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INTRODUCTION

Ultra-wideband (UWB) is a promising wireless
networking technology to meet the ever-increas-
ing demand for anytime, anywhere wireless con-
nectivity. The Federal Communications
Commission (FCC) allocated the unlicensed
3.1–10.6 GHz and 57–64 GHz frequency bands
for commercial use in 2002 and 2005, respective-
ly, which opened the door for very high-data-
rate, power-efficient wireless communications.
Since then, prototypes and consumer products
using UWB technologies have been emerging to
deliver high-volume traffic over a short distance
with very low-power consumption.

The salient features of UWB communication
networks enable new broadband multimedia ser-
vices that otherwise would be beyond what con-
sumers might imagine today. In addition to
traditional multimedia services such as voice and
video streaming, UWB is considered one of the
most promising candidates for health care ser-
vices in medical body area networks (MBANs).
The precise ranging potential of UWB technology
makes it suitable for location-aware applications
in IEEE 802.15.4a-based wireless sensor networks
[1]. It also is anticipated that UWB will launch a
new era in home consumer electronics (CE). CE
manufacturers are looking for solutions to allow
UWB-enabled CE devices to be connected to one
another in a home network and public hotspots.
For instance, in broadband hotspots like World
Expo centers and soccer stadiums, consumers and

business entities can use UWB CE to access high-
speed Internet, view (on demand) a variety of
video media, and exchange rich multimedia infor-
mation locally with their neighbors. To facilitate
highly dense UWB networks supporting high-vol-
ume multimedia applications, a simple and robust
medium-access-control (MAC) protocol is of crit-
ical importance to utilize the large bandwidth of
UWB channels and enable multiple UWB devices
to efficiently and fairly share wireless resources.

In this article, we focus on efficient MAC
protocol design for high-rate UWB networks.
We first review the existing MAC protocols and
discuss their advantages and limitations. We
then study the particular physical layer charac-
teristics of the UWB system, which provide
important opportunities for MAC design. We
introduce an exclusive region (ER)-based MAC
protocol design for both centralized and dis-
tributed multihop UWB networks. By appropri-
ately exploiting the spatial multiplexing capability
of UWB networks, the ER-based MAC can sig-
nificantly improve network performance. Some
future research issues for MAC design in next-
generation UWB networks are discussed.

IEEE 802.15.3 AND
WIMEDIA MAC

IEEE 802.15.3 is a hybrid MAC designed to sup-
port high-rate and low-cost connectivity in wire-
less personal area networks (WPANs) [2]. Several
wireless devices can form a piconet autonomous-
ly in which one of them is selected as the piconet
coordinator (PNC) that coordinates peer-to-peer
communications between the devices. Timing in
IEEE 802.15.3 is based on the time-slotted,
superframe structure, as shown in Fig. 1. At the
beginning of a superframe, the PNC sends a bea-
con to all devices for synchronization, channel-
time allocation, and management-information
distribution. During the channel access period,
devices in the piconet access the channel in a dis-
tributed manner using the carrier sense multiple
access/collision avoidance (CSMA/CA) mecha-
nism for network initiation/association, resource
allocation requests, and asynchronous data trans-
missions. To provide quality of service (QoS) for
isochronous traffic, the PNC assigns channel-
time allocations (CTAs) to devices for con-
tention-free data transmission in the CTA period
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(CTAP). Combining the best qualities of asyn-
chronous CSMA/CA-based random access and
scheduling-based guaranteed access, the hybrid
IEEE 802.15.3 MAC achieves flexibility, efficien-
cy, and QoS provisioning.

However, IEEE 802.15.3 MAC requires a
centralized network architecture and suffers
from a single-point-of-failure problem. Thus,
IEEE 802.15.3 is more suitable for a network
where a central controller usually is available,
and network topology is relatively stable. In pub-
lic hotspots, a large number UWB CE devices
may join and leave the network at any time, and
the network topology changes dynamically. If the
current PNC disappears (e.g., powers off or
moves away), it may take several seconds before
the remaining devices reorganize and re-elect a
new PNC. In addition, when multiple piconets
are used in public hotspots to extend the com-
munication coverage, it is very challenging and
costly to manage the inter-piconet interference,
which can degrade the network performance sig-
nificantly.

To address the aforementioned problems in
IEEE 802.15.3, the WiMedia alliance has speci-
fied a distributed MAC based on multiband
orthogonal frequency-division multiplexing (MB-
OFDM) [3, 4]. Similar to IEEE 802.15.3, timing
in WiMedia MAC is based on the slotted super-
frame structure, as shown in Fig. 2. Each super-

frame starts with a beacon period (BP). First, a
device senses the UWB channels for several
superframes and if a beacon is received, it selects
a channel for communication; otherwise, the
device selects a channel and initiates a BP by
itself. All devices communicating in the same
channel collect the beacons from their neighbors
and pick up unoccupied beacon slots to transmit
their own beacon frames. Data frames are trans-
mitted during the data transmission period
(DTP), which consists of multiple medium-
access slots (MASs). During the DTP, devices
can access the channel in an asynchronous man-
ner through the prioritized channel-access (PCA)
protocol, which is similar to the enhanced dis-
tributed-channel access (EDCA) specified in
IEEE 802.11e. The basic difference between
PCA and EDCA is in the physical layer. Due to
the low-power level of UWB signals, PCA uses
preamble sensing instead of the energy detec-
tion-based carrier sensing in EDCA. Devices
carrying isochronous traffic also can reserve mul-
tiple MASs for contention-free channel access
through a distributed reservation protocol
(DRP). A device first sends a reservation request
to the receiver either in the beacon or using
DRP or PCA. The receiver analyzes the chan-
nel-time utilization of its neighbors and responds
to the sender. If the requested MASs are not
available, the receiver provides additional infor-
mation (e.g., available MASs in its beacon
group) to the sender. Otherwise, the successful
reservation is announced in the beacons so that
other devices within the transmission range
become aware of the reservation and defer their
channel access during that period.

Similar to IEEE 802.15.3, WiMedia MAC is
still a time-division multiple access (TDMA)-
based MAC and requires channel-time synchro-
nization among devices, that is, all devices
communicating in the same channel must syn-
chronize the BP starting time with each other.
However, synchronization is difficult and costly
in multihop UWB networks. In a densely
deployed multihop network, where multiple bea-
con groups can overlap with each other, merging
different BPs into one single common BP is not
a trivial task. Another problem is when a burst
of devices join in the network during one super-
frame, it is very likely that two or more devices
can select the same beacon slot, which causes
beacon collisions. A device only can determine a
beacon collision or transmission error if its own
device address is not included in the beacons of
its neighbors for multiple, continuous super-
frames. In other words, it may take hundreds of
milliseconds for a device to detect a beacon col-
lision. Last but not least, both the IEEE 802.15.3
and the WiMedia MAC use TDMA to avoid col-
lisions, which results in inefficient resource uti-
lization in UWB networks. In contrast to a
narrowband system, where simultaneous trans-
missions in nearby neighbors collide with each
other, a UWB system can support multiple con-
current transmissions if the multi-user interfer-
ence is properly managed [5, 6]. Therefore, we
introduce a UWB MAC design that appropriate-
ly exploits the spatial multiplexing capability of
UWB networks, taking into consideration the
salient features of UWB communications.

�� Figure 1. IEEE 802.15.3 superframe structure.
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PHYSICAL LAYER CHARACTERISTICS

There are several physical layer proposals for
UWB networks: continuous wave UWB (C-
UWB), direct sequence UWB (DS-UWB), and
MB-OFDM UWB. C-UWB uses bursts of pulses
and variable spreading codes to trade data rate
for communication range. It is specified as an
alternative physical layer in IEEE 802.15.4a [1],
which also has been proposed for IEEE 802.15.3c
[7]. DS-UWB and MB-OFDM UWB are two
physical specifications for high-rate WPANs. DS-
UWB is based on direct-sequence spread-spec-
trum (DSSS) technology, and MB-OFDM UWB
uses a combination of frequency hopping and
OFDM technologies. The performance of DS-
UWB and MB-OFDM UWB has been studied
extensively in the literature, and each has shown
its own advantages and disadvantages. For exam-
ple, DS-UWB is vulnerable to intersymbol inter-
ference (ISI) and requires a complex equalizer at
the receiver, whereas MB-OFDM UWB is rela-
tively robust to ISI but requires higher computa-
tional power for fast Fourier transform. More
performance comparisons of DS-UWB and MB-
OFDM UWB can be found in [8].

Generally, UWB communication is character-
ized by a high-data rate at a short transmission
range, a low-power transmission and interference
level, and high immunity against multi-user inter-
ference, and so on. The FCC power spectrum
density emission limit for devices operating in the
UWB band is –41.3 dBm/MHz, and the emission
level can be significantly lower in other segments
of the spectrum, which allows the UWB system
to co-exist with other narrowband systems.
Because of the stringent power constraint and
the wide bandwidth in UWB communications,
normally the UWB transmission power cannot be
adjusted; and spreading technologies in both the
time domain and the frequency domain are used
to vary the data rates [3]. The inherent character-
istics of spreading technology make the UWB
system immune to interference. UWB can pro-
vide high-precision ranging and is ideal for real-
time location systems. The next-generation UWB
network, using the 57–64 GHz frequency band,
usually is referred to as millimeter wave
(mmWave) UWB because the wavelengths for
these frequencies are about one to ten millime-
ters. Because mmWave communications suffer
from high path loss due to oxygen absorption and
atmospheric attenuation, it is highly desirable to
use directional antennas to achieve high directivi-
ty and diversity gains [7]. Note that for UWB in
the frequency range below 10 GHz, the emission
mask must be fulfilled in all directions, and thus
directional transmit antennas require a backoff of
the transmit power. These physical layer charac-
teristics provide great opportunities for designing
an efficient MAC protocol to explore the spatial
multiplexing in UWB networks. For example, the
low power level, large bandwidth, and precise
ranging allow for an ER-based approach for
interference management; and the use of spread-
ing technologies and directional antenna provides
the feasibility of aggressive space reuse in wire-
less channels. These features facilitate the MAC
design for supporting high-density, high-rate
applications in UWB networks.

EFFICIENT MAC PROTOCOL DESIGN

EXCLUSIVE REGIONS

The MAC layer generally uses temporally exclu-
sive mechanisms in the time, frequency, or space
domain to eliminate or reduce collisions from
simultaneous transmissions. For UWB networks
with very low power emission, two transmissions
separated by a certain distance can cause negligi-
ble interference to each other and thus can
transmit concurrently. Generally, interference
and multiple access can be managed effectively
through power control, rate control, or mutual
exclusion. Because power control is not efficient
in UWB systems, a rate control-based interfer-
ence mitigation scheme is proposed in [9] to mit-
igate the impact of interfering pulses to the
receiver in a pulsed time-hopping (TH) UWB
system. If pulses from a strong interferer are
larger than the erasure threshold, the scheme
replaces them by erasures (i.e., skipping in the
decoding process). Simulations in a symmetric
topology show that a source can always send and
continuously adapt its rate without mutual exclu-
sion when the physical layer interference mitiga-
tion scheme is properly applied. Another general
approach is to use an exclusive mechanism in the
space domain. An ER is defined as an area sur-
rounding the receiver such that a transmitter
inside the ER causes harmful interference at the
targeted receiver. Recent research indicates that
an ER-based resource-management scheme is
optimal in terms of throughput by exploiting the
space dimension of the wireless channel to allow
interfering sources to transmit concurrently [5].

The ERs are determined by the transmission
and reception patterns of the antennas, that is,
omni-directional (omni-) or directional antenna,
as shown in Fig. 3. The omni-antenna distributes
its signal energy evenly in all directions, which
not only reduces the signal strength but also
causes interference to other transmissions in the
neighborhood. Compared to the omni-antenna,
a directional antenna achieves a much higher
transmission gain by radiating its energy only in
the desired direction. We study four different
cases. In Fig. 3a, when all transmitters and
receivers use an omni-antenna, all interferers
should be at least r0 away from the receivers,
and the ER is a single circle centered at a receiv-
er with radius r0. The ER radius is determined
such that the average interfering signal strength
is below a certain threshold. In Fig. 3b, the
transmitters use a directional antenna with radi-
ation angle θ, and the receiver uses an omni-
antenna. If the receiver is inside the radiation
angle of an interferer, the interferer should be at
least r1 away; otherwise, the interferer should be
r2 < r1. Different ER radii result from different
antenna gains in the mainlobes and sidelobes of
the directional antenna. The higher the antenna
gain, the farther the interferer should be away
from the receiver. Ideally, we can ignore the
sidelobe effect of a directional antenna and set
r2 = 0. In Fig. 3c, omni-transmitters and direc-
tional receivers are used, and the ER is a sector
of a circle centered at the receiver with radius r4
and angle θ plus a sector with radius r3 and
angle 2π – θ. Similarly, in Fig. 3d where all trans-
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mitters and receivers are directional, the ER
consists of four sectors [6].

ER-BASED CONCURRENT SCHEDULING IN
CENTRALIZED UWB NETWORKS

In UWB networks, concurrent transmissions are
possible and preferable to serial TDMA trans-
missions, as long as all interferers are sufficiently
far apart, that is, outside the ERs of the receivers
[6]. Using the ranging capability of UWB
devices, a sender can decide whether it is within
the ER or not. In a centralized IEEE 802.15.3
UWB WPAN, the central controller collects the
global user information, for example, channel-
time requests and the ER neighbors of each
user, based on which peer-to-peer concurrent
transmissions can be scheduled in each time slot,
to exploit the spatial reuse opportunity of the
wireless channel. Thus, the network throughput
can be significantly improved by exploring the
spatial multiplexing gain of UWB networks
appropriately.

Denote the set of all active flows in an IEEE
802.15.3 UWB WPAN as S. A subset of flows γi
⊂ S are the flows scheduled in slot i that satisfy
the concurrent transmission conditions, as shown
in Fig. 4. Flows are assigned with weights W,
which correspond to the current service level or
QoS requirement of each flow. We introduce a
simple ER-based concurrent scheduling scheme
with computational complexity O(N2 log N) to
allocate each slot. First, we randomly choose flow
j with the highest weight W and add it into set γi
for transmission. To explore the spatial capability
of UWB networks, we check the remaining flows
in S – γi in descending order of W and add anoth-
er flow into the set γi for concurrent transmission
if and only if this flow does not conflict with all
existing flows in set γi, that is, all the transmitters
are outside the ER of the receivers including the
new flow. We sort flows according to their cur-

rent service levels and thus give flows with larger
weights a higher priority to be scheduled.

The ER radius is the key parameter for an
ER-based scheduling scheme. In a UWB net-
work, a smaller ER achieves a larger spatial mul-
tiplexing gain by allowing more concurrent
transmissions that may cause a higher mutual-
interference level and degrade the throughput of
each flow. A larger ER allows fewer concurrent
transmissions, but each flow achieves a higher
transmission rate due to the reduced multi-user
interference. Thus, it is critical to determine the
optimal ER size to maximize the network
throughput. Given a random network topology,
an analytical framework was developed in [10] to
study the performance of a UWB WPAN using
an ER-based scheduling scheme in terms of the
expected number of concurrent transmissions,
the average per-flow throughput and network
throughput, and so on. The relationship of the
normalized network throughput and the ER
radius is shown in Fig. 5. There are 40 flows ran-
domly deployed in a 10 m × 10 m area. The
transmission power is 0.1 mW, and the back-
ground noise level is –76 dBm/MHZ. The cross
correlation among concurrent transmissions is
10–4. As shown in Fig. 5, the network throughput
is a concave curve with different ER radii, and
the optimal ER radius is obtained when the
maximum network throughput is achieved.

ER-BASED ASYNCHRONOUS DISTRIBUTED MAC
IN MULTIHOP UWB NETWORKS

Because UWB communication achieves a very
high data rate with a short transmission range,
multihop relay usually is required for ubiquitous
high-rate wireless connections. MAC protocol
plays a key role in coordinating channel access
among multiple competing users. Because global
synchronization and scheduling are difficult and
costly in multihop UWB networks, we are moti-
vated to design an asynchronous distributed MAC
protocol to efficiently utilize the wireless resources
in densely deployed, multihop UWB networks. In
the recent past, the IEEE 802.11 distributed coor-
dination function (DCF) has been overwhelmingly
successful supporting asynchronous data transmis-
sions due to its flexibility, robustness, and simplici-
ty. To provide QoS for delay-sensitive applications,
such as voice and streaming multimedia, IEEE
802.11e uses EDCA for service differentiation. In
EDCA, high-priority traffic has a higher probabili-
ty to access the channel than low-priority traffic by
using smaller arbitrary interframe spaces (AIFSs)
and/or contention windows (CWs). However, the
efficiency of CSMA/CA-based IEEE 802.11(e)
MAC in multihop wireless networks is far from
ideal. In a densely deployed multihop network, the
throughput starvation and unfairness problems
resulting from hidden/exposed terminals become
severe because of the contention nature of the
protocol, which leads to unsatisfactory user experi-
ences and becomes a major barrier for the future
growth of wireless networks.

Recognizing the unique characteristics of
UWB communications, we employ the concept of
ER in the design of an asynchronous, fully dis-
tributed MAC for a multihop UWB network.
Instead of designing a new protocol from scratch,

�� Figure 3. Exclusive Regions: a) omni-omni; b) directional-omni; c) omni-
directional; d) directional-directional.
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the proposed distributed EXclusive (DEX)
region-based MAC uses control messages similar
to those in the IEEE 802.11(e) MAC protocol
[11]. That is, prior to data transmission, devices
exchange request-to-send/clear-to-send
(RTS/CTS) frames to reserve the medium for the
subsequent data transmissions. Similar to the
IEEE 802.11 DCF, each device monitors the
medium before attempting transmissions. If the
medium is sensed busy, the device enters the
back-off phase after the medium is sensed idle for
a period of time. The back-off counter decreases
by one for every idle slot and freezes when the
medium is busy. The device can transmit only
when the back-off counter reaches zero. If the
transmission fails due to strong interference from
other concurrent transmissions, the device dou-
bles the back-off window until the maximum
value is reached and reschedules the RTS trans-
mission following the same process. After each
successful transmission, the back-off counter is
reset to its minimum value. The retransmitted
frame is dropped when the retry limit is reached.
In contrast to IEEE 802.11 DCF, DEX also uses

the RTS/CTS exchange to reserve small ERs
around the sender and receiver for data and
acknowledgment (ACK) transmissions and thus,
can effectively explore the spatial multiplexing
gain of UWB networks and enable users to effi-
ciently and fairly share network resources in a dis-
tributed manner. By using the ranging service, a
sender can decide if it is within the ER of the
ongoing transmissions. If yes, it refrains from
transmitting concurrently with the ongoing ones
and vice versa. Because only flows within the
smaller ER compete with each other for channel
access, more flows can transmit concurrently, and
the throughput starvation and unfairness prob-
lems can be alleviated. To fairly evaluate the pro-
tocol performance in a multihop environment,
transport throughput is used for performance
evaluation, which is defined as the product of the
throughput and the distance over which the infor-
mation is being transferred. In addition, finding
the optimal ER that maximizes the network trans-
port throughput also is an interesting issue.

In the DEX protocol, a pool of spreading
codes are shared among all users, one of which is

�� Figure 4. Concurrent transmissions: a) omni-omni; b) directional-omni; c) omni-directional; d) direc-
tional-directional.
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chosen as the common spreading code for control-
message exchange, for example, for RTS and CTS
frames, and other codes are used for data trans-
missions. Each user maintains a code table to
record all the spreading codes used by the ongoing
neighboring transmissions. If user A has data for
user B, A uses a hash function to obtain a spread-
ing code, X = H(A, B), where A and B can use
their MAC addresses in the hash function. A starts
channel sensing when its network allocation vector
(NAV) reaches zero. If the channel is sensed idle
for a back-off interframe space (BIFS), A trans-
mits an RTS frame to B, including the chosen
code X and the transmission time T2 = RTS +
SIFS + CTS + SIFS + DATA + ACK. Otherwise,
A enters a back-off procedure and sets a back-off
counter (BC) uniformly distributed over [0, CW)
for the first transmission attempt; and A freezes its
BC until the channel is sensed idle for a BIFS. If
A overhears an RTS or CTS frame from another
transmission fi, A checks the ER condition:
• If A is within the ER of either the transmit-

ter or the receiver of fi, A should postpone
its own transmission until the ongoing trans-
mission completes, and A sets its NAV =
T2.

• If A is outside the ER of fi, A is able to con-
currently transmit with fi; A sets NAV = T1
= RTS + SIFS + CTS and adds the spread-
ing code used by fi in its code table.
A should choose its own code X that does not

conflict with any record in its code table. If code
collision occurs, A can hash again till there is no
code collision. Each record in the code table is
associated with a time-to-live (TTL) parameter
and is removed from the table if TTL expires. If
A successfully receives a CTS from B after an
interval SIFS, implying that B is available for the
transmission using the spreading code X, A starts
to transmit data to B at a rate of R after a SIFS.
To ensure that ongoing transmissions are not
interrupted by the concurrent transmissions, the

transmission rate R is not determined based on
the measurement of the instantaneous interfer-
ence and noise level of the tagged transmission,
but on the worst case scenario with the maxi-
mum number of dominant interferers. There-
fore, DEX is robust against interference from
neighborhood asynchronous transmissions. If no
CTS is received successfully, implying that B is
not available to receive data using code X at this
moment, A enters the back-off stage and retrans-
mits thereafter until the retransmission limit m is
reached. The back-off procedure in DEX is the
same as that in IEEE 802.11(e). In other words,
different CW and AIFS values also can be
employed in DEX for service differentiation.

At the receiver side, B is ready for channel
sensing or receiving when its NAV = 0. Whenev-
er B overhears an RTS or CTS frame from its
neighboring node, B updates its NAV and code
table in the same way as sender A does. Upon
successfully receiving an RTS from A, B sends
back a CTS if X does not conflict with any record
in B’s code table and the channel is idle for a
SIFS period. Otherwise, B keeps silent, and A
can retransmit an RTS and choose another code
after the RTS timeout.

The network transport throughputs of the DEX
protocol and IEEE 802.11 MAC are compared in
Fig. 6. Under the obtained optimal ER radius, the
DEX protocol significantly outperforms IEEE
802.11 by effectively exploiting the spatial reuse
opportunities in a dense multihop network [11]. By
reserving two smaller ERs for each pair, DEX
does not suffer from the exposed terminal problem
as much as the IEEE 802.11 MAC and can achieve
a higher spatial multiplexing gain. Because DEX
allows concurrent transmissions, and each
sender/receiver pair can transmit data/ACK for a
comparatively long time T, consecutively, the num-
ber of RTS initiations in the neighborhood of a
sender can be reduced significantly. A larger T
results in a higher resource utilization with less
involved overhead but can cause longer access
delays of neighboring users. On the other hand, a
smaller ER allows for more concurrent transmis-
sions, which in turn reduces the access delay of
each flow. Thus, in the DEX protocol, it is possible
to choose a larger T and to well maintain the
desired delay and fairness performance.

CONCLUSION AND
FUTURE RESEARCH

In this article, we introduce an ER-based
approach in the MAC protocol design for both
centralized and distributed multihop UWB net-
works. Considering the salient features of UWB
communications and using the concept of ER to
properly manage the potential multi-user inter-
ference, the protocols can efficiently exploit the
spatial multiplexing gain of UWB networks and
significantly improve the network performance.
Designing and optimizing a distributed MAC for
emerging mmWave UWB is challenging because
of the inefficiency in neighbor discovery with
directional antenna. Further research to investi-
gate cooperative communications in UWB net-
works in the presence of fast fading and
shadowing will be pursued.

�� Figure 5. Network throughput under various ER sizes.
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�� Figure 6. Network transport throughput comparison.
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