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Performance Analysis of Wireless Opportunistic
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Abstract—In this paper, performance of wireless opportunistic
schedulers in multiuser systems is studied under a dynamic data
arrival setting. Different from the previous studies which mostly
focus on the network stability and the worst case scenarios, we
emphasize on the average performance of wireless opportunistic
schedulers. We first develop a framework based on Markov
queueing model and then analyze it by applying decomposition
and iteration techniques in the stochastic Petri nets (SPN).
Since the size of the state space in our analytical model is
small, the proposed framework shows an improved efficiency
in computational complexity. Based on the established analytical
model, performance of both opportunistic and non-opportunistic
schedulers are studied and compared in terms of average
queue length, mean throughput, average delay and dropping
probability. Analytical results demonstrate that the multiuser
diversity effect as observed in the infinite backlog scenario is
only valid in the heavy traffic regime. The performance of the
opportunistic schedulers in the light traffic regime is worse
than that of the non-opportunistic round-robin scheduler, and
becomes worse especially with the increase of the number of
users. Simulations are also performed to verify the accuracy of
the analytical results.

Index Terms—Opportunistic scheduling, MMDP, stochastic
Petri nets.

I. INTRODUCTION

IN wireless systems, channel conditions are inherently time-
varying due to the existence of fading and shadowing ef-

fects. Moreover, since different wireless users may experience
independent channel variations, the event that there exist users
with strong channel gains at any time instant occurs with
high probability, which is referred to as multiuser diversity.
In order to exploit such channel fluctuation and multiuser
diversity for throughput improvement in wireless systems,
opportunistic scheduling (OS) has been appeared. Here, the
“opportunistic” means the mechanism can take advantages of
the favorable channel conditions in resource allocation. So
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far, the concept of OS has been widely applied in the third-
generation (3G) wireless systems such as Code Division Multi-
ple Access (CDMA) 2000 1xEV-DO [1] and Universal Mobile
Telecommunications System (UMTS) High Speed Downlink
Packet Access (HSPDA) [2]. While all OS algorithms take
into account the channel state information, some of them may
also consider the queueing status of users. In this paper, we
use “channel/queue-aware” and “channel-aware” to indicate
respectively whether queue state information is considered or
not in OS algorithms.

Investigation of OS algorithms in wireless systems has
been carried out at both packet [3]–[9] and flow levels [10],
[11]. The packet level analysis focuses on the evaluation
of OS algorithms with saturated (i.e., each user always has
data to transmit) or dynamic packet arrivals and time variant
channel conditions, while the flow level one insists on the
systems with dynamic user populations. Compared to the flow
level analysis, the packet level analysis shows advantages in
involving more realistic channel models, which include the
simplest memoryless on-off channel, the two-state Gilbert-
Elliot channel [12], [13], and the more complicated and
accurate finite state Markov channel (FSMC) [14]. In this
paper, our emphasis will be on the packet level analysis.

Previous work on packet-level analysis considering dynamic
packet arrivals focused on network stability, i.e., the queue
occupancy can be bounded whenever feasible [4], [5], with
both channel-aware and channel/queue-aware OS algorithms.
The typical observations are that most channel-aware OS
algorithms, e.g., the proportional fair (PF) algorithm, are
unstable [4] and a quadratic Lyapunov function argument
can be used to prove the stability for channel/queue-aware
algorithms [5]. Recently, several research work also studied
the statistical worst case performance of OS algorithms using
effective bandwidth and its related concepts [6]–[8]. In [7],
a formula is provided to approximate the tail distribution of
packet delay for the greedy channel-aware and round-robin
algorithms under the FSMC model. In [8], the maximum
throughput for the channel-aware and the channel/queue-aware
algorithms are estimated under the constraints that the tail
distribution of the queue length cannot exceed a certain
threshold, where the wireless channel condition or variation
is assumed to be a memoryless on-off process.

While all these work on the network stability and statistical
worst case performance provide important insights into the
queueing behavior of the OS algorithms, the discussions
on some average performance, such as average delay and
average throughput, are missed because of the difficulties in
deriving the steady-state distribution of the queue states. This
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situation becomes even harder in wireless systems due to the
time-varying channel conditions. In [15], a two-dimensional
Markov model for computing the steady-state distribution
in single user systems is proposed, where two dimensions
represent channel and queue states, respectively. However,
such analytical model cannot be directly extended to multiuser
systems since the state space of the Markov model grows
exponentially as the number of users increases. Thus, de-
signing a practically implementable analysis model is critical
for analyzing the performance of OS algorithms in multiuser
wireless systems.

In this paper, a new analytical framework is proposed
for multiuser systems, which can be used for studying the
performance of different wireless schedulers in terms of
average queue length, mean throughput, average delay and
dropping probability. The wireless schedulers under consider-
ation include not only opportunistic schedulers using channel-
aware and channel/queue-aware algorithms, but also non-
opportunistic ones using round-robin and queue-aware algo-
rithms. Specifically, by characterizing the service process from
the finite state Markov channel (FSMC) as a Markov modu-
lated deterministic process (MMDP), the wireless downlink
for the multiuser system is first modeled as an M/MMDP/1/K
queueing system. Then, a deterministic & stochastic Petri nets
(DSPNs) model is constructed, where different scheduling
algorithms can be expressed by model parameters, such as
the enabling predicates and random switches. By applying
the model decomposition technique in stochastic Petri nets
(SPNs), the multiuser system is decomposed into multiple
single user subsystems with inter-correlated service rates. To
facilitate the analysis for each subsystem separately, some
approximation methods including the replacement of the in-
stantaneous service rates by steady-state average ones and
a fixed-point iteration method, are introduced. The proposed
analytical framework significantly reduces the state space of
the Markovian system model in analysis and shows good
performance in scalability. Numerical results show that 1) the
channel-aware algorithm performs better than the round robin
algorithm only in heavy traffic regime; 2) the scheduling gain
of the channel-aware algorithm increases with the number of
users only when the traffic load per user is heavy; and 3)
the channel/queue-aware algorithm outperforms the channel-
aware algorithm in light traffic regime and converges to the
channel-aware algorithm in heavy traffic regime.

Notice that the selection of stochastic Petri nets approach
results from the facts that 1) it provides an intuitive and
efficient way in describing the multiuser system, especially
facilitating the inclusion of different scheduling strategies; and
2) there exist a set of well-developed techniques for stochastic
Petri nets, which can decompose the original complex model
into simple subsystems and provide iteration methods for
performance approximation.

The remainder of the paper is organized as follows. In Sec-
tion II, a DSPN model for the multiuser system is formulated.
In Section III, the single user system is first analyzed, and
then the model decomposition and iteration method in SPN are
discussed to approximate the multiuser system performance.
In Section IV, both analytical and simulation results are
presented to compare the performance of different scheduling

algorithms. Section V concludes this paper.

II. THE DSPN MODEL FORMULATION

In this section, a general framework is introduced for mod-
elling and analyzing a multiuser system using deterministic
and stochastic Petri nets (DSPNs). For basic concepts of
stochastic Petri nets (SPNs), please refer to Appendix A.

A. The M/MMDP/1/K Queueing System

Consider the downlink of a cellular wireless network, where
a base station (BS) transmits data to N (N ≥ 1) mobile
users. The BS maintains a separate data buffer for each mobile
user and each buffer has a finite capacity of K < ∞ bits.
For each data buffer n, the data arrives according to Poisson
distribution with average rate λn bits/sec. The transmission
in the time is slot-by-slot based and each slot has an equal
length ΔT . In each time slot the BS can transmit data to
one user only. It is assumed that all channel conditions are
available at the BS so that the adaptive modulation and coding
(AMC) algorithms can be applied. The wireless channel for
each mobile user is modeled as an independent finite-state
Markov channel (FSMC) with total L states. Each state of
FSMC corresponds to one non-overlapping consecutive SNR
region and a fixed transmission rate determined by the AMC
algorithm. During each time slot, the channel stays at the same
state.

The described system model can be formulated by an
M/MMDP/1/K queueing system as follows. The defined fluid
queueing system consists of a finite number, N , of input
flows indexed by n = 1, 2, . . . , N , and one server. For any n,
there is a finite, irreducible, and continuous-time Markov chain
Hn(τ) with total L server states, which corresponds to the L
channel states of the FSMC model. The transition rates of the
Markov chain depends on its channel fading speed and is not
necessarily identical for all input flows, but the transitions of
different Markov chains are independent. Associated with the
l-th (l ∈ {1, . . . , L}) state of Hn(τ) is a fixed service rate
Rn,l bits/sec, which is a non-negative integer. If at time τ the
server is allocated to flow n with Hn(τ) in the l-th state, the
queue n is served at a deterministic rate Rn,l, i.e., the user is
served according to an L-state MMDP.

B. The DSPN Model

The M/MMDP/1/K queueing system designed for the mul-
tiuser wireless downlink can be equivalently modeled as a
DSPN by following the similar procedure as shown in [16].
The modeled DSPN consists of a SPN for representing service
processes and a DSPN for representing resource sharing.
The SPN, as shown in Fig. 1(a), is further composed of
N subnets and each subnet n corresponds to the L-state
Markov modulated service process of user n. Each subnet
is described by places ({Hnl}L

l=1) and transitions ({tunl}L−1
l=1

and {tdnl}L−1
l=1 ). The DSPN, as shown in Fig. 1(b), models the

resource sharing relationship of the multiuser system and can
be characterized by places ({Qn}N

n=1, {wn}N
n=1 and r) and

transitions ({cn}N
n=1, {dn}N

n=1 and {sn}N
n=1). The meanings

of all the places and transitions are described as follows.
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Fig. 1. The DSPN model for multiuser wireless downlink.

Qn: a place for the queue state of user n.
Hnl: a place for the l-th server state of user n.
cn: an exponentially-distributed timed transition

denoting new bit arrivals from user n, with
firing rate λn. When it fires, one bit of data
arrives at the queue place Qn.

dn: an immediate transition denoting the execu-
tion of scheduling strategy. Different schedul-
ing strategies are expressed using different en-
abling predicates and random switches. The
details will be discussed in the next subsection.

sn: a deterministic timed transition for service pro-
cess. When it fires, one bit of data is transmitted
from the queue place Qn. Its firing rate μn de-
pends on the marking of the places {Hnl}L

l=1,
i.e., if M(Hnl) = 1, then

μn = Rn,l, l = 1, . . . , L

where M(·) is a mapping function from a place
to the number of tokens assigned to it, and
M(Hnl) is either 1 or 0, which represents
whether user n is in its l-th server state or not.

tunl, tdnl: exponentially-distributed timed transitions for
the server state transitions of user n. The fir-
ing rates of tunl and tdnl equal pn

l,l+1/ΔT
and pn

l+1,l/ΔT , which are determined by (35)
and (36) in Appendix B, respectively. When
tunl (tdnl) fires, the server state transits from
l (l + 1) to l + 1 (l).

C. Scheduling Strategies

The performance of the multiuser system depends on the
scheduling strategies applied. In the defined DSPN model,
different scheduling strategies can be described by different
enabling predicates and random switches of the immediate
transition dn. The enabling predicate specifies the condition
under which user n is an eligible candidate for data transmis-
sion, while the random switch indicates the probability that
user n will be selected for service.

1) Round-robin (RR) algorithm: In round-robin algorithm,
the scheduler polls queues for service in a cyclic order
independent of the wireless channel conditions. Therefore, for
the RR algorithm, the enabling predicate yn of dn is

yn : (M(Qn) > 0) (1)

and the random switch gn(M) of dn is

gn(M) =
{

1/‖RR(M)‖, if n ∈ RR(M)
0, otherwise (2)

where M is a vector representing the number of tokens in each
place of the DSPN model, which include {Qn, {Hnl}L

l=1}N
n=1

and RR(M) = {i | M(Qi) > 0}.
2) Channel-aware (CA) algorithms: The channel-aware

algorithms aim at improving the scheduling performance by
incorporating channel state information. Two typical CA al-
gorithms are greedy algorithm and PF algorithm.

Greedy algorithm is also referred to as the Max-SNR
algorithm. The algorithm always picks the user with the best
SNR for transmission, or equivalently, the best transmission
data rate is guaranteed at every scheduling instant. For the
greedy algorithm, the enabling predicates and random switches
can be found as

yn : (M(Qn) > 0)∧(∀i �= n, μi ≤ μn)∨(∀i �= n, M(Qi) = 0),
(3)

gn(M) =
{

1/‖CA(M)‖, if n ∈ CA(M)
0, otherwise (4)

where CA(M) = {i | μi = max(μ1, . . . , μN ), M(Qi) > 0},
and the operators ∧ and ∨ represent “logical and” and “logical
or”, respectively.

PF algorithm, on the other hand, picks the user in each
time slot among all backlogged users in the system which
has the best transmission data rate normalized by the average
throughput it has already received so far. Obviously, if all
users experience statistically identical channels, there is no
difference between the greedy algorithm and the PF algorithm
in the long run, i.e., equations (3) and (4) can also be used to
describe the behavior of the PF algorithm. In fact, the enabling
predication and random switches defined in (3) and (4) can be
easily extended to describe the PF algorithm in more general
scenarios by replacing the actual transmission rate μi, i =
1, . . .N , with the normalized transmission rate μi/μi, i =
1, . . .N , where μi, i = 1, . . .N , is the average transmission
rate of user i .

3) Queue-aware (QA) algorithms: The queue-aware algo-
rithms are actually not ‘opportunistic’ in the sense that they
do not consider the channel state information in scheduling.
Although they are more commonly used in wireline net-
works, in this paper, for the purpose of comparison with
the channel/queue-aware algorithms, a simple QA algorithm,
which always selects the user with the largest queue length,
is studied. For the QA algorithm, we have

yn : (M(Qn) > 0) ∧ (∀i �= n, M(Qi) ≤ M(Qn)), (5)

gn(M) =
{

1/‖QA(M)‖, if n ∈ QA(M)
0, otherwise (6)

where QA(M) = {i | M(Qi) = max(M(Q1), . . . , M(QN)),
M(Qi) > 0}.
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Pn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

pn
1,1νn,1 pn

1,2νn,1

pn
2,1νn,2 pn

2,2νn,2 pn
2,3νn,2

pn
3,2νn,3 pn

3,3νn,3 pn
3,4νn,3

. . .
. . .

. . .
pn

L−1,L−2νn,L−1 pn
L−1,L−1νn,L−1 pn

L−1,Lνn,L−1

pn
L−1,Lνn,L pn

L,Lνn,L

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (12)

4) Channel/queue-aware (CQA) algorithms: The systems
with CA algorithms are ordinarily not stable, since the CA
algorithms do not take into account the queue length informa-
tion, and therefore do not know how to react when one queue
starts getting too large. On the contrary, the CQA algorithms
are a class of schedulers, which consider the information
about both channel and queue occupancy. A simple CQA
algorithm is called the Max-Weight algorithm, where the user
with maximum product of queue length and transmission data
rate is served. For Max-Weight algorithm, we have

yn : (M(Qn) > 0) ∧ (∀i �= n, M(Qi)μi ≤ M(Qn)μn), (7)

gn(M) =
{

1/‖CQA(M)‖, if n ∈ CQA(M)
0, otherwise (8)

where CQA(M) = {i | μiM(Qi) = max(μ1M(Q1), . . . ,
μNM(QN)), M(Qi) > 0}.

III. MODEL SOLUTION AND PERFORMANCE ANALYSIS

In this section, analysis methods are introduced to find the
solutions of the system derived in Section II.

A. Single User System

We first consider the simplest case where there is only one
mobile user, e.g., user n, in the system. Since previously
defined M/MMDP/1/K queue underlying the DSPN model
does not hold Markovian property, the direct analysis for such
a single user system is still difficult. In order to simplify the
analysis, we introduce the following embedded Markov chain
[17]. Let Hn(τ) be the Markovian server state process and
Qn(τ) be the length of the queue occupancy at any time
instant τ . Since the channel state keeps unchanged during
each time slot, we can discretize the random processes at
every ΔT interval and define Hn,t := Hn(t × ΔT ) and
Qn,t := Qn(t × ΔT ). After discretization, the server and
queue states are assumed to change only at the sample
instant. Obviously, the two-dimensional embedded Markov
chain {(Hn,t,Qn,t), t = 0, 1, ...} can accurately represent the
system behavior. A similar discrete-time Markov chain has
also been introduced in [15] for a single user wireless LAN
(WLAN) system.

Let pn
(l,k),(m,h) be the transition probability from state (l, k)

to state (m, h) of the embedded Markov chain. Then,

pn
(l,k),(m,h) = P{Qn,t+1 = h|Hn,t = l,Qn,t = k}pn

l,m

= νn,l
k,hpn

l,m (9)

where νn,l
k,h = P{Qn,t+1 = h|Hn,t = l,Qn,t = k} and pn

l,m

denotes the transition probability of the FSMC from state l to

m. The determination of pn
l,m under Rayleigh fading channel

is given in Appendix B.
Let An,t denote the number of bits arrived during the t-th

time slot. Since the queueing process evolves following

Qn,t+1 = min[K, max[0,Qn,t − Rn,lΔT ] + An,t], (10)

we have

νn,l
k,h =

⎧⎪⎪⎨
⎪⎪⎩

P(An,t = h − k + Rn,lΔT ) k ≥ Rn,lΔT, h �= K
P(An,t = h) k < Rn,lΔT, h �= K
P(An,t ≥ K − k + Rn,lΔT ) k ≥ Rn,lΔT, h = K
P(An,t ≥ K) k < Rn,lΔT, h = K

(11)
where P(An,t = u) = (λnΔT )u

u! e−λnΔT due to Poisson
assumptions.

Define matrices νn,l = [νn,l
k,h] and Pn = [pn

(l,k),(m,h)]. We
can partition Pn into blocks, each of which is a (K + 1) ×
(K + 1) matrix as shown in (12) at the top of the page. Note
that except for the main, upper and lower diagonals, all other
blocks are zeros.

Define the steady-state probability πn
l,h ≡

limt→∞ P{Hn,t = l,Qn,t = h} and the vector
πn = (πn

1,0, π
n
1,1, . . . , πn

1,K , . . . , πn
L,0, π

n
L,1, . . . , π

n
L,K).

Then, the stationary distribution of the ergodic process
{(Hn,t,Qn,t)} can be uniquely determined from the balance
equations

πn = πnPn, πne = 1 (13)

where e is the unity vector of dimension L × (K + 1) and
πn can be derived as the normalized left eigenvector of Pn

corresponding to eigenvalue 1. Given πn, the performance
metrics such as the average queue length, the mean throughput,
the average delay and the dropping probability can be derived.

• The average queue length equals

Qn =
K∑

k=0

L∑
l=1

πn
l,kk. (14)

• The mean throughput can be expressed as

Tn =
L∑

l=1

K∑
k=1

T n
l,kπn

l,k (15)

where

T n
l,k =

{
Rn,l if k ≥ Rn,lΔT

k
ΔT if k < Rn,lΔT

. (16)

This is the sum of the product between the service rate
in state l and the probability that the server is in state l
given there are data in the system.

• The average delay then can be calculated as

Dn = Qn/Tn. (17)
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• Let Bn
l,k be the random variable which represents the

amount of dropped bits when Hn,t = l and Qn,t = k.
Since K + b = An,t + max[0, k − Rn,lΔT ], where b is
the number of bits dropped during the t-th slot,

P(Bn
l,k = b) = P(An,t = K + b−max[0, k −Rn,lΔT ]).

(18)
Then, the dropping probability pn

d can be estimated as

pn
d =

Average # of bits dropped in a time slot
Average # of bits arrived in a time slot

=

∑L
l=1

∑K
k=0

∑∞
b=0 bP(Bn

l,k = b)πn
l,k

λnΔT
. (19)

B. Model Decomposition and Iteration

Although the analytical method in previous section
for the single user system can be applied to the mul-
tiuser scenario by constructing an embedded Markov chain
{H1,t,Q1,t, . . . ,HN,t,QN,t} with appropriately defined tran-
sition probabilities, the exponentially enlarged state space
makes it unacceptable for a large user population. Since
directly solving the DSPN suffers the high computational
complexity, in this subsection, model decomposition and an
iteration procedure are introduced to simplify the analysis.

1) Model decomposition: According to [19], the original
DSPN can be decomposed into a set of subnets, as shown
in Fig. 2. The subnet Fig. 2(a) remains the same structure as
that in Fig. 1(a), while the DSPN in Fig. 1(b) is decomposed
into N DSPN subnets in Fig. 2(b). The n-th DSPN subnet
consists of the exponentially-distributed timed transition cn,
the deterministic timed transition sn, and the queue place Qn.
Note that the places r, wn and the immediate transitions dn

in Fig. 1 are all deleted in the decomposed model for simple
model description. The transition cn and the place Qn remain
the same as that in the original DSPN model, while the firing
rate of transition sn is associated with the random switch
gn(M) of the immediate transition dn in the original DSPN.
The resource sharing relationship of the original DSPN model
is implicitly expressed in the marking-dependent firing rate of
sn as

μ′
n = μngn(M). (20)

By decomposition, the original multiuser system is repre-
sented by N subsystems, each of which consists of one SPN
in Fig. 2(a) and one DSPN in Fig. 2(b). Obviously, if each
subsystem can be analyzed separately, the model decompo-
sition can significantly reduce the size of the state space in
the analysis and achieve better performance in computational
complexity. Since each subsystem n in the decomposed DSPN
model is almost the same as that defined for the single user
system, a similar two-dimensional Markov model (Hn,t,Qn,t)
as described in Section III-A can be constructed for each
subsystem. The only difference is that the firing rate of sn

becomes μ′
n instead of μn.

However, unfortunately, such model decomposition is not
‘clean’, i.e., there exist interactions among subsystems due
to the marking-dependent firing rate μ′

n. This is because the
random switch gn(M) at the t-th time slot depends not only
on its own marking, but also on the markings of all other
subsystems. Thus, in order to solve the n-th subsystem, the

Qn
cn sn

...

Hn1 Hn2 HnL
tun1

tdn1

...

tun(L-1)

tdn(L-1) n=1, …, N

(b)

(a)

subsystem n

Fig. 2. Decomposed DSPN model.

markings of all other subsystems have to be available at
the same time. There are two difficulties arising from this
situation: 1) the marking of a subsystem is equivalent to the
states of a Markov chain, which is time-dependent and cannot
be used/derived as the input/output parameters of any other
subsystems; 2) the subsystems cannot be ordered, giving rise
to cycles in the model solution process. Considering a two-user
system as an example, each subsystem 1 or 2 needs the output
of the other as input and neither can be first solved correctly.
In order to solve these difficulties, two methods are introduced
in the following two subsections. The first difficulty will be
solved by using the steady-state probabilities of the markings
instead of the instant markings as the subsystem input, and the
second difficulty will be solved by the method, called fixed
point iteration [20]. Simulation results shown in Section IV
indicate that such approximation is reasonable.

2) Subsystem solution: Let πn denote the steady-state
probabilities of the embedded Markov chain {Hn,t,Qn,t}
(i.e., the steady-state probabilities of the markings) for the n-
th subsystem. Due to the interactions between the subsystems,
the solution πn for the n-th subsystem can be obtained only
when the solutions of all the other subsystems {πi}N

i=1,i�=n are
known. Obviously, if the N subsystems are solved sequentially
by index, the above requirement cannot be satisfied since only
{πi}n−1

i=1 are known when solving the n-th subsystem. In this
subsection, we will derive the solution for the n-th subsystem
under the assumption that {πi}N

i=1,i�=n are given. We will
leave the discussion of how to satisfy this assumption using
the fixed point iteration method in the next subsection.

Given {πi}N
i=1,i�=n, we can approximate the random switch

gn(M) with g̃n(M), which is a function of the steady-state
probabilities of the markings. Notice that gn(M) indicates the
probability that user n will be selected given a certain marking
M, while g̃n(M) indicates the long-run selection probability
for user n. Based on g̃n(M), the firing rate of sn can be
determined as

μ̃′
n =

{
μn, with probability g̃n(M)
0, with probability 1 − g̃n(M). (21)

In the follows, the derivation of g̃n(M) for different schedul-
ing algorithms is discussed.
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• For the RR algorithm, the selection probability of user n
can be expressed as

g̃n(M)=
∑
U∈U

1
‖U‖

∏
i∈U,n �=i

P[M(Qi) > 0]

∏
j∈U

P[M(Qj) = 0] (22)

where U = {n, . . .} is a set of users that must include
user n and may include any other users, and U is the set
that contains all possible sets of U .

• For the CA algorithm, the selection probability of user
n depends on the server state. If the server is in the l-th
state for user n, i.e. M(Hnl) = 1, we have μn = Rn,l,
and g̃n(M) can be expressed as

g̃n(M)=
∑
U∈U

∏
i∈U,n�=i

P[M(Qi) > 0]

∏
j∈U

P[M(Qj) = 0]pU (M) (23)

where

pU (M)=
∑
V ∈V

1
‖V ‖

∏
i∈V,n�=i

P[M(Hil) = 1]

∏
j∈U,j∈V

l−1∑
m=1

P[M(Hjm) = 1], (24)

V ⊆ U and V is the set that contains all possible subsets
of U .

• For the QA algorithm, the selection probability of user n
depends on its queue length. If the queue length of user
n is k, i.e. M(Qn) = k, g̃n(M) can be expressed as

g̃n(M)=
∑
U∈U

∏
i∈U,n�=i

P[M(Qi) > 0]

∏
j∈U

P[M(Qj) = 0]pU (M) (25)

where

pU (M)=
∑
V ∈V

1
‖V ‖

∏
i∈V,n�=i

P[M(Qi) = k]

∏
j∈U,j∈V

P[M(Qj) < k]. (26)

• For the CQA algorithm, the selection probability of user
n depends on both the server state and its queue length.
If the server is in the l-th state and the queue length is
k for user n, i.e. M(Hnl) = 1 and M(Qn) = k, g̃n(M)
can be expressed

g̃n(M)=
∑
U∈U

∏
i∈U,n�=i

P[M(Qi) > 0]

∏
j∈U

P[M(Qj) = 0]pU (M) (27)

where

pU (M)=
∑
V ∈V

1
‖V ‖

∏
i∈V,n�=i

P[μiM(Qi) = μnlk]

∏
j∈U,j∈V

P[μjM(Qj) < μnlk]. (28)

With g̃n(M), each subsystem n can be solved by following
the similar way as in Section III-A with the following revisions
for some system parameters.

• The computation of pn
(l,k),(m,h) should be changed to

pn
(l,k),(m,h) = (νn,l

k,hg̃n(M)+νn,0
k,h(1−g̃n(M)))pn

l,m (29)

where νn,l
k,h and νn,0

k,h are determined according to (11)
with Rn,0 = 0.

• The mean throughput of user n becomes

Tn =
L∑

l=1

K∑
k=1

T n
l,kg̃n(M)πn

l,k (30)

where T n
l,k is derived according to (16). The total mean

throughput of the multiuser system is

T =
N∑

n=1

Tn. (31)

• The dropping probability can be computed as (19). How-
ever, the value of P(Bn

l,k = b) equals

P(Bn
l,k = b)

= P(An,t = K + b − max[0, k − Rn,lΔT ])g̃n(M)
+P(An,t = K + b − k)(1 − g̃n(M)). (32)

3) Fixed point iteration: In the previous subsection, we
assume that the solutions of all the other subsystems
{πi}N

i=1,i�=n are already derived and can be used as input
parameters when solving the n-th subsystem. However, this
assumption is not true if the N subsystems are solved se-
quentially by index. In this subsection, fixed point iteration is
used to deal with this problem.

Let {π1, . . . , πN} be the vector of iteration variables of
the fixed point equation

{π1, . . . , πN} = f({π1, . . . , πN}) (33)

where the function f is realized by solving the N subsystems
successively with the subsystem solution method as described
in the previous subsection. That is, the function f can be
decomposed into N independent functions fn, n = 1, . . . , N ,
with fn representing the solution of the n-th subsystem

πn = fn({π1, . . . , πN}).
Obviously, the vector of steady-state distributions of the N
subsystems {π1, . . . , πN} satisfies (33), which is referred to
as the fixed point of this equation.

The fixed point can be derived by successive substitu-
tion [20]. Let the initial vector of iteration variables be
{π0

1, . . . , π
0
N}. Each element of π0

n (n = 1, . . . , N) can be
set to an arbitrary value between 0 and 1. In the z-th iteration,
we have

{πz
1, . . . , π

z
N} = f({πz−1

1 , . . . , πz−1
N }) (34)

where the iteration variables are determined by the func-
tion f based on the values of the last iteration, and the
function f is realized by solving the N subsystems succes-
sively using the solution method as described above. Specif-
ically, in solving the n-th subsystem in the z-th iteration,
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Subsystem 1

Subsystem 2

Subsystem 3

1 1 1
1 2 3( , , )z z z− − −π π π 1 1

1 2 3( , , )z z z− −π π π

1
1 2 3( , , )z z z−π π π

1 2 3( , , )z z zπ π π

From the (z-1)-th 
iteration

To the (z+1)-th 
iteration

Fig. 3. The z-th iteration for the three-user scenario.

{πz
1, . . . , π

z
n−1, π

z−1
n , . . . , πz−1

N } is used as the input to de-
rive the value of πz

n. After that, πz−1
n is replaced by πz

n as
input in solving the rest of the subsystems (from the (n+1)-th
to the N -th subsystems) during the z-th iteration. An example
for the z-th iteration of a three-user system is illustrated in Fig.
3.

The iteration is terminated when the differences between the
iteration variables of two successive iterations are less than a
certain threshold value. The convergence of the fixed point
iteration is proved in Appendix C.

The computational complexity of the proposed analytical
approach can be obtained as follows. Let Z represent the
number of iterations for analysis to converge. Since in each
iteration, the steady-state probabilities of the N subsystems
have to be derived, the total time for the approach termination
is T = Z × N × Tsub, where Tsub denotes the amount
of time to solve each subsystem. Tsub depends on the state
number of the embedded Markov chain for each subsystem,
which equals (K + 1) × L. Note that the state number of
the embedded Markov chain before decomposition equals(
(K +1)×L

)N
. Therefore, the proposed analytical approach

with decomposition and iteration techniques greatly reduces
the computational complexity.

IV. SIMULATION AND DISCUSSIONS

In this section, both analytical and simulation results are
presented to compare the performance of different scheduling
algorithms. In the simulation, all users are assumed to have
statistically identical wireless channels. The SNR thresholds
and the corresponding transmission rates for each service
process are defined in Table I [22]. If the instantaneous
SNR is below -12.5dB, the transmission rate is set to be
0. Accordingly, the FSMC model has 12 states in total. The
carrier frequency f and the time slot duration ΔT are set to
1.9GHz and 1.67ms, respectively. The velocity v of the mobile
users is assumed to be 3km/h so that the Doppler frequency
fn

d becomes 5Hz. We also let the mean SNR γn be 0dB and
the buffer size K = 2500bits. Notice that for other values of
SNR, similar observations can be obtained.

In order to simplify the simulations by further reducing
the state space of the Markov model, we redefine the data

TABLE I
SNR THRESHOLD AND RATES

SNR Threshold γn,l (dB) ≥ Rates Rn,l (Kbs)

-12.5 38.4

-9.5 76.8

-8.5 102.6

-6.5 153.6

-5.7 204.8

-4.0 307.2

-1.0 614.4

1.3 921.6

3.0 1228.8

7.2 1843.2

9.5 2457.6

unit in the queueing system, or equivalently the token unit
in the Petri net model, so that one data unit represents 50
bits. This approximation is acceptable since the amount of
data that arrive to or depart from the system in one time slot
usually includes a large number of bits. After redefinition,
both the transmission rate Rn,l and the buffer size K should
be divided by 50, and the arrival rate and the performance
metrics derived in the follows are in terms of data units. Note
that the maximum queue length becomes 50 data units.

Fig. 4 examines the accuracy of our analysis method de-
scribed in Section III. The stationary queue length distributions
from both analytical and simulation results are compared,
which are denoted by “Analysis” and “Simulation” in the
figure, respectively. In the simulation, the number of users
is set to 2, and the mean data arrival rate per user is fixed
at 1,500 data units per second. Each simulation runs for
20,000 time slots. Note that in the simulation, the analytical
results converge after three iterations. In each iteration, the
steady-state probabilities of the two embedded Markov chains
for subsystems 1 and 2 are obtained, respectively. The state
number of the Markov chain for each subsystem 1 or 2 equals
612, while the state number of the embedded Markov chain
for directly modelling the whole system equals 374544. This
further demonstrates the computational complexity reduction
by the proposed approach.

In Fig. 4, two subfigures (a) and (b) correspond to the
round robin (RR) and the channel-aware (CA) algorithms,
respectively. From the figures, it can be observed that, for
both scheduling algorithms, the analytical results match well
with those from the simulation, i.e., the proposed analytical
method is accurate. The same observation is also true for
the queue-aware (QA) and the channel/queue-aware (CQA)
algorithms, and the simulation and analytical results for these
two algorithms are omitted. Since the buffer size K equals
50 data units and the arriving data is dropped if the buffer
is full, the distribution of the queue length is truncated at
50. Since the queue length distribution at 50 represents the
sum probability of the queue length equal to and larger than
50 if no buffer limitation exists, one peak at 50 is observed.
In what follows, we will apply analytical results only to
compare the performance of the four scheduling algorithms.
The performance metrics include average queue length, mean
throughput, average delay and dropping probability.
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(a) round robin algorithm (b) channel-aware algorithm

Fig. 4. Analytical and simulation results of queue length distribution for different schedulers.

Fig. 5 shows the performance comparison among the al-
gorithms under different arrival rates (or traffic loads). The
results are based on the fixed user number of 2 and the
variant average data arrival rate per user from 1,000 to 40,000
data units per second. From the figure, it can be observed
that 1) when the arrival rate is below a certain threshold
(approximately 3,000-5,000 data units per second with respect
to different performance metrics), the CA algorithm has the
worst performance, while the QA algorithm achieves the best
one; 2) when the arrival rate is higher than the threshold,
the performance of the QA algorithm becomes the worst,
while those of CA and CQA algorithms get very close and
become the best; 3) the performance of the RR algorithm
converges to that of the QA algorithm with the increase of
the arrival rate. All these observations can be explained as
follows. The CA algorithm tends to select a user with a
better channel condition, while the QA algorithm favors a
user with a larger queue length. When the traffic load is
light, the instantaneous queue length is relatively short so that
the actual transmission rate of a selected user n at any time
slot t is mainly determined by its instantaneous queue length
instead of its current channel condition. Therefore, in this
case, the QA algorithm, which favors users with larger queue
lengths, can maximize the transmission rate, while the CA
algorithm performs worst due to the ignorance of queue length
information. When the traffic load is heavy, on the other hand,
the queue length is relatively large and the actual transmission
rate of a selected user n at any time slot t is determined by
its instantaneous channel condition. Therefore, the QA and the
CA change their positions in system performance. Since the
CQA algorithm considers both channel and queue states in
user selection, it can balance the service rate and the queue
length in both situations and thus achieve relatively good
performance under all traffic conditions. When the traffic load
is extremely heavy, i.e., the queues of the users are saturated,
the queue length information is not important any more in
user selection, which results in the performance convergence
of the CA/CQA and RR/QA algorithms. Also, note that in Fig.
5(c), the average delay of QA algorithm is concave (increases

before the arrival rate reaches 5,000 data units per second and
decreases afterwards) while the average delay of others are
monotonically decreasing with traffic load. This is because
when the traffic load is light, the average queue length of the
QA algorithm increases much faster than its mean throughput
as shown in subfigures (a) and (b).

Fig. 6 shows the performance of the scheduling algorithms
under different numbers of users. The average data arrival rates
per user are set at the low (1,500 data units per second) and
high (5,000 data units per second) levels. The number of users
varies from 2 to 10. In infinite backlog traffic model [10], it is
well-known that the OS algorithms achieve larger throughput
than the RR algorithm, or the scheduling gain, defined as
the ratio between the throughput of an OS algorithm and the
RR algorithm, is larger than 1. Furthermore, such scheduling
gain increases with the number of users due to the improved
multiuser diversity effect. However, Figs. 6(a) and 6(b) reveal
that for dynamic data arrivals, the above observations only
hold for high average arrival rate (5,000 data units per second).
When the average arrival rate is low (1,500 data units per
second), the scheduling gain of the CA algorithm over the
RR algorithm becomes smaller than 1, and decreases with the
increase of the number of users. A similar observation can be
obtained for the average delay and the dropping probability, as
well. When the average arrival rate is high, the performance of
CA algorithm deteriorates more slowly in terms of the average
delay and the dropping probability than the RR algorithm as
the number of users increases. But, when the average arrival
rate is low, an opposite results can be observed. The analytical
results for these two performance metrics are omitted here due
to space limitation. The faster performance degradation of the
CA algorithm under light traffic load results from the facts
that 1) the multiuser diversity gain has little effects on the
transmission rate, which is dominated by the queue length;
and 2) such negative effects are enlarged in terms of delay
and dropping probability when more users are waiting for
transmission.
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(a) average queue length (data units) (b) mean throughput (data units per second)

(c) average delay (ms) (d) dropping probability

Fig. 5. Performance comparison under different arrival rates.

(a) mean throughput - arrival rate 1.5Kps (b) mean throughput - arrival rate 5Kps

Fig. 6. Performance comparison under different number of users.
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V. CONCLUSIONS

In this paper, a general framework for analyzing perfor-
mance of the wireless schedulers in multiuser systems has
been discussed. The system behavior is formulated by an
M/MMDP/1/K queueing model and the approximation for
multiple performance metrics is derived with low compu-
tational complexity by applying the decomposition and the
iteration techniques from SPN. Based on this framework, four
classes of typical wireless schedulers, which are referred to as
round robin, channel-aware, queue-aware and channel/queue-
aware, are analyzed and compared in terms of average queue
length, mean throughput, average delay and dropping proba-
bility. The analysis shows that

• while in heavy traffic regime the channel-aware scheduler
indeed outperforms the round robin scheduler, this is not
true when the traffic load is light;

• the performance of the channel/queue-aware scheduler is
better than that of the channel-aware scheduler in the
light traffic regime, and converges to the latter with the
increase of the traffic load; and

• the ratio of the throughput between the channel-aware
scheduler and the round robin scheduler, which is com-
monly referred to as the scheduling gain, decreases with
the increase of the number of users when the traffic load
per user is light.

Our future work will focus on extending the proposed
analytical framework to multi-carrier and multi-antenna sys-
tems, where the system behavior can be formulated as an
M/MMDP/M/K queueing model. Since the state space of
the multi-server model is even larger than the single server
model studied in this paper, it can be expected that applying
the decomposition and iteration techniques may be more
important in obtaining practical solutions.
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APPENDIX

A. Brief introduction of stochastic Petri nets (SPNs) [23], [24]

A Petri net is a directed bipartite graph with two types of
nodes called places and transitions which are represented by
circles and rectangles (or bars), respectively. Arcs connecting
places to transitions are referred to as input arcs; while the
connections from transitions to places are called output arcs.
A non-negative integer (the default value is one) may be
associated with an arc, which is referred to as multiplicity
or weight. Places correspond to state variables of the system,
while transitions correspond to actions that induce changes of
states. A place may contain tokens that are represented by dots
in the Petri net. The state of the Petri net is defined by its mark-
ing, which is represented by a vector M = (l1, l2, . . . , lk),
where lk = M(pk) is the number of tokens in place pk. Here,
M(·) is a mapping function from a place to the number of
tokens assigned to it. A transition is enabled if the number
of tokens in each of its input places is larger than the weight
of its corresponding input arc. An enabled transition can fire,

and as many tokens as the corresponding input arc’s weight
are moved from the input place to the output place.

Stochastic Petri nets (SPNs) are one kind of Petri nets
in which an exponentially-distributed time delay is associ-
ated with each transition. Generalized Stochastic Petri nets
(GSPNs) extends the modelling power of SPN, and divides
the transitions into two classes: the exponentially-distributed
timed transitions (represented by blank rectangles), which are
used to model the random delays associated with the execution
of activities, and immediate transitions (represented by bars),
which are devoted to the representation of logical actions
that do not consume time. Deterministic and stochastic Petri
nets (DSPNs) further extends GSPN in that it allows timed
transitions to have an exponentially-distributed time delay or
an deterministic timed delay (represented by filled rectangles).
The firing rate of the timed transitions may be marking-
dependent.

SPN or GSPN can be mapped to continuous-time Markov
chains (CTMC). If the resulting CTMC is irreducible, we can
compute its steady-state probability vector. However, since the
continuous-time stochastic process underlying DSPN is non-
Markovian, the discrete-time embedded Markov chain has to
be constructed in order to compute the steady-state solutions
of DSPN.

B. Determination of pn
l,m in Rayleigh fading channel

For Rayleigh fading channel, pn
l,m can be determined as

follows [18]. Assume the state transitions of the FSMC happen
only between adjacent states, i.e.

pn
l,m = 0, |l − m| ≥ 2. (35)

Let γn,l, (l = 1, . . . , L− 1), denotes the SNR threshold value
between the l-th and (l + 1)-th states of the FSMC model
for user n. The adjacent-state transition probability can be
calculated as

pn
l,l+1 =

χ(γn,l+1)ΔT

πn,l
, l = 1, . . . , L − 1, (36)

pn
l,l−1 =

χ(γn,l)ΔT

πn,l
, l = 2, . . . , L. (37)

Here, χ(γn) denotes the level cross rate at an instantaneous
SNR γn and is given by

χ(γn) =
√

2πγn

γ
fn

d exp(−γn

γn

) (38)

where fn
d denotes the mobility-induced Doppler spread, γn =

E[γn] is the average received SNR, and πn,l(l ∈ L) denotes
the stationary probability that the FSMC is in state l given by

πn,l = exp(γn,l/γn) − exp(γn,l+1/γn). (39)

Finally, pn
l,l can be derived from the normalizing condition∑L

m=1 pn
l,m = 1 as

pn
l,l =

⎧⎨
⎩

1 − pn
l,l+1 − pn

l,l−1, (l = 2, . . . , L − 1)
1 − pn

l,l+1, (l = 1)
1 − pn

l,l−1, (l = L)
. (40)
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C. Convergence of the fixed point iteration

According to Theorem 2 in [20], in order to prove the
convergence of the fixed point iteration for the decomposed
DSPN model as described in (34), it is sufficient to show that
the following lemma is true.

Lemma 1: The embedded Markov chain (Hn,t,Qn,t) for
the n-th subsystem is irreducible, if K ≤ Rn,LΔT .

Proof: It has been proved in [15] that the Markov chain
for the single user system is irreducible. Similarly, we prove
Lemma 1 by showing that for each transition from state
(l, k) to (m, h), there exists a multi-transition path (l, k) →
(l∗, k) → (l∗, h) → (m, h) with non-zero probability, where
Rn,l∗ΔT ≥ k. Since K ≤ Rn,LΔT , there always exists such
l∗ that satisfies this condition.

Since the FSMC model is irreducible, we have that pn
l,l∗ ,

pn
l∗,l∗ and pn

l∗,m are all positive. Now we shall verify the
following inequalities:

1) νn,l
k,kg̃n(M) + νn,0

k,k (1 − g̃n(M)) > 0;

2) νn,l∗
k,h g̃n(M) + νn,0

k,h(1 − g̃n(M)) > 0;

3) νn,l∗
h,h g̃n(M) + νn,0

h,h(1 − g̃n(M)) > 0.

For inequality 1), since An,t = k−max[0, k−Rn,lΔT ] ≥
0 (Rn,0 = 0 included), we have νn,l

k,k > 0 and νn,0
k,k > 0.

Therefore, inequality 1) is true with g̃n(M) ∈ [0, 1]. The proof
of inequality 3) is similar.

For inequality 2), since An,t = h−max[0, k−Rn,l∗ΔT ] ≥
0, we have νn,l∗

k,h > 0, where Rn,l∗ΔT ≥ k. Now consider
both the cases when the value of k is zero or not. If k = 0,
we have g̃n(M) = 0 and νn,0

k,h > 0; otherwise, if k > 0, we
have g̃n(M) > 0 and νn,0

k,h ≥ 0. Thus, the inequality 2) is true
under both cases.

According to (29), we have pn
(l,k),(l∗,k) > 0, pn

(l∗,k),(l∗,h) >
0 and pn

(l∗,h),(m,h) > 0, where Rn,l∗ΔT ≥ k, which prove the
existence of the multi-transition path with non-zero probability
for each transition from state (l, k) to (m, h).
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