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PHY-Aware Distributed Scheduling for Ad Hoc
Communications with Physical Interference Model

Weiyan Ge, Junshan Zhang, Jeffrey E. Wieselthier, and Xuemin (Sherman) Shen

Abstract—We consider a random-access-based ad hoc network,
where different links use mini-slots to contend for the channel,
and then successful links transmit data packets, as in CSMA. The
focus of our study is to develop optimal strategies for physical-
layer-aware (PHY-aware) distributed scheduling, which involves
a joint process of channel probing and distributed scheduling.
Because of channel fading and cochannel interference, the signal-
to-interference-plus-noise-ratio (SINR) across links is highly dy-
namic and can exhibit significant variation. In the low SINR case,
further channel probing is likely to lead to better SINR conditions
and hence yield higher throughput. The desired tradeoff boils
down to judiciously choosing the optimal stopping strategy for
channel probing before data transmissions.

In this paper, we investigate PHY-aware distributed schedul-
ing, aiming to maximize the overall network throughput. The
problem under consideration is inherently challenging: 1) mul-
tiple links can transmit successfully simultaneously and the
number of simultaneously transmitting links is random; and 2)
the network throughput is the sum rate of all transmitting links,
but each link involved in the transmission has no knowledge of
the instantaneous rates of other links, and the stopping decision is
made in a distributed manner based on local information only.
We use optimal stopping theory to tackle this challenge, and
show that the optimal policy for distributed scheduling has a
threshold structure. Accordingly, after a channel probing, a link
would proceed with data transmissions only if a function of its
instantaneous rate is greater than the optimal rate threshold.
Observing that the network throughput depends heavily on the
contention probability of each link, we generalize the study to
jointly optimize the rate threshold and the contention probability,
and propose a two-stage algorithm for computing the pair
of optimal rate threshold and contention probability by using
fractional optimization and geometric programming.

Index Terms—Distributed scheduling, physical interference
model, optimal stopping, ad hoc communications.

I. INTRODUCTION

RECENTLY, there has been an increasing interest in PHY-
aware scheduling to improve spectrum efficiency by ex-

ploiting rich diversities inherent in wireless communications.
Most existing studies along this line assume that the scheduler
has knowledge of the instantaneous channel conditions for all
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Fig. 1. A sample realization of channel probing and data transmission.

links (transmitter/receiver pairs), and therefore the scheduling
is centralized (see [12], [13], [18], [19] and the references
therein). However, in an ad hoc network, the communications
are peer-to-peer, and each link has no knowledge of other
links’ channel conditions, which makes it very challenging to
carry out PHY-aware scheduling.

In this paper, we consider a random-access-based ad hoc
network under the physical interference model, where links
contend for the channel using mini-slots. Our principal goal
is to maximize the average network throughput. When a link
is successful in this contention process, its data (which is
much greater in size than the probing packet) is then transmit-
ted, as illustrated in Fig. 1. Before data transmissions, each
transmitter sends probing signals in a mini-slot (of duration
τ ) with specific probability, and its corresponding receiver
can estimate the signal-to-interference-plus-noise-ratio (SINR)
and predict the supportable transmission rate [21]. It would
proceed with data transmission over duration T 1 only if the
predicted rate is high enough (indicating a “good" SINR condi-
tion); otherwise, it may skip the transmission, in the hope that
further channel probing may lead to better SINR conditions
and hence yield higher throughput. If no contending links
transmit after the first probing (as determined distributedly by
monitoring the channel, as in CSMA), all links would probe
the channel again using another mini-slot. The probing process
continues until one or more links with good channel conditions
transmit data over the channel.

Our study here is built on the initial steps on developing
distributed opportunistic scheduling (DOS) under the collision
model [20], which can be summarized as follows. Consider
a single-hop ad hoc network. After a successful channel
contention, the corresponding successful link may skip the
data transmission if the observed channel condition is “poor”.
All the links re-contend for the channel, in the hope that
some link with better channel conditions can transmit after
the re-contention. In this way, multiuser diversity across links

1Throughout this paper, we assume T is fixed, and is no greater than the
channel coherence time.
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and time diversity across slots can be exploited in a joint
manner. On the other hand, each channel probing comes with
a cost in terms of the contention time. Clearly, there is a
tradeoff between the throughput gain from better channel
conditions and the cost for further channel probing. The
desired tradeoff boils down to judiciously choosing the optimal
stopping strategy for channel probing.

Note that in [20] all links contend for the channel based on
the collision model, which assumes that a channel contention
by a link is successful only if no other links transmit at the
same time. However, there has recently been a general con-
sensus that the collision model is inadequate to characterize
the probabilistic receptions in wireless communications. In
fact, with the advent of new signal processing techniques,
such as multiuser detection, spread spectrum, and space-time
processing, it is possible to simultaneously decode multiple
packets even when a “collision" happens. These new tech-
niques call for an SINR-based reception model, known as
the physical interference model. Under this new model, a
transmission is said to be successful if its SINR is greater
than a pre-determined threshold. The new reception model at
the PHY layer opens great opportunities for designing new
MAC protocols in wireless networks.

The problem of PHY-aware distributed scheduling with
physical interference is in general difficult. One unique chal-
lenge is that multiple links can transmit successfully through
one common channel; furthermore, each link has to make
the decision to transmit or not based on local information
only, because links involved in the transmission have no
knowledge of the instantaneous transmission rates of other
links, but the network throughput depends on the data rates of
all transmitting links. Moreover, the number of simultaneously
transmitting links is random, and heavily depends on the
contention probability of each link. Roughly speaking, a larger
contention probability would increase the number of probing
links and thus incur stronger cochannel interference. On the
other hand, a smaller contention probability would reduce the
number of links participating in the transmission. Clearly, the
overall network throughput is low at both the two extremes
and one would expect that the maximum lies somewhere
in between. In summary, PHY-aware distributed scheduling
under the physical interference model requires that each link
makes its own decision to transmit or not in the presence
of a number of uncertainties, namely the SINR condition,
the number of contending links, and the number of mini-
slots required for channel probing. Consequently, this is a
challenging problem.

In this paper, we study PHY-aware distributed scheduling
with physical interference from a network-centric perspective,
with the objective being to maximize the network throughput.
Appealing to optimal stopping theory, we model the problem
of choosing the optimal stopping rule for channel probing
and data transmissions as a maximal rate of return problem.
We investigate thoroughly the optimal strategy for PHY-aware
distributed scheduling, where each link makes the stopping
decision independently based on local information. We show
that the optimal stopping rule for channel probing and data
transmission is threshold-based. Accordingly, after a channel
probing, a link would proceed with data transmission only if a

function (to be determined in Section III) of its instantaneous
transmission rate is greater than the optimal rate threshold. It
is worth noting that the function is different for each individ-
ual link, but the rate threshold is the same across different
links. Furthermore, we develop algorithms to compute the
optimal rate threshold. For the case with fixed contention
probability, exhaustive search can be used to find the optimal
rate threshold. Needless to say, it is much more involved to
tackle the problem of jointly optimizing the rate threshold and
the contention probability. We propose a two-stage iterative
algorithm for computing the optimal threshold-probability pair
by using fractional optimization and geometric programming.
We also take a closer look at the homogeneous case where
all links have the same channel statistics. In this special
case, the optimal rate threshold and contention probability
are the same for all links. It turns out that the objective
function is a quasi-concave function, and the pair of optimal
rate threshold and contention probability can be computed
accordingly by using the bi-section method [4]. To improve the
network performance, we also propose an enhanced scheme,
in which each link makes its decision based on both its own
channel information and available partial information about
other links’ decisions.

In related work, there has been much interest in MAC
scheduling under the physical interference model. In [11], the
scheduling of wireless links under the physical interference
model was proved to be NP-complete, and an approximation
algorithm based on graph theory was proposed. The study in
[5] took an alternative approach by using a greedy method to
compute a suboptimal schedule with a proven approximation
factor. In [7], an optimization problem was formulated which
jointly decides scheduling and MIMO stream allocation in
order to maximize the average sum link rate in a single-hop
network. A multipacket reception (MPR) model was proposed
in [2], and the capture probability and local throughput of
MPR in random access networks were investigated in [17],
[16]. In [9], joint power control and centralized link scheduling
under physical interference was characterized. In [15], the
optimal scheduling problem for physical-interference-model
networks was formulated as a non-cooperative game, where
each link computes its optimal transmission policy to maxi-
mize its own utility. We note that some of the above studies
(e.g., [5], [7], [9], [11]) consider centralized scheduling, while
the others (e.g., [2], [15], [17]) assume many-to-one Aloha
schemes, where the central controller (or common receiver)
can “coordinate" the transmissions among different links,
based on the channel information of all links. In contrast,
it remains under-explored to develop PHY-aware distributed
scheduling for ad hoc (peer-to-peer) communications under
physical interference. To fill the void, this paper focuses on
ad hoc communications assuming no centralized coordination,
and transmission scheduling is done distributedly with local
information. Moreover, the transmitter nodes have no knowl-
edge of other links’ channel conditions, and even their own
channel conditions are not available before channel probing.

The remainder of the paper is organized as follows. In
Section II, we introduce the system model, and give the
background results on distributed opportunistic scheduling
under the collision model. In Section III, we present in
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Fig. 2. A single-hop ad hoc network.

depth PHY-aware distributed scheduling under the physical
interference model. Section IV focuses on a special case with
a symmetric channel. In Section V, we propose an enhanced
scheme to improve further the performance by allowing link
collaboration. In Section VI, numerical examples are presented
to corroborate the theoretic results. Finally, we present our
conclusions in Section VII.

II. SYSTEM MODEL AND BACKGROUND

A. System Model

We consider a single-hop ad hoc network with M links,
where at each mini-slot, each link contends for the channel
with probability pi, i = 1, 2, · · · , M [18], [21]. Let S denote
a non-empty set of links, and Pr(S) denote the probability
that links in set S contend for the channel. Then, as in [14],

Pr(S) =
∏
i∈S

pi

∏
j /∈S

(1 − pj). (1)

Under the physical interference model, the probability that
a packet is received successfully (possibly in the presence of
other transmissions) depends on its own channel condition as
well as the strength of the cochannel interference. Specifically,
let si = 1 indicate that link i transmits a data packet, and si =
0 for no data transmission. Let ri = 1 indicate a successful
reception of the data packet for link i, and ri = 0 otherwise.
Let K be a set of links such that K ⊆ S, and qS,K be the
probability that links in set K transmit successfully given that
links in set S contend for the channel. It follows that

qS,K = Pr(ri∈K = 1, ri/∈K = 0|si∈S = 1, si/∈S = 0). (2)

Let M denote the set of all links, i.e., M = {1, 2, · · · , M}.
The set of conditional probability P = {qS,K , S ⊆ 2M, K ⊆
S} completely specifies the probability space for the physical
interference model [14].

Let P denote the transmission power, Gij denote the
channel gain from the ith transmitter to the jth receiver, as
shown in Fig. 2, and G = {Gij} be the M ×M channel gain
matrix. The SINR for link i is given by

SINRi � GiiP∑
j �=i GjiP + ηi

, (3)

where ηi is the power of thermal noise at the receiver of link
i.

It is clear that the transmission rate is an increasing function
of SINR. In practical systems, continuous control of trans-
mission rate may not be possible, and the rates are often
quantized to discrete values. For instance, in IEEE 802.11b,
the transmission rate is a function of SINR and can be
1Mbps, 2Mbps, 5.5Mbps and 11Mbps. Generally, let {Rl, l =
1, 2, · · · , L} denote the available discrete transmission rates,
with 0 < R1 < R2 < · · · < RL, and the corresponding rate
distribution is given by

R =

⎧⎨
⎩

0, if SINR < γ1,
Rl, if γl ≤ SINR < γl+1, l = 1, 2, · · · , L − 1,
RL, if SINR ≥ γL,

where γ1, γ2, · · · , γL are the SINR thresholds predetermined
by the communication system.

B. Background on Distributed Opportunistic Scheduling: The
Collision Channel Model

In [20], we have taken some initial steps to study distributed
opportunistic scheduling (DOS) under the collision model,
where the channel probing is successful only if one link
contends for the channel. Specifically, we have shown that the
scheduling problem can be cast as a maximal rate of return
problem in optimal stopping theory [6], [8], where the rate
of return is the average network throughput, x, which can be
determined by the stopping time N as

x =
E[RNT ]
E[TN ]

, (4)

where RN is the instantaneous data rate at the N -th successful
channel contention (or channel probing), and TN is the total
time that includes the contention time and the data transmis-
sion time. Then, the scheduling problem boils down to finding
the optimal stopping policy N∗ that maximizes the average
network throughput, i.e.,

N∗ � arg max
N∈Q

E[RNT ]

E[TN ]
, x∗ � sup

N∈Q

E[RNT ]

E[TN ]
, (5)

where
Q � {N : N ≥ 1, E[TN ] < ∞}. (6)

Assuming that the rates {Rn, n = 1, 2, · · · } are indepen-
dent, and with finite second moments, the following result
follows directly from [20].

Lemma 2.1: a) The optimal stopping rule N∗ for dis-
tributed opportunistic scheduling exists, and is given by

N∗ = min{n ≥ 1 : Rn ≥ x∗}. (7)

The maximum throughput x∗ in (7) is an optimal threshold,
and is given by

x∗ =

L∑
l=1

∑L
i=l Ripi

δ/q1 +
∑L

i=l pi
I

(
Rl−1 ≤

∑L
i=l Ripi

δ/q1 +
∑L

i=l pi

≤ Rl

)
,

where δ = τ/T , R0 � 0, pi � Pr{Rn = Ri}, I(·) is the
indicator function, and q1 is the probability that exactly one
link contend for the channel, which is given by

q1 =
M∑
i=1

pi

∏
j �=i

(1 − pj). (8)
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Fig. 3. A sample realization of channel probing and data transmission for a
two-link network.

III. PHY-AWARE DISTRIBUTED SCHEDULING WITH

PHYSICAL INTERFERENCE

In this section, we investigate PHY-aware distributed
scheduling under the physical interference model. Let Sn

denote the set of links that probe the channels at the nth
probing, and Kn denote the subset of links with “good"
channel conditions; therefore, Kn ⊆ Sn. Let Ri,n denote
the rate of link i at the nth probing. Since Ri,n depends on
the time varying channel condition and the strength of the
cochannel interference, it is random.

Under the physical interference model, multiple links can
transmit successfully simultaneously, and this is in contrast to
the study based on the collision model where at each time
only one link can transmit successfully over the channel. The
total rate would be the sum of the rates of all successful
links that participate in the transmission. However, in ad hoc
networks, each link has no knowledge of the channel state
information of other links, and has to make its decision based
on local information only, which makes the problem inherently
challenging. In the following, we characterize the optimal
stopping rule and the corresponding network throughput.

A. An Example

To illustrate the basic idea of PHY-aware distributed
scheduling, we depict in Fig. 3 an example of an ad hoc
network with two links. During the first mini-slot (which
has a duration of τ ), only link 2 probes the channel by
sending an RTS packet, but the rate R2,1 is small (indicating
“poor” channel condition). It then gives up the transmission
opportunity. At the next mini-slot, the same thing happens
to link 1, and it also gives up the transmission. The process
continues until the N th mini-slot, in which both links probe
the channel, and R1,N is big but R2,N is small. As a result,
link 1 would transmit with duration T and rate R1,N . To
avoid impairing the ongoing transmissions, other links are
not permitted to probe the channel when some links are
transmitting. As a consequence, link 2 would keep silent for
a duration T .

The distributed optimal scheduling presented above is easy
to implement. As depicted in Fig. 4, link i would probe the
channel by sending an RTS packet with probability pi. The
ith receiver would send a CTS packet only if the rate Ri,n

is good. If the transmitter hears no CTS packets from either

Link 1 RTS RTS CTS DATA ACK

Link 2 RTS

Link 3 RTS CTS DATA ACK

Link M RTS RTS

Fig. 4. An example of the RTS-CTS handshaking for the network with
physical interference.

its own receiver or other receivers, which indicates that all
links are suffering bad channel conditions due to possible
deep fading or strong co-channel interference, it would probe
the channel again with probability pi. If after a probing, its
channel condition is good, the receiver would send a CTS
packet to the transmitter. The transmitters that receive CTS
packets from their own receivers (links 1 and 3 in Fig. 4)
would transmit data packets. Those transmitters that do not
hear from their own receivers, but receive CTS packets from
other receivers (link 2 and M ) would keep silent until the data
transmission is finished. In this study, we assume that the RTS-
CTS packets can always be successfully decoded since these
control packets are transmitted at a rate that is sufficiently low
to ensure correct reception.

B. Optimal Stopping Rule for PHY-aware Distributed
Scheduling

For a single-hop ad hoc network with M links, the total
reward at time n is

∑
j∈Kn

Rj,nT , and the average network
throughput is given by

x =
E
[∑

j∈KN
Rj,NT

]
E[TN ]

. (9)

It then follows that for link i, the problem of maximizing the
average network throughput can be cast as a maximal-rate-
of-return problem, in which a key step is to characterize the
optimal stopping rule N∗

i as

N∗
i = arg max

Ni∈Q

E
[∑

j∈KNi
Rj,NiT

]
E[TNi]

. (10)

Clearly, every link has its individual optimal stopping rule, a
characteristic that distinguishes it sharply from the case with
the collision model [20]. Furthermore, in a single-hop network,
all links stop channel probing if at least one link starts to
transmit data. Accordingly, the optimal stopping rule of the
network for PHY-aware distributed scheduling would be the
earliest one among all links, i.e.,

N∗ = min
i
{N∗

i , i = 1, 2, · · · , M}. (11)

Next, we use optimal stopping theory to solve the problem
in (10). Observe that the reward

∑
j∈KNi

Rj,Ni is a random
variable and is not known at link i. However, it can be
shown that replacing the random reward with its conditional
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expectation E
[∑

j∈KNi
Rj,Ni |Ri,n

]
would give the same

average return [8]. We then have the following proposition.
Proposition 3.1: The optimal stopping rule N∗

i for PHY-
aware distributed scheduling exists, and is given by

N∗
i = min {n ≥ 1 : Ri,n ≥ x∗ − E [Yi,n|Ri,n]} . (12)

where Yi,n =
∑

j∈Kn\i Rj,n, and x∗ is the unique solution to

E

(∑
i∈Kn

Ri,n − x

)+

=
xτ

T
. (13)

The proof is relegated to Appendix A.
Proposition 3.1 reveals that the optimal stopping rule for

PHY-aware distributed scheduling under the physical inter-
ference model is a threshold-based policy. It is worth noting
that different from the case in the collision model, where the
optimal thresholds are the same across different links, under
the physical interference model, different links have different
rate thresholds in general. Furthermore, define

gi(Ri,n) � Ri,n + E[Yi,n|Ri,n].

Then (12) can be rewritten as

N∗
i = min {n ≥ 1 : gi(Ri,n) ≥ x∗} . (14)

Accordingly, instead of making the stopping decision based on
its instantaneous data rate, each link would compute gi(Ri,n)
based on local information. If gi(Ri,n) is greater than x∗, it
would transmit the data with rate Ri,n; otherwise, it skips
this transmission opportunity. In summary, all links have the
same threshold x∗, but use different rate functions {gi(·)} to
compare with it.

Unfortunately, Proposition 3.1 does not offer a closed-form
expression for the optimal rate threshold x∗. In the follow-
ing, we develop algorithms for computing the optimal rate
threshold. We first look at the basic case with fixed contention
probability, and focus on optimizing the rate threshold.

C. Optimal Rate Threshold with Fixed Contention Probability

Let φ(x) denote the corresponding network throughput with
threshold x, where link i would transmit if gi(Ri,n) ≥ x.
Then, the problem of finding the optimal stopping rule for
PHY-aware distributed scheduling boils down to finding the
optimal threshold x∗ that can maximize the network through-
put, i.e., x∗ = arg maxx φ(x).

It follows that qS,K defined in (2) can be rewritten as

qS,K =
∏
i∈K

(1 − F i
S(x))

∏
j /∈K

F j
S(x), (15)

where F i
S(x) � Pr{gi(Ri) ≤ x|S}.

We then have the following network throughput, given the
set of contending links S.

Proposition 3.2: Given that the links in S contending for
the channel, the network throughput is given by

φ(x|S) =
∑

K qS,K

∑
i∈K E[Ri]

δ + 1 − qS,0
, (16)

where qS,0 is the probability that the set K is empty, with
qS,0 =

∏
i∈S F i

S(x), and E[Ri] is given by

E[Ri] =
1

1 − F i
S(xi)

L∑
l=1

Rlpi
S,lI(gi(Rl) ≥ x), (17)

where R0 = 0, pi
S,l � Pr{Ri = Rl|S}.

Finally, combining (1) and (16), and removing the condition
on number of contending links S, we obtain the network
throughput as

φ(x) =
∑

S Pr(S)
∑

K qS,K

∑
i∈K E[Ri]

δ +
∑

S Pr(S)(1 − qS,0)
. (18)

Recall that the transmission rates are (quantized) discrete
values as Ri ∈ {Rl, l = 0, 1, · · · , L}. It follows that gi(Ri) is
in the set {gi(Rl), l = 0, 1, · · · , L}. As a result, the maximum
throughput is unique, but the optimal rate thresholds may
not be unique in general, since changing the threshold in
between two adjacent quantization levels would not affect its
optimality, and the new threshold policy achieves the same
throughput. In other words, the thresholds in between two
adjacent quantization levels are effectively the same. It follows
that the possible optimal threshold are in the discrete set
{gi(Rl)|i = 1, 2, · · · , M, l = 0, 1, · · · , L} with at most
M(L+1) elements. Therefore, exhaustive search can be used
to find the optimal rate threshold in O(ML) time.

D. Joint Optimal Rate Threshold and Optimal Contention
Probability

In the previous study, the contention probability of each link
was fixed. It is worth noting that the network throughput heav-
ily depends on the contention probability of each link. Specif-
ically, a smaller contention probability would decrease the
number of contending links, and the corresponding throughput
would be smaller. On the other hand, a larger contention prob-
ability would increase the number of contending links, which
may incur a stronger co-channel interference. Therefore, one
would expect that there exist optimal contending probabilities
that maximize the network throughput. Note that different
links may have different contention probabilities, denoted
as p = [p1, p2, · · · , pM ]. Then, the PHY-aware distributed
scheduling problem can be reformulated as finding the optimal
pair (p, x) that maximizes the network throughput as

P1 max
p,x

φ(p, x),

subject to 0 ≤ p ≤ 1,

x ∈ {gi(Rl)|i = 1, · · · , M, l = 0, · · · , L}.
In general, it is challenging to characterize the optimal

p and x simultaneously. In the following, we propose a
two-stage algorithm to characterize the globally optimal pair
(p∗, x∗).

Stage I: On a faster time scale, we fix the rate threshold
as x̂, and compute its corresponding optimal contention prob-
ability p∗(x̂) as

p∗(x̂) = arg max
0≤p≤1

φ(p, x̂). (19)

Stage II: As elaborated above, the optimal rate threshold
is in the discrete set x ∈ {gi(Rl)|i = 1, 2, · · · , M, l =
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0, 1, · · · , L}, and the number of elements in the set is at
most M(L + 1). On a slower time scale, we exhaustively
search the set {(p∗(x̂), x̂) | x̂ = gi(Rl), i = 1, 2, · · · , M, l =
0, 1, · · · , L} to obtain the global optimal pair of rate threshold
and contention probability, (p∗, x∗), i.e.,

x∗ = arg max
x̂

φ(p∗(x̂), x̂),

p∗ = p∗(x∗). (20)

The next key step is to solve the optimization problem (19),
which is equivalent to the following optimization problem as

P2 max
p

φ(p, x̂),

subject to 0 ≤ p ≤ 1. (21)

The above optimization problem is generally non-convex.
Direct maximization of φ(p, x̂) is often prohibitive, since it
takes the form of U(p, x̂)/W (p, x̂). Instead, we resort to the
technique of fractional maximization to compute p∗(x̂) [3].
To this end, define

U(p, x̂) �
∑
S

Pr(S)cS

W (p, x̂) � δ +
∑
S

Pr(S)dS , (22)

where cS and dS are coefficients independent of p, and defined
as

cS �
∑
K

qS,K

∑
i∈K

E[Ri],

dS � (1 − qS,0), (23)

and

V (p, λ, x̂) = U(p, x̂) − λW (p, x̂), (24)

where λ is a real positive value. For convenience, with a slight
abuse of notation, we use V (p, λ) instead of V (p, λ, x̂) in the
following.

For a given λ, let p(λ) denote the contention probability
that maximizes V (p, λ) as

p(λ) = arg max
p

V (p, λ). (25)

Let V (λ) = V (p(λ), λ), and λ∗ denote the solution to V (λ) =
0. It can be shown that λ∗ is the maximal throughput, and
p(λ∗) is the optimal contention probability that maximizes
φ(p, x̂). However, it is generally difficult to find the root of
V (λ) = 0, we then come up with an iterative algorithm to
compute λ∗. First, we need the following lemma.

Lemma 3.2: V (λ) is decreasing and convex in λ.
The proof follows from Lemma 1 of Chapter 6 in [8] and

is omitted here.
Next, we propose an iterative algorithm using Newton’s

method:

λt+1 = λt − V (λt)

V ′(λt)
= λt +

V (λt)

W (p(λt))
=

U(p(λt))

W (p(λt))
= φ(p(λt)).

Given any initial value λ0, the above iterative algorithm is
known to converge quadratically to the optimal throughput λ∗

[3]. In summary, we have the following proposition.

Proposition 3.3: Given any positive initial value λ0, the
following iterative algorithm

pt = arg max
0≤p≤1

V (p, λt), (26)

λt+1 = φ(pt), (27)

converges quadratically, and in particular, pt → p∗(x̂), and
λt → λ∗, as t → ∞.

Based on Proposition 3.3, the next step is to solve the op-
timization problem in (26). Rewrite the optimization problem
as

P3 max
p

V (p, λt),

subject to 0 ≤ p ≤ 1. (28)

Unfortunately, the above optimization problem is generally
non-convex. We need to transform the problem to a convex
program problem. To this end, rewrite V (p, λt) as

V (p, λt) = U(p) − λtW (p)

�
∑
S

Pr(S)bS − δλt, (29)

where bS = cS − λtdS are coefficients irrelevant with p.
Case 1: If bS ≤ 0, V (p, λt) becomes

V (p, λt) =
∑
S

bS

∏
i∈S

pi

∏
j /∈S

(1 − pj) − δλt, (30)

The optimization problem in (28) is equivalent to

max
p

∑
S

bS

∏
i∈S

pi

∏
j /∈S

(1 − pj) − δλt,

subject to 0 ≤ p ≤ 1, (31)

It is clear that the maximum is achieved when pi = 0, ∀ i.
Case 2: If bS > 0 for some S, define

bmax � max{bS, ∀ S} > 0.

Let ∅ denote the empty set with Pr(∅) =
∏

j(1−pj). With the
fact that

∑
S Pr(S) + Pr(∅) = 1, V (p, λt) can be rewritten

to

V (p, λt) =
∑

S

bSPr(S) − δλt + bmaxPr(∅) − bmaxPr(∅)

=
∑

S

bmaxPr(S) +
∑

S

(bS − bmax)Pr(S)

+bmaxPr(∅) − bmaxPr(∅) − δλt

= bmax −
[∑

S

b̂SPr(S) + bmaxPr(∅)
]
− δλt,

with b̂S � bmax − bs ≥ 0, ∀ S. The optimization problem in
(28) is then equivalent to

min
p

∑
S

b̂S

∏
i∈S

pi

∏
j /∈S

(1 − pj) + bmax

∏
j

(1 − pj),

subject to 0 ≤ p ≤ 1,
(32)

which can be transformed into a convex program.
Finally, the algorithm for computing the optimal (p∗, x∗)

is summarized in Algorithm I, as shown in Fig. 5.
Remarks: It is worth noting that computing the optimal rate
threshold requires global information. However, the optimal
rate threshold depends on statistical information only, and can
be computed before network deployment.
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Algorithm I: Begin

maxp,x φ(p, x) (P1)

maxp φ(p, x̂) (P2)

maxp V (p, λt) (P3)

Compute bS

Yes maxbS ≤ 0, ∀ S No

Optimization (31) Update λt (26) Optimization (32)

t + 1 No Converge

Yes

p = p∗(x̂)

all possible x̂ No New x̂

Yes

(p∗, x∗) = arg max
{(p∗(x̂),x̂)}

φ(p, x)

End

Fig. 5. The flowchart of Algorithm I for computing the optimal pair (p∗, x∗).

IV. PHY-AWARE DISTRIBUTED SCHEDULING: THE

SYMMETRIC CHANNEL MODEL

In this section, we study PHY-aware distributed scheduling
with symmetric channels. The channel is said to be symmetric
if qK,S depends only on the number of links in S and K . In
other words, the channels are statistically homogeneous. It is
clear that the optimal threshold and the optimal contention
probability are the same across the links for symmetric chan-
nel.

Accordingly, for the symmetric channel model, qS,K

changes to the probabilistic reception matrix in [10]

π =

⎛
⎜⎝

π1,0 π1,1

π2,0 π2,1 π2,2

...
...

...
. . .

⎞
⎟⎠ , (33)

where πm,k is the conditional probability that k links are
“good" given that m links are contending for channel access.

Let π0 denote the reception matrix for the conventional
collision model and π1 denote the reception matrix for perfect
packet separation as

π0 =

⎛
⎜⎝

0 1
1 0 0
...

...
...

. . .

⎞
⎟⎠ , π1 =

⎛
⎜⎝

0 1
0 0 1
...

...
...

. . .

⎞
⎟⎠ .

With threshold x, the probability that k links transmit given
that m links contend for the channel access, πm,k, is given by

πm,k =
(

m
k

)
Fm(x)m−k(1 − Fm(x))k, (34)

where Fm(x) is defined as

Fm(x) � Pr{g(Ri) < x|m links probe the channel} (35)

The average network throughput with symmetric channels

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on May 26, 2009 at 15:07 from IEEE Xplore.  Restrictions apply.



GE et al.: PHY-AWARE DISTRIBUTED SCHEDULING FOR AD HOC COMMUNICATIONS WITH PHYSICAL INTERFERENCE MODEL 2689

is given by

φ(x) =

∑M
m=1

qm

1−Fm(x)

∑m
k=1 πm,kkE[R]

δ +
∑M

m=1 qm(1 − πm,0)
, (36)

where qm is the probability that exact m links probe the
channel and is given by

qm =
(

M
m

)
pm(1 − p)(M−m), (37)

and E[R] is given by

E[R] =
L∑

l=1

Rlpm,lI(g(Rl) ≥ x), (38)

where pm,l � Pr{R = Rl|m links probe}.
It is clear that the possible optimal threshold is in the

discrete set {g(Rl), l = 0, 1, · · · , L}. The optimization
problem P1 then boils down to

P4 max
p,x

φ(p, x),

subject to 0 ≤ p ≤ 1,

x ∈ {g(Rl), l = 0, 1, · · · , L}. (39)

As discussed above, we can apply the two-time scale
algorithm to compute the optimal (p, x) pair as the following.
On a faster time scale, we fix the threshold as x̂, and compute
its corresponding optimal contention probability p∗(x̂) as

p∗(x̂) = arg max
0≤p≤1

φ(p, x̂). (40)

On a slower time scale, we exhaustively search the set
{(p∗(x̂), x̂) | x̂ = g(Rl), l = 0, 1, · · · , L} to obtain the
optimal (p∗, x∗) in O(L) time, i.e.,

x∗ = arg max
x̂

φ(p∗(x̂), x̂), l = 0, 1, · · · , L

p∗ = p∗(x∗). (41)

The next key step is to solve the optimization problem (40),
which is equivalent to the following optimization problem

P5 max
p

φ(p, x̂),

subject to 0 ≤ p ≤ 1. (42)

To convert P5 into a convex programming problem, rewrite
φ(p, x̂) as

φ(p, x̂) =
∑M

m=1 qmCm

δ +
∑M

m=1 qmDm

(43)

where

Cm � 1
1 − Fm(x)

m∑
k=1

πm,kkE[R],

Dm � 1 − πm,0, (44)

with Cm ≥ 0, Dm ≥ 0, ∀ m. Define

Cmax � max{Cm, m = 1, 2, · · · , M}. (45)

Then, with the fact that
∑M

m=0 qm = 1,
∑M

m=1 Cmqm boils
down to

M∑
m=1

Cmqm =
M∑

m=1

Cmqm + Cmaxq0 − Cmaxq0

= Cmax −
M∑

m=0

Ĉmqm, (46)

where

Ĉm �
{

Cmax, m = 0,
Cmax − Cm, m = 1, 2, · · · , M.

(47)

Define p̂ = 1 − p. The optimization problem P5 is then
equivalent to

P6 min
p,p̂

δ +
∑M

m=1 Dmqm

Cmax −∑M
m=0 Ĉmqm

,

subject to p + p̂ ≥ 1,

0 < p ≤ 1. (48)

It can be shown that the objective function in P6 is a mono-
tonically increasing function of p and p̂. As a consequence,
P6 can be solved by using the bisection method [4].

Finally, the algorithm for computing the optimal (p∗, x∗) is
summarized in Algorithm II, as shown in Fig. 6.

V. DISCUSSION ON FURTHER ENHANCEMENT

Thus far in this paper, we investigated PHY-aware dis-
tributed scheduling, in which each link transmits data based
on a threshold policy, i.e., link i would transmit data after the
N th probing if gi(Ri,N ) > x∗. In this section, we propose an
enhanced scheme to let each link make decision based on its
own channel information and partial information from other
links. Recall that the SINR of link i after channel probing is
given by

SINRp
i � GiiP∑

j∈S\i GjiP + N

=
GiiP∑

j∈K\i GjiP +
∑

j∈S\K GjiP + N
. (49)

After channel probing, only the links in K would transmit,
and all other links would skip the transmission opportunity
(e.g., by skipping CTS) and keep silent over a duration of T .
As a result, the SINR of link i during transmission, denoted
as SINRr

i , is given by

SINRr
i =

GiiP∑
j∈K\i GjiP + N

, i ∈ A. (50)

It is clear that SINRr
i ≥ SINRp

i . This may cause a severe
performance loss, since the channel can support more links to
transmit simultaneously. More specifically, consider the exam-
ple in Fig. 3; after the N th probing, link 1 has a good SINR
condition and would transmit, while link 2 has to keep silent.
The total rate for this transmission is R1,N . An alternative
scheme is to let both links transmit with the total rate of
R1,N + R2,N . Compared to the distributed scheduling, the
new enhanced scheme brings an extra reward R2,N . Generally,
after a channel probing, some links with good SINR conditions
will transmit data with total rate Rn =

∑
i∈Kn

Ri,n. Those
links with “poor" SINR conditions can also participate in the
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Algorithm II: Begin

maxp,x φ(p, x) (P4)

l = 0

maxp φ(p, g(Rl)) (P5) l + 1

Optimization Problem (P6)

p = p∗(g(Rl))

l = L No

Yes

(p∗, x∗) = arg max
(p∗(g(Rl)),g(Rl))

φ(p, x)

End

Fig. 6. The flowchart of Algorithm II for computing the optimal (p∗, x∗).

transmission, regardless of their SINR condition. As a result,
the total rate is enhanced to

∑
i∈Sn

Ri,n, which contributes
an extra reward of

∑
i∈Sn\Kn

Ri,n.

VI. NUMERICAL RESULTS

In this section, we illustrate, via numerical examples,
the performance gain by using the PHY-aware distributed
scheduling in a random-access-based ad hoc network under
the physical interference model. We note that the optimal
policy for PHY-aware distributed scheduling has a threshold
structure with positive rate thresholds. For ease of exposition,
we study an ad hoc network with Rayleigh fading channels.
Let ρs,i and ρn denote the average SNR of the desired signal
of link i and the interference signal, respectively. It follows
that {Gii} and {Gij , ∀ i 
= j} are independent exponentially
distributed random variables with parameter 1/ρs,i and 1/ρn,
respectively. Unless otherwise specified, we set M = 5,
δ = 0.1, ρn = 0dB, and the transmission rates can be 1Mbps,
2Mbps, 5.5Mbps and 11Mbps, with the SINR thresholds given
by γ1 = 0dB, γ2 = 5dB, γ5.5 = 10dB and γ11 = 15dB.

Fig. 7 depicts the maximal throughput as a function of
ρs,1. For the sake of comparison, we also show the network
throughput under the conventional scheme, which can be
viewed as one with rate threshold zero. Inspection of Fig. 7
confirms that both the distributed scheduling and the enhanced
scheme achieve substantial performance gain. Particularly, at
ρs,1 = 30, the gain is 30% and 17% for the enhanced scheme
and PHY-aware distributed scheduling, respectively.

In Table I, for a given rate threshold x = 2Mbps, we
examine the convergence behavior of the contention proba-
bility in the iterative algorithm of (26). It can be seen that
the convergence rate is fast, and the solution approaches p∗
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Fig. 7. Maximal throughput as a function of SNR ρs,1, with ρs,2=10dB,
ρs,3=10dB, ρs,4=8dB, ρs,5=20dB.

TABLE I
CONVERGENCE BEHAVIOR OF THE CONTENTION PROBABILITY IN THE

ITERATIVE ALGORITHM IN (26).

ρs,i p0 p1 p2 p3 p4 p∗
ρs,1=20dB 0.5 0.63 0.68 0.71 0.76 0.76
ρs,2=10dB 0.5 0.41 0.45 0.47 0.47 0.47
ρs,3=8dB 0.7 0.10 0.27 0.34 0.36 0.36

typically within four iterations. Moreover, the link with the
best channel statistics (link 1 in this example) exhibits the
largest optimal contention probability.

Next, we take a closer look at the network with a symmetric
channel, in which the optimal rate threshold and the optimal
contention probability are the same across all links. We first

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on May 26, 2009 at 15:07 from IEEE Xplore.  Restrictions apply.



GE et al.: PHY-AWARE DISTRIBUTED SCHEDULING FOR AD HOC COMMUNICATIONS WITH PHYSICAL INTERFERENCE MODEL 2691

5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

SNR ( ρ
s
 )

N
et

w
or

k 
th

ro
ug

hp
ut

 (
 M

bp
s 

)

PHY−aware distributed scheduling

PHY−aware distributed scheduling (enhanced scheme)

Conventional scheme

Fig. 8. Maximal throughput as a function of SNR ρs

.

TABLE II
CONVERGENCE BEHAVIOR OF THE CONTENTION PROBABILITY IN THE

ITERATIVE ALGORITHM IN (26).

ρs p0 p1 p2 p3 p4 p5 p∗
0dB 0.1 0.32 0.58 0.62 0.64 0.65 0.65

10dB 0.5 0.52 0.53 0.53 0.54 0.54 0.54
15 dB 0.7 0.12 0.27 0.32 0.35 0.37 0.37

reexamine the throughput gain and the convergence behavior
of the contention probability in Fig. 8 and Table II, respec-
tively. In Fig. 9, we show the impact of the probing overhead
δ = τ/T on the performance of the PHY-aware distributed
scheduling. As expected, the network throughput decreases as
δ increases.

In Fig. 10, we illustrate the network throughput as a function
of the contention probability. It can be observed that the
network throughput is small for both p = 0 and p = 1,
and achieves the maximum somewhere in between. It is well
known that under the collision model, the optimal contention
probability of each link is 1/M [1], which is much smaller
than that under the physical interference model ([0.4, 0.6] in
this example). Moreover, as the SNR increases, the optimal
contention probability also increases. Our intuition is that
when SNR is large, links are more robust to cochannel interfer-
ence, and thus can tolerate more simultaneous transmissions.

VII. CONCLUSIONS

In this paper, we considered a random-access-based ad
hoc network model, where links use mini-slots to contend
for the channel, and then proceed with data transmission,
once they acquire the channel. We focused on developing
PHY-aware distributed scheduling for ad hoc communications
under the physical interference model. In such a network,
PHY-aware distributed scheduling boils down to a process
of joint channel probing and distributed scheduling. We then
investigated the problem from a network-centric point of
view, with the objective of maximizing the overall network
throughput. Specifically, we formulated the problem as a
maximum-rate-of-return problem by using optimal stopping
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Fig. 9. Network throughput as a function of the probing overhead δ.
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Fig. 10. Network throughput as a function of the contention. probability

theory, and demonstrated that the optimal strategy for PHY-
aware distributed scheduling has a threshold structure. Ac-
cordingly, after a channel probing, a link would proceed with
data transmission only if a function of its instantaneous rate
is greater than the optimal rate threshold. Observing that the
network throughput depends on the contention probability of
each link, we generalized the problem to optimize the rate
threshold and contention probability in a joint manner, and
devised a two-stage algorithm to compute them iteratively
by using fractional optimization and geometric programming.
We paid special attention to homogeneous networks where all
links have the same channel statistics and exploited the bisec-
tion method for computing the optimal threshold-probability
pair. Numerical results showed that significant throughout gain
can be achieved through PHY-aware distributed scheduling.

It is of great interest to generalize this study to multi-
hop ad hoc networks. We are currently pursuing PHY-aware
distributed scheduling along these avenues.

APPENDICES

A. PROOF OF PROPOSITION 3.1

In what follows, we prove Proposition 3.1 using optimal
stopping theory [8]. For a given x > 0, define the reward
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function as

Zn(x) �
∑

i∈Kn

Ri,nT − xTn. (51)

It follows that PHY-aware distributed scheduling boils down
to maximizing the rate of return given by

x =
E
[∑

i∈KN
Ri,NT

]
E[TN ]

. (52)

To this end, a key step is then to find an optimal stopping rule
N∗(x) for stopping the channel probing and proceeding with
data transmission such that

V ∗(x) = E

⎡
⎣ ∑

i∈KN∗(x)

Ri,N∗(x)T − xTN∗(x)

⎤
⎦

= sup
N∈Q

E

[ ∑
i∈KN

Ri,NT − xTN

]
. (53)

In order to establish the existence of optimal stopping rule for
channel probing, we refer to Theorem 1 in [[8], Chapter 3].
It follows that lim supn→∞ Zn −→ −∞, and that

E[sup
n

Zn] = E

[
sup

n

∑
i∈Kn

Ri,nT − xT − xnτ

]

≤ E

[
sup

n
Ri,nTM − xT − xnτ

]
< ∞, (54)

indicating that N∗(x) exists.
In PHY-aware distributed scheduling, each link makes the

decision independently based on local information only. In
other words, the i-th link makes decision based on its own
rate Ri,n, without the knowledge of the instantaneous rate
of other links. Specifically, let Yi,N =

∑
j∈KN\i Rj,NT , and

rewrite V ∗(α) as

V ∗(α) = sup
N∈Q

E[Ri,NT + Yi,NT − αTN ]. (55)

It is clear that Yi,n is a random variable and is not known at
link i. However, it can be shown that by replacing the random
“reward” Yi,n with its conditional expectation, the optimal
stopping rule remains the same [8]. In other words, Yi,n in
(55) can be replaced by the conditional expectation of Yi,n as
E[Yi,n|Ri,n].

Based on optimal stopping theory [8], for link i, the optimal
stopping algorithm N∗

i (x) is given by

N∗
i (x) = min {n ≥ 1 : Ri,nT ≥ V ∗(x) + xT − E[Yi,n|Ri,n]T} ,

where V ∗(x) satisfies the following optimality equation:

E

[
max

(∑
i∈Kn

Ri,nT − xT − xτ, V ∗(x) − xτ

)]
= V ∗(x).

(56)

Note that V ∗(x∗) = 0, and (56) becomes

E

[
max

(∑
i∈Kn

Ri,nT − x∗T, 0

)]
= x∗τ.

The optimal stopping rule for channel probing is simplified to

N∗
i = min {n ≥ 1 : Ri,n ≥ x∗ − E[Yi,n|Ri,n]} , (57)

where x∗ is the solution to

E

[∑
i∈Kn

Ri,n − x

]+

=
xτ

T
. (58)

Recall that the probing stops when at least one of the links
decide to proceed with data transmission. As a result, N∗ =
min{N∗

i , i = 1, 2, · · · , M}.
Next we show that (58) has a unique solution. Since 0 ≤

x < ∞, the left hand side of (58) strictly decreases from E[R]
to 0 as x increases from 0 to ∞, while the right hand side
strictly increases from 0 to ∞. Hence, (58) has a unique finite
solution, thereby concluding the proof.
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