taining all the frequencies are impractical in different
situations, particularly when the number of objects are
extremely large (for example, block based file caching).
At the same time, the work load is high for a cluster
representative and is higher for the representatives as
the cluster hierarchy is climbed. Unlike the previous

works, SPACE is a completely distributed scheme.
It eliminates the need for a central database hosting
locations of cache blocks. Each peer disseminates its
local cache information using a gossip protocol. A peers
chooses a collaborator based on the local information
only.

3 System model

In this section, the system model for the proposed
scheme is described. Then two examples are presented
to illustrate the use of the scheme.

3.1 System model

The discussion on system model is divided into two
parts: (1) the hardware model, and (2) the software
model.

Hardware model Figure 1 shows the hardware part
of the system model. The model reflects the hardware
orientation of a typical computer cluster. Here, the
master and all the slave nodes are connected through a
high bandwidth, low latency network. Slave nodes may
be equipped with local storages, but they are used for
virtual memory and as storage of temporary files. Ap-
plication data are served from a high speed disk (such
as, RAID [30]), attached to the master node. Jobs are
posted in the system through either terminal or remote
log-in at the master node. It should be noted that in

558

Gigabit
Switch

SIPON] dAR[S

Internet
or
Intranet

Master node

Fig.1 A typical computer cluster

@ Springer

86

Peer-to-Peer Netw Appl (2010) 3:83-99

this model, one (parallel) application consists of one
or more processes running on different master / slave
nodes, and a job often consists of one or more such
applications. The Abscus system [44] at the University
of Waterloo is an excellent example of this model. It is
a recent addition to the High Performance Computing
(HPC) facilities to expedite computational chemistry.
The typical communication networks used in today’s
clusters are much (often, more than ten fold) faster than
the data access time of a storage device. This is the main
thrust behind the idea of collaborative caching—it is
considerably faster to retrieve data from the memory
at a remote machine than retrieving the data from (as
in this case, from remote) mass storage devices.

Software model We assume that a data server is exe-
cuting on the master node. This allows the data server
to access the data from the storage directly. The sole
purpose of the data server is to respond to data requests
from the clients by reading the data from the high speed
storage. A client is defined as a collection of application
processes running on a computer of the cluster. As a
result, the slave nodes as well as the master node can
act as clients.

In this model, a local cache is maintained by each of
the clients. To have a collaborative caching, the clients
at first form a peer-to-peer network. In this network, a
client acts as a peer of the other clients.! The peers form
a pseudo global cache by sharing information about
their respective caches.

3.2 Ilustrations

Consider an automated face recognition system, in-
stalled at an important facility. The system is shown
pictorially in Fig. 2. Here, the cameras supply contin-
uous or periodic images taken at different intersections
of the facility. The face recognition system identifies
persons of interest from the images. As the first step
of the process, the captured images are analyzed and
faces are detected (denoted as Face Detection in the
figure). From the detected faces, different features are
extracted (in the Feature Extraction phase). Then dif-
ferent face recognition algorithms can be applied to
compare the features of faces from the captured images
with those of the persons of interest. The information
about persons of interest along with their face attributes
are stored in the attached high speed storage device.

In the rest of the paper, we use the terms client and peer
interchangeably.

@ Springer

Face Detection Feature Extraction

==L s ==
— =] - [E=

/ === ==}

Face Recognition

Fig. 2 A face recognition system at an airport

Till today, there exists no perfect face recognition al-
gorithm. Hence, a consensus is made from the outputs
of all the algorithms running on the cluster, and is
presented via the monitoring device as a suggestion to
the human operator.

Another example is an On-Line Analytical Process-
ing (OLAP) application. This application provides real-
time answers to the queries made by the Decision
Support System (DSS) of an enterprize. To achieve this
goal, an OLAP application pre-computes different
multi-dimensional views of the enterprize data. Recent
research efforts demonstrate that parallel computation
of the views is the most effective solution [6, 11, 19].

During our previous researches on parallel computa-
tion for clusters [2-6], we have found that data retrieval
time is still the most critical factor for the applications
described above. The retrieval time determines how
fast the face recognition system can work or how fre-
quently the OLAP application can revise a view from
the dynamic raw data. A collaborative caching scheme
helps this kind of applications to become interactive
and to act in realtime.

4 Collaborative caching scheme

In this section, we reveal different components of the
proposed collaborative caching scheme, SPACE. To
facilitate operations of SPACE, each peers manages
several related data structures. Those data structures
encapsulate the states of the local and remote caches.
The states of remote caches are gathered from the
gossip messages broadcasted in the P2P network. Other

Peer-to-Peer Netw Appl (2010) 3:83-99

87

maintenance operations are required to ensure consis-
tency of this data structures.

For the sake of discussion, this section is divided into
several subsections. At first, the organization of a cache
is described. Then, other essential operations of the
scheme such as cache lookup procedure, cache block
eviction procedure, cache block placement procedure
in the pseudo global cache, etc are presented. The
discussion about the management of peers in the P2P
network is out of the scope of this paper and hence is
omitted.

4.1 The cache organization

In SPACE, the pseudo global cache, formed by combin-
ing all the caches of the participating peers, is perceived
by the running applications only. In contrary, as a lower
level service provider, a peer distinguishes between the
local cache and the remote caches. A peer p maintains
a cache memory of size M, where the size of each cache
block is m. The number of cache block available at the
peer is denoted as n, = | M,/m]. The total disk size is
D where the size of each disk block is d. The number
of disk blocks available in the disk is n = | D/d]. Each
cache block can store ¢ consecutive disk blocks where ¢
is a positive integer, i.e., ¢ € Z* and ¢ x d = m.

A peer maintains a set, called Local Cache Informa-
tion (LCI), to refer to the local cache. The set LCI
includes an entry for each of the locally cached disk
blocks. An entry x of LCI (denoted as LC1(x)) consists
of the tuple < ay, clky, oby, RCB,, ptr, >. Here, a, is
the disk address that the first block LCI(x) is holding.
The clk, maintains the clock tick since the last reference
of the cache block. The ob, element is a simple flag
and indicates the originality of a cache block. When a
cache block is retrieved from the server, it is marked
as original and replicas of an original cache block
are designated as non-original. Information about re-
mote cache blocks, having the same content, are main-
tained in RC B, (detailed discussion follows). The last
tuple element ptr, holds the reference to the local
cache memory where the actual disk data is physically
cached.

Similar to LCI, another set, called Remote Cache
Information (RCI), is maintained to refer to the cache
blocks at the remote peers. An entry x of RCI (denoted
as RCI(x)) consists of the tuple < a,, clk,, RCB, >.
The a, and RCB, elements have same semantics of
similar elements in an LC/ entry. But, unlike clk, in
LCI(x), clk, in RCI(x) serves the purpose of a refer-
ence clock counter. The actual time since the last access
to a block at a remote peer is computed relative to this
counter.

RCB, (Remote Cache Block) holds a set of entries
for all peers caching the block with address a,. An entry
yin RCB, (denoted as RCB,(y)) consists of the tuple
< rclky, oby, pid, >. pid, is the identification of the
remote peer that caches the same block and 0b, indi-
cates the status of originality of that block. The element
rclk, is a relative clock tick that is used to compute
the reported last access of the remote block at the
peer pid,. The computation of the last access time of
a block at a remote peer is determined by the function
felk(relky, clky), where rclk, isin RCB,(y),and RC B,
isin either LCI(x) or RCI(x). Though fclk(rclk,, clk,)
can be implemented in different ways, a simple solution
would be as follow:

felk(relky, clky) = rclk, + clk, (1)

It should be noted that both LCI and RCI can not
have entries for the same disk blocks. Formally, if x
LCI, there must be no y € RCI such that a, and a, are
the same.

Beside maintaining cache references, a peer also
maintains some statistics about other peers (PS). An
entry z of PS (designated as PS(z)) contains: identifi-
cation of the remote peer (pid,), the maximum number
of cache blocks the peer can have (n;), the number
of original cache blocks maintained by the peer (no;),
the frequency of data read requests received by the
peer from the local processes (A;), and the local miss
rate (f3).

A peer periodically broadcasts a digest about the
local cache with an interval of ¢. The digest contains
information about the local cache blocks along with
some other statistics. A peer uses information from
the digest to populate the PS structure. On receiving
a digest broadcast from peer p, a peer recomputes the
RCB sets. It also updates the associated peer statistics,
i.e., PS(z) where pid, = pid.

At each read request from the executing processes,
the corresponding peer decrements the clocks associ-
ated with all the LCI and RCI entries, i.e., all clk,
and clk, where x € LCI and y € RCI. If a local cache
hit takes place at x € LCI, clk, is exempted from this
decrement operation. In contrary, the clock is upgraded
with the maximum allowable value. Note that differ-
ent peers may face different rate of read requests. As
a result, the clocks at different peers count down at
different speed. To be consistent, each peer computes
the highest read request frequency among all the peers
from the locally available PS. To match with the peer
with the most frequent read requests, a peer inserts
dummy read requests between actual read requests.

@ Springer

88

Peer-to-Peer Netw Appl (2010) 3:83-99

As no cache hit occurs during a dummy read, all the
clocks in the cache data structures are decremented by
one. The clock counters of RCBs are never required
to be decremented, as they are computed relative to
the corresponding LCI or RCI clocks using the fclk
function. While computing frequency of read request
at a peer, the dummy reads are excluded and only real
read operations are counted.

We denote a local cache block x € LCI to be alive,
when cl/k, counts within a system-wide allowable limit.
When the clock count goes below this limit, the block is
considered to be dead. However, a dead block is not re-
moved from the cache immediately. The detailed evic-
tion procedure will be discussed later, in Section 4.3.
For original blocks, the allowable time limit to be alive
(without any reference) is y times of the allowable
time limit of a non-original block, where y > 1. In our
scheme, all dead blocks are considered non-original
blocks, i.e., when an original block becomes dead, it
is also marked as non-original. This ensures that no

dead block gets the preference of an original block. If
necessary, those dead blocks are considered to be the
best candidate for evictions, and are never included in
the digest to broadcast.

4.2 Lookup procedure

The control flow of the lookup procedure is presented
in Algorithm 1. When a read request arrives to a peer
for the block with address da, at first, the peer searches
for that requested block in the local cache (line 1). If
the search is successful, the block is served immedi-
ately. Otherwise, the peer searches for other peers who
potentially have the requested block (line 4 — 17). A
FETCH_REQUEST message is sent to such a peer to
retrieve the block. Due to the fact that the content of
a cache may be changing at each read request, a fetch
request may not always be satisfied. Therefore, in re-
ply to a FETCH_REQUEST, a FETCH_RESPONSE
message indicates either a success along with the

Algorithm 1: Control flow of the lookup procedure

input : da is the address of a data block at storage
output: address of the data block in local memory
1 Search for an © € LCI, such that a, = da
2 if x = null then

//the block is not cached locally
3 found «— false
4 Search for an y € RCI, such that ay = da
5 if y # null then
//the block is possibly available at a remote cache
6 Z—0
7 for i — 1 ton do
8 Find peer z € RC By such that util(pid.) > util(pids) where a € RCBy — Z
9 Sent FETCH_REQUEST to pid, with a request to fetch the block
10 if FETCH_RESPONSE indicates a success then
//data is fetched from remote peer
11 data «— extract data block from FETCH_RESPONSE
12 found «— true
13 break
14 end
15 Z — ZU{z}
16 end
17 end
//data is not available in pseudo global cache -> get it from data server
18 if found = false then
19 Sent READ_REQUEST to data server with a request to fetch the block
20 data + extract data block from READ_RESPONSE
21 end
//search for an empty space to save the block locally
22 Search for an z € LCI, such that a, = null
23 if © = null then
24 | x +— Evict()
25 end
26 Store data at x
27 end

28 return pir,

@ Springer

Peer-to-Peer Netw Appl (2010) 3:83-99

89

requested block or a failure. If these two steps fail, a
READ_REQUEST message is sent to the data server
to read the block from the storage device (line 18 — 21).
The server then reads the block and returns the data
within a READ_RESPONSE message.

While forwarding a block in FETCH_RESPONSE, a
peer always tags the forwarding copy with the tag of the
local copy and remarks the local copy as non-original.
So, if the local copy is an original block, forwarded
copy is tagged as original. This policy of forwarding
an original block has two positive effects. Firstly, the
original block gets a refreshed clock at the requesting
peer, and as a result, the chance that it will be in the
pseudo global cache for longer time becomes higher.
Secondly, an idle peer gets rid of the original blocks
at a faster pace which helps in having more free cache
blocks in the pseudo global cache (see Sections 4.3
and 4.4 for further discussion).

util(pid;)
= (Clkmax - Clkmin)

) In(felk(relk,, clky) —clkpi,+1)
1—- 1 2
X(i (I0(clKmax — lhimin+ 1) @

To find the most favorable remote collaborator (at
line 8), utility of all other peers reported to store da
block is computed. The peer with the maximum utility
is considered to be the most favorable peer. For a
specific block, the utility of a peer is considered as
an increasing function of the (reported) clock count.
In other words, it is a non-increasing function of the
time elapsed since the block was referred last. As the
clock count decrements, the chance that the associated
block will be evicted (or will be dead) increases. So,
the probability of existence of a block with lower clock
count is less than a block with a fresher clock. Finally,
the utility of a peer pid., for a z € RCB,, is computed
according to Eq. 2. When a block is fetched from a
remote peer or from the server, the block is cached
locally along with a refreshed clock count of clkyy.
When the count decrements to clk,,;, an alive block be-
comes dead. Hence, (clk;0x — clkpy) is the maximum
clock ticks a fresh block would remain alive without any
reference. As (clkpax — clkpin) is larger for an original
block (indicated through ob, flag), a peer hosting an
original block gets comparatively higher preference.
Moreover, the utility function is such that it makes a
peer less appealing at a faster pace as the associated
clock count decrements linearly.

If the cache is full, one existing block is evicted to
make space for the new block (line 24). This procedure
will be discussed further in the next subsection.

4.3 Eviction procedure

The eviction procedure (the Evict operation) is illus-
trated in Algorithm 2. When eviction of a block is nec-
essary, SPACE evicts a dead block without any further
treat (line 1). Other than that, the oldest non-original
and then original block are evicted (line 3 — 5). Note
that, in practice the searches of line 1, 3 and 5 can be
performed in a single round. SPACE gives preference
towards preserving original blocks by evicting non-
original blocks. In this way, the P2P cache benefits in
two ways: (1) shortage of cache blocks is handled by
removing the duplicates, and (2) every effort is made to
keep at least one copy of a block, i.e., the original block.
The last option to make space for a new block is to evict
the oldest original block. However, before evicting such
a block, the peer marks the block as sticky and keeps it
for some more time to make further efforts to preserve
it. A series of ¢ attempts are made to mark a copy of a
sticky block at a remote peer as original (line 8 — 19). If
all the attempts fail, a final attempt is made to place the
sticky block in one of the idle caches (line 20 — 22, see
next subsection for details). Finally, the sticky block is
permanently removed from the local cache.

Like a dead block, a sticky block is not included in
the periodic digest broadcast but is used in serving read
requests. The reason behind is that a sticky block will
soon be phased out and the chance that a remote peer
will be served by this block is very narrow.

4.4 Placement in the remote cache

To move and place a sticky block at one of the remote
caches, a peer has to make careful decision, as sending
a whole block is more expensive than sending simple
request messages such as MAKE ORG_REQUEST.
The relocation operation is presented in Algorithm 3.
At first estimated number of free blocks at each peer
is computed according to Eq. 3 (line 1 — 3) and then a
placement request is sent to peer z with a probability,
proportional to the number of the estimated free blocks
(line 4 — 7).

max(0,n; — f; x A x t;) 3)

where n; is the reported number of free blocks. Pa-
rameters f;, A, and ¢, are the miss rate, average read
request arrival rate and the time epoch since pid, re-
ported its last status, respectively. All these parameters
are available through peer status records, i.e., PS(z).
After computing the potential collaborator, the peer
sends over an asynchronous STORE_REQUEST mes-
sage (line 7) and drops the sticky block immediately.
On receiving the STORE _REQUEST message, the

@ Springer

90

Peer-to-Peer Netw Appl (2010) 3:83-99

Algorithm 2: The Fvict operation

output: address of a cache block is free
//search for a dead block
1 Search for an z € LCI, such that clk; < clkmin
2 if x = null then

//no dead block is found -> evict the oldest non-original block

3 Search for an © € LCI, such that clkz < clky A oby # original; where y € LCI ANz # y
4 if © = null then
//mno non-original block is found -> evict the oldest original block
5 Search for an « € LCI, such that clk, < clky; where y € LCIANx #y
6 Mark x as sticky
//try to mark another block in the pseudo global cache as original

7 marking «— false

8 7 — 0

9 for i — 1 to ¢ do
10 Find peer z € RC B, such that util(pid.) > util(pida) where a € RCBy — Z
11 Sent MARK_ORG_REQUEST to pid, with a request to mark the d, block original
12 if MARK_ORG_RESPONSE indicates a success then

//the marking attempt is a success
13 marking «— true
14 break
15 end
16 7 — Z U{z}
17 end
18 if marking = false then
//all the marking attempts failed -> try to relocate the data

19 Relocate(x)
20 end
21 Remove z from the cache
22 Move the record for x from LCT to RCT
23 end
24 end

25 return z

remote peer stores the accompanying block, if and only
if it hosts an unused or a dead block in its local cache.

4.5 Duplicate originals

It is possible for more than one peers to have original
copies of the same block. Duplicate original blocks are
not desirable, as they make it difficult to get free cache
blocks in a busy system. Having multiple original copies
of the same block does not mandate any change to
the procedure of fetching a block from a remote peer.
However, phasing out a sticky block assumes existence

Algorithm 3: The Relocate operation

input: z is the reference to local cache
foreach peer z do

| n/, «+ Expected number of free blocks at z
end

AW N

foreach peer z do
’
free n
‘ pz — b zn/
a"q

91

end

=

ree

7 Send z to a peer z with the probability p;

@ Springer

of no duplicate original blocks. This observation leads
us to an elegant distributed solution to the problem.

When a peer fetches an original block from the
server, it includes that information in the next digest
broadcast. After receiving such a digest, other peers
are not going to get another original copy of the same
block, because if needed, other peers can get copies
from the peer stocking the original one. Besides, re-
trieving an original block from the server is more ex-
pensive than getting a copy from the peers.

In our duplicate resolving process, if a digest from
a preceding peer? asserts about a duplicate original
block, a peer simply marks its own original copy as non-
original. On the other hand, if the digest is received
from a non-preceding peer, the recipient updates the
clock tick of the of the local copy with the maximum
of that’s of the duplicates. We propose the following
theorem.

2Precedence is measured according to an identification which
may be the peer ID, IP address, etc.

Peer-to-Peer Netw Appl (2010) 3:83-99

91

Theorem 1 With the proposed duplicate resolving
process all original duplicates are resolved within two
gossip cycles after the first copy is fetched.

Proof We demonstrate the proof with two peers—A
and B; the proof with more than two peers is a simple
extension. Let A < B, as A has an identification which
precedes (possibly, lexicographically or numerically)
the identification of B. Let both the peers cache original
copy of the same block. Such a scenario happens if and
only if both A and B report in their digest about not
caching a specific block and then both retrieve the block
from the data server before their next digest broadcast.
Now, one of the following situations can arise before
resolving duplicates.?

Casel g(B)+— f(B)+— g(A)+— f(A)— g(B)—
(A)
Case 2 z(B) = g(A) — f(A)— f(B)+— g(B) —~
g(A)
Case3 g(B) > g(A) — f(B)+— f(A)+— g(B)
g(A)
Case4 g(A)+— f(A)— g(B)— f(B)— g(A)

Case 5
Case 6

§(A) — g(B) = f(A) — f(B) > g(A)
8(A) > g(B) = f(B) — f(A) > g(A)

In case 1, duplicate original blocks are introduced,
if f(B) and f(A) of 2nd and 4th event fetch the same
data block. However, duplicates are resolved as both B
and A report their digest, i.e., 2nd instance of g(B) and
g(A) occur. As observed, the resolve process is limited
by g(B) — g(B) — g(B) events, i.e., two gossip cycles.
Similarly, other cases can be explained.

Hence, in all cases duplicates are resolved within two
gossip cycles. O

Corollary 1 After one gossip cycle of fetching an orig-
inal block, no other original copy of the same block is
fetched and after two gossip cycles only one copy of
an original may exist in the entire pseudo global cache
system.

4.6 Bloom filter-based software solution

A direct translation of the idea presented in the pre-
vious subsections to an implementation yield to be
efficient for a small scale cluster (refer to Section 5).
However, a solution based on Bloom filter [16] provides
scalable solution. A digest broadcast includes a Bloom
filters computed using ComputeBloom of Algorithm 4

3 g(P) and f(P) are used for gossip and fetch events at peer P,
and a — b means a happens before b.

Algorithm 4: The ComputeBloom operation

input : D is a set of block identifier or address
output: A Bloom filter representation of D

//have an empty Bloom filter
1 Let, B =bg,b1,...br, where b; =0,V:
2 foreach da € D do
//add da to B using hash hj, 1 <j <k
3 for j «— 1 to k do
//set the proper bit in the filter:
//use bitwise OR
th (da) — 1
end
end
return B

N0 Gk

with argument ({Jy,.;;{0bxllac}). Here, the logical
identification of a block is constructed by concatenat-
ing the originality information* and the address. Let,
designate a filter from peer p as Bloom,,.

To check the availability of a block the SearchBloom
operation of Algorithm 5 is used. At first, the item
is looked up as a non-original item (line 1,2) and
later as original (line 3, 4). If both the lookup fail, the
item is considered to be not available. It should be
noted that Bloom filter suffers from false hit, where the
filter gives positive conclusions about elements those
are not added to the filter. Moreover, as the cache
content changes in between two gossip broadcasts, the
proposed scheme also suffers from false hit, where the
filter gives positive conclusions about elements those
are evicted from the cache.

Algorithm 5: The SearchBloom operation
input : da is a block identifier or address and B is a
Bloom filter
output: {avail, orig} to indicate availability and
originality
//compute Bloom filter for non-original item
1 Ba < ComputeBloom({false||da})
//is da available in the filter as non-original? use bitwise
AND
2 if B, AND B = B, then return ({true, false}) //now
try for original item
3 B, « ComputeBloom({true||da})
if B, AND B = B, then return ({true, true})
5 return ({false, NULL})

'

Proposition 1 Let, for a fully occupied cache, F;\'¢ and
Ffre., be the best and worst case number of blocks, not
added to the filter, resulting in false positive availability,

respectively. F, "¢ and F, ., be the best and worst case

4The true/false status may be represented with a single bit.

@ Springer

92

Peer-to-Peer Netw Appl (2010) 3:83-99

number of blocks, added the filter, resulting in false
positive availability (due to eviction), respectively. With
Arem = Min(A - tg, np) and p = n’—p, where t, is a gossip
period, in SPACE, following equalities hold for peer p.>

Flag=(n=np)- (1 -y

Nyem Rrem
F+ve — +(1- . F+ve
worst best
n—np n—np
—ve __
Fbest =0

Flre, =min((n—np) - (1—(1-

worst eik/ﬂ)l() ’ nrem)

With Bloom filter-based solution, it is not possible
to evaluate the utility of a peer for an specific block
as shown in Eq. 2. Where required (such as line 8 of
Algorithm 1), a peer is chosen randomly, instead of
raking them based on their utility. In this solution, the
RCB data structures are useless and hence omitted.
The RCI structure is modified to include only the filters
from all peers, i.e., Bloom,; Vp.

5 Simulation results

To evaluate the performance of SPACE we conducted
extensive simulations.

5.1 Simulation environment

We develop an event driven simulation tool in C++ to
investigate the performance of the collaborative cache.
The presented results are collected from the logs gen-
erated by a batch of simulation runs, taking months
of computation time of several computers. Each pre-
sented result is the average of ten simulation runs.

The chosen simulated hardware platform is due to
the Abacus system [44]. We simulate a 32 node cluster
as the underlying hardware. The physical communica-
tion medium for the cluster nodes is a Gigabit network,
where the nodes are connected to each other through
a Gigabit switch. The master node is connected with
a RAID storage device, and the device can provide
infinite parallel disk access, i.e., each request to read
from the storage can be initiated immediately. This
device should be the ideal RAID. In the simulations,
the server component does not maintain any cache.
There are two reasons for this choice. Firstly, a peer,
executing at the server node, reduces the need of an
extra level of cache. Secondly, as compared to the size

SRefer to [16] for details about the math behind Bloom filters.

@ Springer

of the global pseudo cache, the server cache would be
considerably small. As a result, even if the server had a
cache, most of the blocks would be evicted while they
are still available in the pseudo global cache.

Five different synthetic traces (designated as trace
1 ~5) of disk read requests are generated. Each trace
consists of 100 million of disk read requests. Like real
life, we assumed that the cache schemes do not have
any prior knowledge about the trace behavior. First
two synthetic traces are generated using PORS algo-
rithm [43], which relates time with the disk block access
pattern, using four parameters: p, g, r and s. The para-
meters are chosen such that the first trace shows more
burstiness than the second one, but the second trace
shows a behavior with more spatio-temporal locality.
The traces may mimic the behavior of a pipeline [31]
and a mesh [18] computation, respectively.

The remaining three traces are generated using Zipf-
like distribution [9]. The probability to access the i-th
object, Py(i), is defined as,

Q
Py(i) = - 4)

where i =1,2,... N and N is number of objects in the
system. £2 is defined as,

()

i=1

The three traces are generated with « = 0.3, 0.4 and
0.3, respectively. We assume that all objects are of the
same size and fit entirely in a disk block. In situations
where an object is larger than a block size, the object
can be divided into smaller fragments, so that each frag-
ment fits in a disk block. Zipf-like distribution does not
capture spatial locality. Due to lack of proper model,
we place object i subsequently after object (i — 1) with
probability pz;, given that the subsequent disk block
is empty. Otherwise, the object is placed randomly.
For the traces 3 and 4, pz; = 0.3, and for the trace 5,
pzi = 0.6 are used. Read requests are considered to
be exponentially distributed. Some other parameters of
our simulations are listed in Table 1.

The probability that a request for a block, not in
a filter, results in a false positive is (1 — e “/#)<. By
carefully choosing a value for g and optimal «, the false
positive probability can be diminished. For example,
for our simulated system, the probability is 0.00047.
Moreover, due to the spatio-temporal locality of data
access, most of requests are served directly from the
pseudo global cache (and more about that discussion

Peer-to-Peer Netw Appl (2010) 3:83-99

93

Table 1 Simulation parameters

Parameter name Value

o0, 1,2,16, 10
32, 64,96, 128 MB
16,32, 48,64 kB

1,8, v, B,
Cache size per peer (M)
Cache block size (m)

Storage Size (D) 2TB

Storage block size (d) 4kB

Avg. storage access time 5 ms

Avg. local cache search time 0.05 ms

Warm-up period 64000 read requests
Digest broadcast interval (t;) 1 min

follows), i.e., most of the requests are for the objects
those are already in the cache as well as added to
the filter. From our simulations, we observe that the
original and Bloom filter-based schemes produce al-
most identical results. So, we present the results from
the Bloom filter-based scheme only, unless mentioned
explicitly.

Service Time (ms)

0 1 1
32 64 96 128
Cache Size (MB)

(a) Trace 1

Service Time (ms)

0 1 1
32 64 96 128
Cache Size (MB)
(c) Trace 3

Fig. 3 Service time for different traces (a-d)

5.2 Simulation results

We compare our proposed scheme, SPACE, with sev-
eral other algorithms. The first algorithm is an ideal
one, we call it the Global LRU algorithm (designated as
GLRU). The algorithm has instant global state infor-
mation. Though GLRU is not realizable in practice, it
gives the upper bound on the performance of any LRU
based algorithm. We also compare SPACE with N-
chance (designated as NC) and Hierarchical GreedyD-
ual (designated as HG D) schemes. To have a realistic
and practical HGD, we assume that no prior access
frequencies are available and during runtime, frequen-
cies of only those blocks that are available in the cache
are computed. We also assume one level of cluster
hierarchy consisting of only one cluster of caches. In
this setup, the head of the cluster of caches provides
a centralized solution for different cache operations. In
our simulations, we do not compare SPACE with any
of the local cache replacement algorithms. Interested

Service Time (ms)

0 1 1
32 64 96 128
Cache Size (MB)

(b) Trace 2

Service Time (ms)

0 1 1
32 64 96 128
Cache Size (MB)
(d) Trace 4

@ Springer

Peer-to-Peer Netw Appl (2010) 3:83-99

94
m
D
582 [Storage
UE% B Peer
351
=S
S 5§ 5.8 5.8
O O @)
30 a3 ol oS
~ 30 SNG) SNG)
S E& CR=R7 =87
= [
£ 2 R =S Eﬁq
Q
Q
S SES.
2 Z==
5 15 Bl
v
Z
S 101
(5]
I~
sk
0
32MB 64 MB 96 MB 128 MB
Cache Size
(a) Trace 1

Fig. 4 Service location (a, b)

readers can find comparisons of such algorithms with
HGD in [25].

The comparative results of service time for the traces
1 ~ 4 are presented in Fig. 3. The figure presents the
average time to serve a request for different cache sizes,
keeping a single block size fixed to 32 kBs. As expected,
in all traces, the GLRU performs the best of all. On
the other hand, NC performs the worst of all. These
results reflect the findings in a previous research [25].
For traces 1 and 2 (Fig. 3a and b), when the cache size is
smaller, performances of HGD are similar to SPACE,
but as the cache size grows, SPACE outperforms HGD.
Those two traces are burstier than the others. During
the busy time (i.e., request burst), the state of the caches
changes significantly in a very short time. Therefore, the
state information about a remote peer, available from
the last broadcast, may become inconsistent with the

20000 . T
T. GLRU —+—

18000 .. HGD ---x--- -
@ o SPACE -
@ 16000 -
3
g 14000
[an
o 12000
[0}
T 10000
o
3 8000
Ke)
§ 6000
=z

4000

2000 ' '

32 64 96 128
Cache Size (MB)
(a) Trace 2

Fig. 5 Server load for trace 2 and 4 (a, b)

@ Springer

=) 8 = Storage
- o) B p
35 ﬁoé eer
O wn
30+ sSIs s 8 5 H 5 8
_ = n C n < n <
S %8 E Xo g =l
s 250 O w O wm O w
g =S == S
3 = >§>>
a3 20F S =
3 =
2 SIS
g 15F
2]
g
z 10
=7
5L
0
32 MB 64 MB 96 MB 128 MB
Cache Size
(b) Trace 3

current state. This inconsistency hurts the performance
of SPACE. As the cache size increases, it becomes eas-
ier to accommodate newer blocks with more replicas.
Then, the performance of SPACE becomes dominant
among the candidates (except GLRU). This domina-
tion is due to the fact that SPACE eliminates the need
for the communication with the central manager at each
collaborative cache operation.

Traces 3 and 4 have similar spatial locality, but trace
4 shows higher temporal locality. As we look through
the service times for traces 3 and 4, the performance
of SPACE follows the performance of GLRU more
closely, and outperforms both HGD and NC. With the
increment of cache size, it becomes increasingly unnec-
essary to forward requests to the server. This issue can
be easily perceived from Figs. 4 and 5. Figure 4 shows
the percentage of read requests served at the remote

18000
16000 f
14000 L
12000 |\
10000
8000
6000
4000
2000

Number of Read Requests

32 64 96
Cache Size (MB)

(b) Trace 4

Peer-to-Peer Netw Appl (2010) 3:83-99 95
50000 -] T T 200000
race 1 —— I
45000 - Trage2 --x--- 180000
Q 40000 | Jraced —ox- O 160000
5 35000 | = 140000
) ¥ o 120000
S 30000 N 3
E E 100000
Z 25000 |-) P E 2 80000
o kT . 5
2 20000 [e }(” 60000
15000 B— N 40000
10000 ' ' 20000
32 64 96 128 32 64 96 128
Cache Size (MB) Cache Size (MB)
(a) RCI count (b) RCB count
2.8 T T
—_ ; —4
&\o/ 2.6 o SMemmmmmmmmmm X-—-—"" - _
g 24 - Koo A T
g 55 1 R S |
g Trace 1 —+—
O 2 rTrace2 —x—- .
2 Trace 3 ---*---
g 18 rTraced4 o .
2 Bloom --m-
16 6 - e .
14 T 1 1 T
32 64 96 128

Cache Size (MB)

(c) Excess memory space

Fig. 6 Memory overhead (a—c)

peers as well as at the server (and the rest are served
from the local cache)® for traces 1 and 3. For a clearer
visualization, Fig 5 shows only the server load for the
traces 2 and 4.

The average time to serve a request is dominated by
the service time at the data server. It is evident from
the figures that as the cache size increases, the number
of service requests to the server decreases in a non-
leaner fashion and hence, service time performance
increment lags behind (i.e., the curve of Fig. 5 becomes
less steeper). The phenomenon starts earlier given that
the requests show increased locality. The users of the
cache scheme need to find a trade-off between the
performance and allocated space. However it should

%Note that total percentage of requests served at the remote
peers and at the server denotes the local cache miss ratio. The
percentage of read requests served at the server denotes the
pseudo global cache miss ratio.

be noted that if the collaboration of caches were not
present, most of the requests served by the peers would
demand services from the server. That would drastically
increase the average time to serve a single request.
The overhead of the proposed scheme is evaluated
next. At first, we look into the additional space or
memory requirements due to the additional data struc-
tures. In the original scheme additional data structures
are RCI and RCB sets. Figure 6 illustrates different
aspects of memory overhead. The average number of

Table 2 Size of data structures

Field name Size
Storage block address (SBA) 8 bytes
Peer identification (PID) 4 bytes
Clock counter (CLK) 15 bits
Flag for original block (OB) 1 bit
Pointer 4 bytes

@ Springer

96 Peer-to-Peer Netw Appl (2010) 3:83-99
2000 350 T T
Trace 1 ——
— i Trace 2 ---x---
)
¥ 300
1500 |-]
= N
o n
< ® 250
8 g
S’_.) 1000 é‘
3 £ 200
5 [0}
500 uE>
8 150
o
s, | 100 | |
32 64 96 128 32 128

Cache Size (MB)
(a) Digest overhead

Fig. 7 Communication overhead of SPACE (a, b)

RCI and RCB entries maintained by each peer is
shown in Fig. 6a and b, respectively. As the cache size
increases, the number of replicas of a block in the the
pseudo global cache also increases. As a result, the
uphill curve of RCB (reference to all remote replicas)
becomes more steeper. On the other hand, the curves
for RCI flatten with the increased cache size.

To evaluate the real impact of the extra memory
requirements, we consider a practical implementation
of both of the data structures. Different fields from
the data structures are presented in Table 2. A RCI
entity is assumed to consist of one SBA, one CLK, one
OB and three pointers (two to maintain the RCI set
in a double-way linked list and the third one to point
to the associated RCB set). A RCB entity consists
of one PID, one CLK, one OB and two pointers (to
maintain the RCB set in a double-way linked list).
The total memory overhead is presented in Fig. 6¢
after normalizing with the cache size. In all the ob-
servations, the memory overhead is less than 3%. The
memory overhead for the Bloom filter-based scheme
is due to the filters. For a given cache size, the filter
size is independent of the characteristics of the traces.
Figure 6¢ also shows the overhead of the Bloom filter-
based scheme under the legend Bloom. The overhead
of this scheme is sufficiently smaller (less than 1.6%).

The second overhead of SPACE is the communica-
tion overhead and is illustrated in Fig. 7. During the
simulation, we assume 100 bytes of protocol overhead
for each message. In Fig. 7a, the average overhead
from all the digest broadcasts for one minute period is
presented. In fact, this overhead is directly proportional
to the average number of RC Bs maintained by each
peer. The cost due to the placement of blocks at remote
peers is shown in Fig. 7b. As the cache size increases,
it becomes easier to accommodate new blocks and the

@ Springer

64 96
Cache Size (MB)
(b) Placement overhead

number of remote placement operations declines. Even
if the communication medium is considered as a bare
broadcast channel, in the worst case, the total commu-
nication overhead in the entire system is insignificant
(less than 1% and 0.1% for original and Bloom filter-
based scheme, respectively) compared with the total
bandwidth capacity of the network. In reality, the ca-
pacity of the network with a modern intelligent switch
is far higher than the broadcast channel, and hence, the
communication overhead can be ignored. It should be
noted that the gossip period (f,) determines two con-
flicting performance parameters—the communication
overhead and the worst case false positive availabilities.
However, a system designer may compute these para-
meters analytically (refer to Proposition 1) and decide
an optimum value for the application in hand.

In our simulation, we compute the number of fetch
services provided by each peer. To make a conclusion,
we normalize each data set with the average where
the average is considered to be 100. The standard

8% T

& Trace 1

7%

6%

5% SRR
49

3%

Standard Deviation

2%

19

0%

Rl e

Cache Size (MB)

Fig. 8 Standard deviation of service time

Peer-to-Peer Netw Appl (2010) 3:83-99

97

0.5 T T
Trace 3 —+—
Trace 5 ---x---
045 -
(2]
é -\\/
i |
€
= 0.4 % _ -
© | Tt
R
2 Bt N
e | T -
o3+ T 3
0.3 ! !
16 32 48 64

Cache Block Size (KB)

Fig. 9 Impact of depth on service time

deviations of the average number of fetch requests
served by each peer are presented in Fig. 8. We observe
that the loads of the peers are reasonably equal.

Finally, we present the impact of depth (designated
as c in Section 4.1) of each cache block. We found that
the performance of SPACE is similar to the perfor-
mance of a sequential program on a single cache with
different depths [20]. The results from the simulation is
presented in Fig. 9 where the cache size is fixed to 64
megabytes. In general, a higher depth is preferable if
the requests show more spatial locality.

6 Further discussion and conclusion

In this paper, we have considered a simple LRU scheme
for local block eviction. However, the LRU-based im-
provements proposed in [24, 45] could easily be incor-
porated into our scheme. In addition, peer statistics
are considered in our research to be distributed with
the digest only. In practice, the statistics can always
be piggy-backed with other kinds of messages to dis-
seminate the most current status. Though clock based
LRU cache for storage systems is an excellent design
choice [40], the clock management can be improved us-
ing techniques discussed in [7]. Besides, at each access,
update of all the clocks can be efficiently implemented
using relative clocks, as described in [10]. Bloom filter
used in this paper can be replaced with Optimal Bloom
filter [29], which reduces memory and communication
overhead due to digest by 30.6%. Finally, we have
focused on read operations only, but a wide variety of
parallel applications require write access to the data.
Many of them may not require data consistency. The
face recognition application, described in Section 3.2,

requires only read access to the data. In contrast, the
described parallel OLAP application mandates write
access to store the computed views. Depending on the
algorithm, it may not produce multiple copies of the
same data, and no consistency issue arises. If an ap-
plication requires write access where data consistency
has to be ensured, an existing consistency mechanism
can be employed. A comprehensive study of different
consistency mechanisms can be found in [1].

In conclusion, we have proposed a collaborative
caching scheme for clusters. Our scheme is based on
peer-to-peer computing model. The peers form and
maintain a collaborative cache in a distributed way,
without a central manager. By combining individual
caches of the peers, a large pseudo global cache can
be obtained. We have demonstrated that the scheme
is very efficient and can approximate the Global LRU
scheme, yet with reasonably low communication and
memory overhead. Our ongoing research includes an
integrated cache consistency mechanism, and its suit-
able use in large LAN and WAN environments.

Acknowledgement Financial support of this research has been
provided by the Natural Sciences and Engineering Research
Council (NSERC) of Canada.

References

1. Adve SV, Gharachorloo K (1996) Shared memory consis-
tency models: a tutorial. Comput 29(12):66-76

2. Akon M, Goswami D, Li HF, Shen XS, Singh A (2008) A
novel software-built parallel machines and their interconnec-
tions. J Interconnection Netw 9:1-29

3. Akon MM, Goswami D, Li HF (2004) SuperPAS: a paral-
lel architectural skeleton model supporting extensibility and
skeleton composition. In: International symposium on paral-
lel and distributed processing and applications, pp 985-996

4. Akon MM, Goswami D, Li HF (2005) A model for designing
and implementing parallel applications using extensible ar-
chitectural skeletons. In: International conference on parallel
computing technologies, pp 367-380

5. Akon MM, Singh A, Goswami D, Li HF (2005) Extensible
parallel architectural skeletons. In: IEEE international con-
ference on high performance computing, pp 290-301

6. Akon MM, Singh A, Shen X, Goswami D, Li HF (2005) De-
veloping high-performance parallel applications using EPAS.
In: International symposium on parallel and distributed
processing and applications, pp 431-441

7. Bansal S, Modha D (2004) CAR: clock with adaptive replace-
ment. In: USENIX conference on file and storage technolo-
gies, pp 187-200

8. Bowman CM, Danzig PB, Hardy DR, Manber U, Schwartz
MF (1995) The Harvest information discovery and access
system. Comput Netw ISDN Syst 28(1-2):119-125

9. Breslau L, Cao P, Fan L, Phillips G, Shenker S (1999) Web
caching and zipf-like distributions: evidence and implications.
In: INFOCOM, pp 126-134

10. Cao P, Irani S (1997) Cost-aware WWW proxy caching algo-

rithms. In: Usenix symposium on internet technologies and
systems, pp 193-206

@ Springer

98

Peer-to-Peer Netw Appl (2010) 3:83-99

11.

12.

13.

14.

15.

16.

17

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

Chen Y, Dehne F, Eavis T, Rau-Chapli A (2004) Parallel
ROLAP data cube construction on shared-nothing mul-
tiprocessors. Distributed and Parallel Databases 15(3):
219-236

Chi HC, Zhang Q (2005) Deadline-aware network coding
for video on demand service over P2P networks. HKUST
7(22-23):755-763

Chi HC, Zhang Q, Shen X (2007) Efficient search and
scheduling in P2P-based media-on-demand streaming ser-
vice. IEEE J Sel Areas Commun 25(1):119-130
Cuenca-Acuna FM, Nguyen TD (2001) Cooperative caching
middleware for cluster-based servers. In: 10th IEEE interna-
tional symposium on high performance distributed comput-
ing, pp 303-315

Dahlin M, Wang R, Anderson TE, Patterson DA (1994) Co-
operative caching: using remote client memory to improve
file system performance. In: Operating systems design and
implementation, pp 267-280

Fan L, Cao P, Almeida J, Broder AZ (2000) Summary cache:
a scalable wide-area web cache sharing protocol. IEEE/ACM
Trans Netw 8(3):281-293

. Ghemawat S, Gobioff H, Leung ST (2003) The Google file

system. In: ACM symposium on operating systems principles,
pp 2943

Globisch G (1995) PARMESH—a parallel mesh generator.
Parallel Comput 21(3):509-524

Goil S, Choudhary AN (1997) High performance OLAP and
data mining on parallel computers. Data Mining and Knowl-
edge Discovery 1(4):391-417

Hennessy JL, Patterson DA (2002) Computer architecture:
a quantitative approach, 3rd edn. Morgan Kaufmann, San
Francisco

Howard JH, Kazar ML, Menees SG, Nichols DA,
Satyanarayanan M, Sidebotham RN, West MJ (1998) Scale
and performance in a distributed file system. ACM Trans
Comput Syst 6(1):51-81

Hu A (2001) Video-on-demand broadcasting protocols: a
comprehensive study. In: IEEE INFOCOM, pp 508-517
IBM (2007) IBM general parallel file system. http://www.ibm.
com/systems/clusters/software/gpfs.html

Kampe M, Stenstrom P, Dubois M (2004) Self-correcting
LRU replacement policies. In: CF *04: proceedings of the 1st
conference on computing frontiers, Ischia, pp 181-191
Korupolu MR, Dahlin M (2002) Coordinated placement and
replacement for large-scale distributed caches. IEEE Trans
Knowl Data Eng 14(6):1317-1329

Kothari A, Agrawal D, Gupta A, Suri S (2003) Range ad-
dressable network: a P2P cache architecture for data ranges.
In: Third international conference on peer-to-peer comput-
ing, Sweden, pp 14-23

Linga P, Gupta I, Birman K (2003) A churn-resistant peer-to-
peer web caching system. In: ACM workshop on survivable
and self-regenerative systems, pp 1-10

Nelson MN, Welch BB, Ousterhout JK (1998) Caching in
the Sprite network file system. ACM Trans Comput Syst
6(1):134-154

Pagh A, Pagh R, Rao SS (2005) An optimal bloom filter
replacement. In: Annual ACM-SIAM symposium on discrete
algorithms, pp 823-829

Patterson DA, Gibson G, Katz RH (1988) A case for re-
dundant arrays of inexpensive disks (raid). In: International
conference on management of data (SIGMOD), pp 109-
116

Radenski A, Norris B, Chen W (2000) A generic all-pairs
cluster-computing pipeline and its applications. In: Parallel
computing: fundamentals & applications, pp 366-374

@ Springer

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Ratnasamy S, Francis P, Handley M, Karp R, Shenker S
(2001) A scalable content-addressable network. In: ACM
SIGCOMM, pp 161-172

Red Hat, Inc (2007) Red hat global file system. http://www.
redhat.com/software/rha/gfs/

Rousskov A, Wessels D (1998) Cache digests. Comput Netw
ISDN Syst 30(22-23):2155-2168

Sandberg R, Goldberg D, Kleiman S, Walsh D, Lyon B
(1985) Design and implementation of the sun network filesys-
tem. In: Proc. summer 1985 USENIX conf, pp 119-130
Sarkar P, Hartman J (1996) Efficient cooperative caching
using hints. In: OSDI ’96: proceedings of the second USENIX
symposium on operating systems design and implementation,
Seattle, pp 35-46

Sarkar P, Hartman JH (2000) Hint-based cooperative
caching. ACM Trans Comput Syst 18(4):387-419
Satyanarayanan M, Kistler JJ, Kumar P, Okasaki ME, Siegel
EH, Steere DC (1990) Coda: a highly available file system for
a distributed workstation environment. IEEE Trans Comput
39(4):447-459

Skobeltsyn G, Aberer K (2006) Distributed cache table:
efficient query-driven processing of multiterm queries in
P2P networks. Tech rep LSIRRE-PORT-2006-010, EPFL,
Lausanne, Switzerland

Tanenbaum AS, Woodhull AS (2006) Operating systems de-
sign and implementation, 3rd edn. Prentice Hall, Englewood
Cliffs

Tewari R, Dahlin M, Vin HM, Kay JS (1999) Design con-
siderations for distributed caching on the internet. In: In-
ternational conference on distributed computing systems,
pp 273-284

Wang C, Xiao L, Liu Y, Zheng P (2006) DiCAS: an efficient
distributed caching mechanism for P2P systems. IEEE Trans
Parallel Distrib Syst 17(10):1097- 1109

Wang M, Ailamaki A, Faloutsos C (2002) Capturing the
spatio-temporal behavior of real traffic data. Perform Eval
49(1-4):147-163

University of Waterloo (2007) Abacus cluster. http://abacus.
uwaterloo.ca/

Wong WA, Baer JL (2000) Modified LRU policies for im-
proving second-level cache behavior. In: High-performance
computer architecture, pp 49-60

Zhang L, Michel S, Nguyen K, Rosenstein A, Floyd S,
Jacobson V (1998) Adaptive web caching: towards a new
global caching architecture. In: 3rd international WWW
caching workshop, pp 2169-2177

Mursalin Akon received his B.Sc.Engg. degree in 2001 from the
Bangladesh University of Engineering and Technology (BUET),

http://www.ibm.com/systems/clusters/software/gpfs.html
http://www.ibm.com/systems/clusters/software/gpfs.html
http://www.redhat.com/software/rha/gfs/
http://www.redhat.com/software/rha/gfs/
http://abacus.uwaterloo.ca/
http://abacus.uwaterloo.ca/

Peer-to-Peer Netw Appl (2010) 3:83-99

99

Bangladesh, and his M.Comp.Sc. degree in 2004 from the
Concordia University, Canada. He is currently working towards
his Ph.D. degree at the University of Waterloo, Canada. His
current research interests include peer-to-peer computing and
applications, network computing, and parallel and distributed
computing.

Towhidul Islam received his B.Sc.Engg. degree in 2001 from the
Bangladesh University of Engineering and Technology (BUET),
Bangladesh, and his M.Sc. degree in 2004 from the University
of Manitoba, Canada. He is currently working towards his Ph.D.
degree at the University of Waterloo, Canada. His current re-
search interests include peer-to-peer computing and applications,
service oriented architectures, and mobile computing.

Xuemin Shen

received the B.Sc.(1982) degree from Dalian
Maritime University (China) and the M.Sc. (1987) and Ph.D.
degrees (1990) from Rutgers University, New Jersey (USA), all
in electrical engineering. He is a Professor and the Associate
Chair for Graduate Studies, Department of Electrical and Com-
puter Engineering, University of Waterloo, Canada. His research

focuses on mobility and resource management in wireless/wired
networks, wireless security, ad hoc and sensor networks, and
peer-to-peer networking and applications. He is a co-author of
three books, and has published more than 300 papers and book
chapters in different areas of communications and networks,
control and filtering. Dr. Shen serves as the Technical Program
Committee Chair for IEEE Globecom’07, General Co-Chair for
Chinacom’07 and QShine’06, the Founding Chair for IEEE Com-
munications Society Technical Committee on P2P Communica-
tions and Networking. He also serves as the Editor-in-Chief for
Peer-to-Peer Networking and Application; founding Area Editor
for IEEE Transactions on Wireless Communications; Associate
Editor for IEEE Transactions on Vehicular Technology; KICS/
IEEE Journal of Communications and Networks, Computer Net-
works; ACM/Wireless Networks; and Wireless Communications
and Mobile Computing (Wiley), etc. He has also served as Guest
Editor for IEEE JSAC, IEEE Wireless Communications, and
IEEE Communications Magazine. Dr. Shen received the Excel-
lent Graduate Supervision Award in 2006, and the Outstanding
Performance Award in 2004 from the University of Waterloo, the
Premier’s Research Excellence Award (PREA) in 2003 from the
Province of Ontario, Canada, and the Distinguished Performance
Award in 2002 from the Faculty of Engineering, University of
Waterloo. Dr. Shen is a registered Professional Engineer of
Ontario, Canada.

Ajit Singh received the B.Sc. degree in electronics and communi-
cation engineering from the Bihar Institute of Technology (BIT),
Sindri, India, in 1979 and the M.Sc. and Ph.D. degrees from the
University of Alberta, Edmonton, AB, Canada, in 1986 and 1991,
respectively, both in computing science. From 1980 to 1983, he
worked at the R & D Department of Operations Research Group
(the representative company for Sperry Univac Computers in
India). From 1990 to 1992, he was involved with the design of
telecommunication systems at Bell-Northern Research, Ottawa,
ON, Canada. He is currently an Associate Professor at Depart-
ment of Electrical and Computer Engineering, University of
Waterloo, Waterloo, ON, Canada. His research interests include
network computing, software engineering, database systems, and
artificial intelligence.

@ Springer

	SPACE: A lightweight collaborative caching for clusters
	Abstract
	Introduction
	Related works
	System model
	System model
	Illustrations

	Collaborative caching scheme
	The cache organization
	Lookup procedure
	Eviction procedure
	Placement in the remote cache
	Duplicate originals
	Bloom filter-based software solution

	Simulation results
	Simulation environment
	Simulation results

	Further discussion and conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

