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a b s t r a c t

A TCP/RED (Transmission Control Protocol/Random Early Detection) system with multiple-
bottleneck links could be unstable even if its system parameters are set the same as those
in a stable single-bottleneck system [D. Bauso, L. Giarre, G. Neglia, Active queue manage-
ment stability in multiple bottleneck networks, IEEE ICC’04, vol. 4, June 2004, pp. 2267–
2271]. In this paper, we study the stability of more general AIMD (Additive Increase and
Multiplicative Decrease)/RED system with multiple bottlenecks that may incur non-negli-
gible packet losses. We develop a general mathematical model to analyze network stability
for both delay-free and delayed AIMD/RED systems. Sufficient conditions for the asymp-
totic stability of multiple-bottleneck systems with heterogeneous delays are derived by
appealing to Lyapunov stability theory with Lyapunov–Razumikhin conditions, and these
conditions can be easily assessed by using LMI (Linear Matrix Inequality) Toolbox. Numer-
ical results with Matlab and simulation results with NS-2 are given to validate the analyt-
ical results.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

The Transmission Control Protocol (TCP) congestion
control mechanism is a key technology for the world-wide
information infrastructure, the Internet, and is deployed in
the end-systems to maintain network stability and integ-
rity in a distributed manner. The core of the Internet can
be simple and scalable, and an IP router serves all incoming
packets in a First-In First-Out (FIFO) fashion. In particular,
in the TCP/RED (Random Early Detection) mechanism, the
excessive arrival packets are buffered in a queue when the
aggregated packet arrival rate exceeds the packet depar-
ture rate, and a RED-enabled router discards the incoming
packets randomly when the average queue length exceeds
a certain threshold (minth) and all incoming packets are
discarded when the average queue length exceeds another
higher threshold (maxth). Since packet losses in the Inter-

net are mainly due to network congestion, a TCP sender
uses packet losses as network congestion indicators and
adjusts its sending rate accordingly with a congestion win-
dow, which limits the maximum number of packets being
sent without acknowledgments. TCP congestion control is
implemented via the Additive Increase and Multiplicative
Decrease (AIMD) mechanism: when there is no congestion
indication (no packet loss), the TCP congestion window
size is increased linearly by one packet per round-trip
time; otherwise, the TCP congestion window size is re-
duced by half. To support heterogeneous traffic and multi-
media applications, instead of increase-by-one and
decrease-by-half, a generalized AIMD mechanism can use
a pair of parameters (a; b) to set the increase rate and the
decrease ratio [3–5], and the parameter pair can be flexibly
chosen according to the TCP-friendly condition [5] and the
applications quality of service (QoS) requirements. On the
other hand, to distribute the network congestion indicators
fairly to all on-going flows, active queue management
(AQM) [6,7], e.g., the RED queue management scheme,
has been promoted to be deployed in the intermediate
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nodes. With the RED schemes [8,9], the packet loss rate of
each flow is roughly proportional to the flow sending rate.
The AIMD congestion control, coupled with the RED queue
in the core network, is essential to Internet stability and
integrity [10].

Instead of proposing new control mechanisms, we focus
on the stability and performance of the currently dominant
AIMD congestion control mechanism over RED queue man-
agement, since the AIMD/RED in the core network has been
acknowledged as one of the key factors to the overwhelm-
ing success of the Internet [10]. Needless to say, an in-
depth understanding of AIMD/RED systems is of vital
importance for healthy proliferation of the Internet in the
future. Stability problems associated with TCP (e.g., AIMD)
controlled flows over RED queues have been investigated
extensively in the literature, for network models with a
single bottleneck [2,6,13,14,17]. Notably, [6] proved the
stability of TCP/RED systems without feedback delay, using
a fluid model. The stability of TCP/RED systems with feed-
back delay has been studied in [15], which indicated that
TCP/RED becomes unstable when the delay increases or,
more strikingly, when link capacity increases. Our previous
results provided some sufficient conditions to guarantee
the stability of single-bottleneck AIMD/RED systems, con-
sidering feedback delays [26].

However, for the vast-scale Internet, the single-bottle-
neck topology may no longer be representative and a flow
may traverse multiple links with non-negligible packet
losses. In [1], it is shown that a multiple-bottleneck net-
work may be unstable even if the same system parame-
ters are used as those in a single-bottleneck, stable
network. In fact, the congestion signals from multiple
links sharing by different flows may lead to chaotic behav-
iors. Clearly, the results from single bottleneck networks
can not be directly applied to multiple-bottleneck net-
works. In a nutshell, the stability property of multiple-
bottleneck networks remains an important open issue
beckoning for further investigation.

In this paper, after developing a general mathematical
model of multiple-bottleneck AIMD/RED system, we study
the stability properties, mainly asymptotic stability, of the
system, considering possible heterogeneous feedback de-
lays and propagation delays. The definitions of stability
are listed below, which follow those in [24]

Definition 1. Consider dynamic systems with time delay
of the following form:

dx
dt
¼ f ðt; xðtÞ; xðt � s1ðtÞÞ; . . . ; xðt � smðtÞÞÞ;

where x 2 Rn; f : I � Rn � Rn � . . .� Rn ! Rn is continuous.
Let s ¼ supi¼1;::;msiðtÞ. The trivial solution of the system is
said to be

� stable if for every � > 0 and t0 2 Rþ, there exists some
d ¼ dðt0; �Þ > 0 such that for any nðtÞ 2 C½½t0 � s; t0�;
Rn�; knk < d implies kxðt; t0; nÞk < � for all t P t0;

� asymptotically stable if the system is stable and for every
t0 2 Rþ, there exists some g ¼ gðt0Þ > 0 such that
limt!1kxðt; t0; nÞk ¼ 0 whenever knk < g:

The main contributions of the paper are summarized as
follows. First, the fluid model of a general multiple-bottle-
neck AIMD/RED system without feedback delay is proved
to be Globally asymptotically stable, independent of the
number of flows in each bottleneck, flow parameter pairs
(a; b), and their round-trip delays, etc. Next, we consider
the multi-bottleneck system with feedback delays where
global stability is often difficult to attain, due to the highly
nonlinear nature and the effect of delays. We present two
sufficient conditions to guarantee local asymptotic stability
of the system and note that these results are for general
multiple-bottleneck scenarios. Numerical results with
Matlab and simulation results with NS-2 [29] have vali-
dated the analytical results with an example of two-bottle-
neck topology. The theoretical findings can be used as a
guideline for tuning the system parameters to maintain
network stability and enhance system performance, and
the analytical and simulation results provide important in-
sight to understand the stability and performance of multi-
bottleneck networks.

The remainder of the paper is organized as follows. Sec-
tion 2 gives a brief review of related work. In Section 3, we
provide background on the fluid model for stability analy-
sis of the Internet, building on which we develop a general
model for multi-bottleneck scenarios. We investigate in
Section 4 the stability properties with delay-free marking,
and prove the global asymptotic stability of the fluid model
system by using Lyapunov stability theory and LaSalle’s
Invariance Principle. Section 5 studies the multi-bottleneck
system considering feedback delays. Numerical results by
MATLAB and simulation results by NS-2 are presented in
Section 6, followed by concluding remarks in Section 7.

2. Related work

Internet stability analysis has recently received much
attention. In particular, the stability of TCP systems has
been studied from the point of window-based flow control
[6,13–17,26,27] and rate control [19,21]. A linear model of
a RED gateway with TCP connections was developed in
[13,14] to characterize the stability region of the system
and guideline for setting RED parameters was provided
for the single-node analysis. A nonlinear discrete-time
model was proposed in [18] to further study the dynamics
of TCP/RED system over large parameter variations and
[20] revealed a more comprehensive reason about the
oscillation of TCP/RED system from the viewpoint of non-
linear control theory. New control mechanisms such as
[23] were also proposed for the Internet, aiming to achieve
quick convergence to efficiency, stability, fair bandwidth
sharing, and low packet loss rate.

In practice, it is very likely that flows would experience
heterogeneous round-trip delays and some flows may un-
dergo multiple bottlenecks. To date, little work has been
done on the stability and analysis of multiple bottleneck
networks. It has been showed in [1] that RED configuration
based on a single-bottleneck assumption may not prevent
traffic instability when congestion occurs at the same time
in two different locations of the network. Recent work [11]
studied a class of TCP/RED multiple-bottleneck model and
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tried to avoid network congestion by imposing some
restrictions of AQM parameters. Middleton et al. [12] pre-
sented a matrix model and derived results that predict a
degree of fairness in resource allocation between flows
that compete directly with each other. In this paper, we
study the general case of multiple-bottleneck AIMD/RED
systems and obtain sufficient conditions for the asymptotic
stability with and without feedback delays. It is illustrated
that appropriate parameters for RED can be chosen to
make the system asymptotically stable.

3. A class of fluid-flow models

3.1. Single-bottleneck network model

A stochastic model of TCP behavior was developed
using fluid-flow analysis and stochastic differential equa-
tions [2]. Simulation results have demonstrated that this
model accurately captures the dynamics of TCP. We extend
the fluid-flow model for general AIMD(a; b) congestion
control: the window size is increased by a packets per
round-trip time (rtt) if no packet loss occurs; and other-
wise, it is reduced to b times its current value [3–5].

We first consider that all AIMD-controlled flows have
the same (a; b) parameter pair and round-trip delay. The
AIMD/RED fluid model relates to the ensemble averages of
key network variables and it is described by the following
coupled, nonlinear differential equations:

dWðtÞ
dt

¼ a
RðtÞ �

2ð1� bÞ
1þ b

WðtÞWðt � RðtÞÞ
Rðt � RðtÞÞ pðt � RðtÞÞ

dqðtÞ
dt
¼

NðtÞ�WðtÞ
RðtÞ � C; q > 0

NðtÞ�WðtÞ
RðtÞ � C

n oþ
; q ¼ 0;

8<:
ð1Þ

wherefagþ ¼maxfa;0g;a > 0; b 2 ½0;1�; W is the AIMD
window size (in the unit of packets); q is the queue length;
RðtÞ is the round-trip time with RðtÞ ¼ qðtÞ

C þ Tp (secs) where

C is the link capacity (packets/sec) and Tp is the determin-
istic round-trip delay; and NðtÞ is the number of AIMD
flows and pðtÞ 2 ½0;1� is the probability of a packet being
marked or dropped. It should be noted that, in the fluid
model, Queue length q and window size W are positive
and bounded quantities; i.e. W 2 ½0;Wmax� and
q 2 ½0; qmax� where Wmax and qmax denote buffer capacity
and maximum window size, respectively. q and W approx-
imate the ensemble averages of queue length and window
size in real systems. Assuming ergodicity, the values of q
and W in the fluid model can be used to approximate their
time averages over a round.1 Given the AIMD window size
oscillating between 2bW=ð1þ bÞ and 2W=ð1þ bÞ, the dura-
tion of a round equals 2ð1�bÞWR

ð1þbÞa .
With RED, the packet-marking (or dropping) probabil-

ity, p, is proportional to the average queue length:
p ¼ Kpðq�minthÞ with Kp > 0 and p 2 ½0;1�, where minth

is the minimum threshold. When q 6minth, the marking
probability is zero, i.e., dWðtÞ

dt ¼ a
R, and the window size of

AIMD flows would keep increasing till q > minth. In the fol-
lowing, we discuss the stability properties of Multiple-bot-
tleneck model when q > minth. In addition, since the RED
queue behaves the same as a Drop-Tail queue once the
queue length exceeds the maximum threshold, maxth, we
choose maxth to be sufficiently large such that pmax ¼ 1.
For convenience, we assume minth ¼ 0, which does not im-
pact the stability properties of AIMD/RED networks per se.

3.2. Multiple-bottleneck network model

A general scenario of a multiple-bottleneck AIMD/RED
system is shown in Fig. 1. In the system, all AIMD flows
pass through multiple links which causes more than one
congested routers. The thick lines with arrow in the figure

Fig. 1. General case of a multiple-bottleneck network.

1 A round is defined as time interval between two instants at which the
sender reduces its window size consecutively.
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represent the size of traffic on each link and the traffic be-
comes smaller each time after passing through a congested
router. Assume that a packet can only be marked at most
once, following the idea of modeling in [27], a multiple-
bottleneck AIMD/RED system that contains N groups of
AIMD flows and M congested links can be mathematically
modeled as follows:

where rðiÞ; i ¼ 1; . . . ;N, denotes the set of congested rou-
ters that flow i passes through, and f ðmÞ;m ¼ 1; . . . ;M, de-
notes the set of flows that pass through the congested
router m.

4. Stability analysis with delay-free marking

Stability properties of the single-bottleneck AIMD/RED
system with delay-free marking, i.e., no time delay term
is involved in the packet-marking function, have been pre-
sented in [6,26]. When studying the multiple-bottleneck

system, we first take delay-free case into consideration
for a comparison with the single-bottle system. Our analy-
sis in the paper also show that stability properties with de-
lay-free marking are different from those with delayed
marking. These results provide theoretical support on
how time delay will affect the stability of AIMD/RED sys-
tems with multiple bottlenecks.

In this section, we study the dynamics of the multi-
bottleneck networks in the absence of feedback delays by
using Lyapunov stability theory and LaSalle’s Invariance
Principle. Assume that the round-trip time Ri is time-
invariant, i.e., RiðtÞ ¼ Ri for i ¼ 1;2; . . . ;N. We shall show
that the equilibrium point of this delay-free system is glob-
ally asymptotically stable for all positive gains.

For delay-free marking multiple-bottleneck AIMD/RED
system, the equilibrium point ðW�

1; . . . ;W�
N; q

�
1; . . . ; q�MÞ can

be obtained by

dW1ðtÞ
dt

¼ a1

R1ðtÞ
� 2ð1� b1Þ

1þ b1
W1ðtÞ

W1ðt � R1ðtÞÞ
R1ðt � R1ðtÞÞ

�
X

i2rð1Þ
ðKpi

qiðt � R1ðtÞÞÞ;

. . . . . . . . . . . . . . . . . . . . . . . .

dWNðtÞ
dt

¼ aN

RNðtÞ
� 2ð1� bNÞ

1þ bN
WNðtÞ

WNðt � RNðtÞÞ
RNðt � RNðtÞÞ

�
X

j2rðNÞ
ðKpj

qjðt � RNðtÞÞÞ;

dq1ðtÞ
dt

¼

P
n2f ð1Þ

NnWnðtÞ
RnðtÞ � C1; q1 > 0

P
n2f ð1Þ

NnWnðtÞ
RnðtÞ � C1;

( )þ
; q1 ¼ 0

8>>><>>>:
. . . . . . . . . . . . . . . . . . . . . . . .

dqMðtÞ
dt

¼

P
m2f ðMÞ

NmWmðtÞ
RmðtÞ � CM; qM > 0

P
m2f ðMÞ

NmWmðtÞ
RmðtÞ � CM ;

( )þ
; qM ¼ 0;

8>>><>>>:

ð2Þ

2ð1� b1Þ � ðW�
1Þ

2
X

i2rð1Þ
ðKpi

q�i Þ
 !

¼ a1ð1þ b1Þ;

. . . . . . . . . . . . . . . . . . . . . . . .

2ð1� bNÞ � ðW�
NÞ

2
X

j2rðNÞ
Kpj

q�j

 !
¼ aNð1þ bNÞ;

X
n2f ð1Þ

Nn �W�
n=Rn ¼ C1;

. . . . . . . . . . . .X
m2f ðMÞ

Nm �W�
m=Rm ¼ CM

ð3Þ
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One observation is that, if all flows have the same
AIMD parameter pair, the flow that traverses more bottle-
necks always suffers more packet losses than other
flows, and its window size is always smaller than those
of others.

Remark 1. The analysis throughout this paper is about the
stability property of the equilibrium point of system (2).
Since the equilibrium point is typically inside the desired
operating region of the system, its stability property, i.e.,
the convergence of system trajectories to the desired
operating area (especially, the equilibrium point), will
guarantee network performance in terms of packet loss,
delay, and jitter.

With the transformed variables fW iðtÞ ¼WiðtÞ �W�
i ; for

i ¼ 1; . . . ;N; ~qjðtÞ ¼ qjðtÞ � q�j ; for j ¼ 1; . . . ;M; we can use
the following Lyapunov function to establish the asymp-
totic stability of delay-free marking system:

VðfW 1ðtÞ; . . . ;fW NðtÞ; ~q1ðtÞ; . . . ; ~qMðtÞÞ

¼ 1
2

XN

i¼1

ð1þ biÞNi

ð1� biÞfW �2
i

fW 2
i ðtÞ þ

1
2

XM

j¼1

Kpj
~q2

j ðtÞ
ð4Þ

The time-derivative of V along the solution of system (2) is
non-positive, i.e., _V 6 0. By applying LaSalle’s Invariance
Principle, all the trajectories converge to the unique equi-
librium point of system (2). Thus, the global asymptotic
stability of system (2) is obtained (see Appendix A. for de-
tails). The results can be summarized by the following
theorem.

Theorem 1. For any Kp1
> 0; . . . ;KpM

> 0, the equilibrium
point of the delay-free marking AIMD/RED system is globally
asymptotically stable for any positive pairs ða1; b1Þ; . . . ;

ðaN; bNÞ and any positive R1; . . . ;RN.

In the above analysis, the AIMD parameter pairs for all
the flows in group i; i ¼ 1; . . . ;N; are the same. In reality,
there are always different kinds of AIMD flows within
one group. As an example, we consider the case when
two types of AIMD flows are within the group I: NI1 AIMD
(aI1; bI1) flows denoted by WI1, and NI2 AIMD (aI2; bI2) flows
denoted by WI2, with round-trip time RI1 and RI2, respec-
tively. In this case, we can still obtain the globally asymp-
totic stability by choosing the following proper Lyapunov
function and LaSalle’s Invariance Principle (see Appendix
B. for details).

Remark 2. Note that a similar analysis can be carried out
for more general cases, i.e., when there are more than two
kinds of AIMD flows in each group sharing the link
capacities. For this, the corresponding mathematical mod-
els can be constructed along similar lines as above, by
extending the model (2) to higher dimensions to include
more terms, each representing another type of flow.

Remark 3. Time delay in the packet-marking can be
ignored in the case with very high bandwidth and short
distance communication links. The analysis with ‘‘delay-
free marking” assumption offers some insight for the ultra
high speed networks.

5. Stability analysis with feedback delays

5.1. Stability criteria for general multiple-bottleneck systems

In this section, we study the stability properties of the
delayed system (2) in Section 3. With ever-increasing link
capacity and appropriate congestion control mechanism,
variation of queuing delays becomes relatively small to
propagation delays. In fact, recent work [22] reveals that
the variable nature of rtt due to queueing delay variation
helps to stabilize the TCP/RED system. Therefore, we can
ignore the effect of the delay jitter on the round-trip time
and derive sufficient conditions for the asymptotic stability
of multiple-bottleneck system assuming rtt to be constant.
Clearly, these sufficient conditions will be still applicable if
rtt is actually time-varying.

The equilibrium points (W�
1; . . . ;W�

N; q
�
1; . . . ; q�M) of sys-

tem (2) are defined by (3) with Ri ¼ R�i for i ¼ 1; . . . ;N;
where R�i ¼ Tpi

þ
P

j2rðiÞ
q�

j

Cj
.

Due to the highly nonlinear nature and the effect of de-
lays in the system, no suitable Lyapunov function could be
constructed to prove global asymptotic stability of the
equilibrium. We linearize system (2) about the equilibrium
point (by doing so, we ignore the dependence of the time
delay argument in qðt � RiÞ and fix the time-varying delay
to its equilibrium value R�i , for i ¼ 1; . . . ;N:) and write it in
the following form:

_xðtÞ ¼ AxðtÞ þ
XN

i¼1

Bixðt � R�i Þ; ð5Þ

with x ¼ ðfW 1ðtÞ; . . . ;fW NðtÞ; ~q1ðtÞ; . . . ; ~qMðtÞÞT , A ¼
A11 0
A21 A22

� �
; B ¼ Bi11 Bi12

0 0

� �
, where Aij;Bi11 and Bi12 are

known real constant matrices with appropriate dimen-
sions with following forms:

A11 ¼

� a1
R�1W�

1
0 . . . 0

0 � a2
R�2W�

2
. . . 0

..

. ..
. . .

. ..
.

0 0 . . . � aN
R�N W�

N

26666664

37777775
ðA21Þij ¼

kj

R�j
; if j 2 rðiÞ

0; otherwise

(
:

ðA22Þij ¼
� 1

Cj

P
l2f ðiÞ

klW
�
l

R�2l
; for i ¼ j

� 1
Cj

P
l2f ðiÞ\f ðjÞ

klW
�
l

R�2l
; otherwise

8>><>>: :

ðBi11Þjk ¼
� ai

R�i W�
i
; for j ¼ k ¼ i

0; otherwise

(
:

ðBi12Þjk ¼
� 2ð1�biÞ

1þbi

W�2
i

R�i
Kpk; for j ¼ i and k 2 f ðiÞ

0 otherwise:

(
:

It can be checked by the Routh Criterion that A is a Hurwitz
matrix, which implies that for any positive definite matrix
Q, there exists positive definite matrix P, such that
AT P þ PA ¼ �Q : We next give some sufficient conditions
for the local asymptotic stability of system (2) by applying
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the direct method of Lyapunov. Let M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmaxðPÞ=kminðPÞ

p
,

where kðPÞ denotes eigenvalues of matrix P, we can obtain
a sufficient condition to guarantee the local asymptotic
stability of the multiple-bottleneck system.

Theorem 2. If there exists positive definite P;Q satisfying
AT P þ PA ¼ �Q such that matrix Q � 2M �

PN
i¼1kPBik

� �
� I is

positive definite, then the equilibrium point of (2) is locally
asymptotically stable.

Proof: With (5), we choose Lyapunov function VðxÞ ¼ xT Px,
then

_V ¼ _xT Pxþ xT P _x

¼ ½AxðtÞþ
XN

i¼1

Bixðt�R�i Þ�
T Pxþ xT P½AxðtÞþ

XN

i¼1

Bixðt�R�i Þ�

¼ xTðtÞðAT Pþ PAÞxðtÞþ2
XN

i¼1

xTðt�R�i ÞBT
i PxðtÞ

¼ �xTðtÞQxðtÞþ2
XN

i¼1

xTðt�R�i ÞBT
i PxðtÞ:

Let R� ¼maxfR�1; . . . ;R�Ng. Applying the Lyapunov–Raz-
umikhin condition, with l > 1 such that

VðnÞ 6 l2VðtÞ for t � R� 6 n 6 t;

which implies that kxðnÞk 6 M � l � kxðtÞk. Thus,

_V 6 �xTðtÞQxðtÞ þ 2kxðt � R�Þk
XN

i¼1

kBT
i Pk

 !
kxðtÞk

6 �xTðtÞ½Q � 2lM
XN

i¼1

kPBik
 !

I�xðtÞ;

thereby establishing the asymptotic stability of system
(2). �

Observe that the Lyapunov–Razumikhin condition is
used in Theorem (2) to deal with the delayed terms in _V .
Lyapunov functional is another method that can be applied
when studying the stability of delayed systems. Our next
result gives another sufficient condition for the local
asymptotic stability of system (2) in terms of linear matrix
equality by applying the method of Lyapunov functional.

Theorem 3. If there exist positive definite P;Q satisfying
AT P þ PA ¼ �Q and positive definite Gi for i ¼ 1; . . . ;N such
that the following matrix is positive definite:

Q �
PN
i¼1

Gi �PB1 . . . �PBN

�BT
1P G1 0 0

..

.
0 . .

.
0

�BT
NP 0 0 GN

26666664

37777775 > 0;

then the equilibrium point of (2) is locally asymptotically
stable.

Proof. With (5), we choose Lyapunov functional

VðxÞ ¼ xT Pxþ
XN

i¼1

Z t

t�R�i

xTðsÞGixðsÞds;

then

_V ¼ xTðtÞðAT P þ PAÞxðtÞ þ 2
XN

i¼1

xTðt � R�i ÞBT
i PxðtÞ

þ xTðtÞ
XN

i¼1

Gi

 !
xðtÞ �

XN

i¼1

xTðt � R�i ÞGixðt � R�i Þ

¼ �xTðtÞ Q �
XN

i¼1

Gi

 !
xðtÞ þ 2

XN

i¼1

xTðt � R�i ÞB
T
i PxðtÞ

�
XN

i¼1

xTðt � R�i ÞGixðt � R�i Þ

¼ �ðxTðtÞ; xTðt � R�1Þ; . . . ; xTðt � R�NÞÞ

� D � ðxTðtÞ; xTðt � R�1Þ; . . . ; xTðt � R�NÞÞ
T
;

where D denotes the matrix

Q �
P3

i¼1Gi �PB1 . . . �PBN

�BT
1P G1 0 0

..

.
0 . .

.
0

�BT
NP 0 0 GN

26664
37775. Thus, system (2) is

locally asymptotically stable if D is positive definite. �

It is worth pointing out that sufficient conditions de-
rived in Theorems 2 and 3 are both given in terms of linear
matrix inequalities (LMI). These conditions can be easily
assessed by applying the LMI Control Toolbox with Matlab
[28].

In general, Theorems 2 and 3 shed some light on how
the network parameters impact the network stability. Spe-
cifically, we have the following intuitive interpretation of
the conditions in these theorems. To guarantee the local
asymptotic stability of system (2), _V in Theorems 2 and 3
is required to be negative definite. It can be seen from
the proof that the more negative AT P þ PA and the smaller
kPBik; i ¼ 1; . . . ;N, the more likely _V < 0. In other words,
the term AT P þ PA should be dominant in _V and the abso-
lute values of kðAÞ are expected to be sufficiently large. No-
tice that A has been checked to be a Hurwitz matrix and
W�

i ; i ¼ I; . . . ;N has the form of RC=N. From the expression
of A and Bi, we know that the smaller the terms
R�i ; i ¼ 1; . . . ;N, Cj; j ¼ 1; . . . ;M, the larger the absolute val-
ues of kðAÞ and the smaller the kPBik, and hence the better
the chance that the system is asymptotically stable. These
observations are also consistent with those in [15]: TCP/
RED will become unstable when delay increases, or when
link capacity increases.

5.2. Case study: a class of two-bottleneck topology

In this section, we consider a basic multi-bottleneck
scenario, as depicted in Fig. 2. Three groups of flows are
sharing the links between four routers. AIMD flows in
group I compete with flows in group II over link L1, and also
compete with 50 flows in group III over link L2. We assume
all routers are RED-enabled and there is no packet loss and
delay jitter in the non-bottleneck links. All routers are RED-
enabled. Links L1 and L2 are bottlenecks with the capacity
of C1 and C2, respectively. The round-trip delays for the
three groups of traffic are R1;R2, and R3, respectively. The
results with this topology are also applicable to the scenar-
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ios when the three groups of flows traverse other non-bot-
tleneck links before/after they enter/leave L1 or L2.

In this multi-bottleneck topology, let Kp1 and Kp2 denote
the marking probability on L1 and L2, and (a1, b1), (a2; b2)
and (a3; b3) be AIMD parameter pairs for the three groups
of flows, respectively. For the first group of flows, the
marking probabilities on L1 and L2 are p1ðt � R1Þ ¼
Kp1

q1ðt � R1Þ and p2ðt � R1Þ ¼ Kp2
q2ðt � R1Þ, respectively.

Since we assume that a packet can only be marked at most
once, the probability of a flow I packet receiving a mark is
p1ðt � R1Þ þ p2ðt � R1Þ � p1ðt � R1Þp2ðt � R1Þ. The marking
probability can be approximated by p1ðt � R1Þ þ p2ðt � R1Þ
given that p1 and p2 are very small. The closed-loop
dynamics can be modeled as follows:

dWIðtÞ
dt ¼

a1
R1ðtÞ
�2ð1�b1Þ

1þb1
WIðtÞWIðt�R1Þ

R1ðt�R1Þ
ðKp0

q0ðt�R1ÞþKp2
q2ðt�R1ÞÞ

dWIIðtÞ
dt ¼

a2
R2ðtÞ
�2ð1�b2Þ

1þb2
WIIðtÞWIIðt�R2Þ

R2ðt�R2Þ
Kp0

q0ðt�R2Þ

dWIIIðtÞ
dt ¼

a3
R3ðtÞ
�2ð1�b3Þ

1þb3
WIIIðtÞWIIIðt�R3Þ

R3ðt�R3Þ
Kp2

q2ðt�R3Þ

dq1ðtÞ
dt ¼

N1WIðtÞ
R1ðtÞ

þN2WIIðtÞ
R2ðtÞ

�C1; q0>0

fN1WIðtÞ
R1ðtÞ

þN2WIIðtÞ
R2ðtÞ

�C1gþ; q0¼0

8<:
dq2ðtÞ

dt ¼

N1WIðtÞ
R1ðtÞ

þN3WIIIðtÞ
R3ðtÞ

�C2; q2>0

N1WIðtÞ
R1ðtÞ

þN3WIIIðtÞ
R3ðtÞ

�C2

n oþ
; q2¼0:

8>><>>:
ð6Þ

Next, we give a numerical example to get a more concrete
sense of the sufficient conditions in Theorem 2 on local
asymptotic stability for the AIMD/RED system with heter-
ogeneous delays. Let N1 ¼ N2 ¼ N3 ¼ 5;C1 ¼ 3� 103 pack-
et/sec, C2 ¼ 5� 103 packet/sec with Kp1 ¼ Kp2 ¼ 0:0005.
Choose ða1; b1Þ ¼ ð1; 0:5Þ with Tp1 ¼ 0:020 s, ða2; b2Þ ¼
ð0:2; 0:875Þ with Tp2 ¼ 0:013 s and ða3; b3Þ ¼ ð1; 0:5Þ with
Tp3 ¼ 0:007 s, respectively. Solving the LMI in Theorem 2
with Matlab Control Toolbox, one feasible solution we ob-
tain is as follow: positive definite matrix

and

P ¼

2:217 �2:6696 2:4213 0:3497 �1:091
�2:669 4:9555 �3:8606 �1:3247 1:439
2:421 �3:8606 3:3280 0:9250 �1:279
0:349 �1:3247 0:9250 0:6115 �0:229
�1:091 1:4386 �1:2789 �0:2295 0:559

26666664

37777775 :

We can also check that the eigenvalues of matrix
Q � 2MðkPB1k þ kPB2k þ kPB3kÞI are: 1.0e+003*[9.0769,
5.8269, 0.0088, 0.0044, 0.0001], which implies that
Q � 2MðkPB1k þ kPB2k þ kPB3kÞI is positive definite. Thus,
the condition of Theorem 2 holds and the system is locally
asymptotically stable. Simulation results using the same
parameters will be given in Section 6.

Remark 4. Notice that Theorems 2 and 3 give two
different sets of sufficient conditions for the asymptotic
stability of system (6). These conditions can be easily
checked by the LMI Toolbox, which allow us to use any of
them at our convenience.

Remark 5. By the similar idea of this section, we can
obtain the local stability of the network when it is shared
by more than three groups of flows as well. Mathematical
models can be established following the idea in Section 3.2
and the technique used in this section can be applied to
obtain sufficient conditions, in terms of LMI, for asymptotic
stability of any given scenarios.

Remark 6. We note that the results in this section are for
local stability only, whereas the results obtained in Section
4 are for global stability. This is due to the difficulty in
constructing a suitable Lyapunov-type function for the
nonlinear multiple-bottleneck AIMD/RED system with het-
erogeneous delays. A plausible approach to resolve this
issue is to develop a sequence of upper and lower bounds
of system trajectories and use these bounds in Razumik-
hin’s theorem to derive conditions for global stability in
the presence of heterogeneous delays, and our study along
this line is underway. Also, studying the stability proper-
ties of the general case of multiple-bottleneck AIMD/RED
networks by directly using the model (2) is an important
open issue for further investigation.

6. Numerical results and performance evaluation

With the two-bottleneck topology described in Section
5, we first obtain the system evolution trajectories by using
Matlab to verify the asymptotic stability proved in Sections

r1 r2

Group I
Group II
Group III

L1 L2
r r

Fig. 2. Multiple-bottleneck topology.

Q ¼ 103 �

4:2596 �1:2369 2:3752 �1:8226 �1:9184
�1:2369 4:5479 �3:1861 �2:0736 0:8033
2:3752 �3:1861 2:8241 0:5329 �1:2195
�1:8226 �2:0736 0:5329 2:4057 0:6722
�1:9184 0:8033 �1:2195 0:6722 0:8817

26666664

37777775
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4 and 5. Network simulator, NS-2, is then used to further
study the performance of the systems.

6.1. Numerical results

6.1.1. System without feedback delays
Figs. 3–5 show the traces of window size and queue

length under the topology of Fig. 2, modeled by (6). The
capacity of L1 is C1 ¼ 1� 105 packet/sec, that of L2 is
C2 ¼ 12� 104 packet/sec. The number of flows in each
groups are N1 ¼ 80, N2 ¼ 60 and N3 ¼ 50, respectively.
The deterministic round-trip times of these groups are
Tp1
¼ 0:05 s, Tp2

¼ 0:08 s and Tp3
¼ 0:06 s, respectively.

We choose Kp1 ¼ 0:0006, Kp2 ¼ 0:0008;Qmin1 ¼ 150 packets
and Q min2 ¼ 180 packets.

In Fig. 3, all flows are TCP flows, i.e., ða; bÞ ¼ ð1;0:5Þ. In
Fig. 4, all flows are AIMD flows with the same parameter
pair, ða; bÞ ¼ ð0:2;0:875Þ. Wi in Figs. 3a and 4a represents
the average window size of flows in the i-th group, and
q1 and q2 in Figs. 3b and 4b represent the bottleneck queue
lengths at r1 and r2, respectively. It can be seen both the
average window sizes and queue lengths converge to con-

stants in steady state. Although the convergence speed of
homogeneous TCP flows is faster than that of homoge-
neous AIMD flows, their average windows and the average
queue lengths in steady state are the same.

We further investigate the case that different groups of
flows use different AIMD parameters. The flow parameters
of the three groups in Fig. 5 are ða1; b1Þ ¼ ð1;0:5Þ,
ða2; b2Þ ¼ ð0:2;0:875Þ and ða3; b3Þ ¼ ð1;0:5Þ, respectively.
The numerical results show that the average window sizes
of the three groups of flows and queue lengths of the two-
bottleneck routers converge to constants. Since all the tra-
jectories are asymptotically stable, thereby validating the
Theorem 1. In addition, the average window sizes of each
groups in Figs. 3–5 are the same in steady state, which
means AIMD (0:2;0:875) flows are TCP-friendly.2 This
property can be further illustrated in the following case.
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Fig. 3. Homogeneous TCP flows, delay-free.
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Fig. 4. Homogeneous AIMD(0.2, 0.875) flows, delay-free.

2 TCP-friendliness is defined as the average throughput of non-TCP-
transported flows over a large time scale does not exceed that of any
conformant TCP-transported ones under the same circumstance [10]. It has
been shown that if an AIMD flow with the parameter pair satisfying the
condition að1þbÞ

1�b ¼ 3, the AIMD flow is TCP-friendly [5,26].
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The traces of window size and queue lengths when
there are two different classes of flows in group I are
shown in Fig. 6, which is modeled by (B.1). Here the num-
ber of flows within each group is chosen as N11 ¼ N12 ¼ 40,

N2 ¼ 60 and N3 ¼ 50. Their deterministic rtts are Tp11
¼

0:05 s, Tp12
¼ 0:04 s, Tp2

¼ 0:06 s and Tp3
¼ 0:04 s, respec-

tively. Also, we have C1 ¼ 1� 105 packet/sec and C2 ¼
1:2� 105 packet/sec as in Figs. 3–5 with Kp1 ¼ 0:0006
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Fig. 6. TCP and AIMD(0.2,0.875) flows, delay-free, heterogeneous traffic in group I.
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Fig. 7. TCP and AIMD(0.2, 0.875) flows, delay-free, three bottleneck links.
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Fig. 5. TCP and AIMD(0.2, 0.875) flows, delay-free.
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and Kp2 ¼ 0:0008. The AIMD parameter pairs in this case
are ða11; b11Þ ¼ ða3; b3Þ ¼ ð1; 0:5Þ and ða12; b12Þ ¼ ða2; b2Þ ¼
ð0:2;0:875Þ, respectively. It can be seen that both the win-
dow size and queue length are asymptotically stable and
are consistent with our analysis, and the AIMD(0:2;0:875)
flows are truly TCP-friendly.

Figs. 7 and 8 show how the window size and queue
length evolve when the link capacity of rr2 for group I flows,
C3, is so small that the link rr2 becomes the third bottleneck.
Consequently, there are three bottlenecks in the network
under the topology shown in Fig. 2. We choose N1 ¼
80;N2 ¼ 60 and N3 ¼ 50;C1 ¼ 8� 104 packet/sec, C2 ¼ 1�
105 packet/sec and C3 ¼ 4� 104 packet/sec with Kp1 ¼
0:0004;Kp2

¼ 0:0006 and Kp3 ¼ 0:0008, respectively. The
deterministic rtts are chosen as Tp1 ¼ 0:05 s, Tp2 ¼ 0:06 s
and Tp3

¼ 0:04 s. In Fig. 7, ða1; b1Þ ¼ ða3; b3Þ ¼ ð1;0:5Þ, and
ða2; b2Þ ¼ ð0:2;0:875Þ. In Fig. 8, there are two types of
flows in group I, with N11 ¼ 40, N12 ¼ 40; and Tp11

¼
0:05 s, Tp12 ¼ 0:04 s. Other parameters are chosen as
ða11; b11Þ ¼ ða3; b3Þ ¼ ð1;0:5Þ, ða12; b12Þ ¼ ða2; b2Þ ¼ ð0:2;
0:875Þ. We can observe the property of the asymptotic sta-
bility of these systems from the numerical results.

6.1.2. System with feedback delays
Figs. 5–8 show the asymptotic stability of the multiple-

bottleneck system without feedback delays, in which the
property of stability is global. Figs. 9–11 illustrate the local
asymptotic stability of the system with feedback delays.
We choose N1 ¼ N2 ¼ N3 ¼ 5;C1 ¼ 3� 103 packet/sec,
C2 ¼ 5� 103 packet/sec with Kp1 ¼ Kp2 ¼ 0:0005. The
deterministic rtts for the flows are chosen as Tp1

¼
0:020 s, Tp2 ¼ 0:013 s and Tp3 ¼ 0:007 s, respectively. The
parameters used are the same as those in the numerical
example of Theorem 2. In Fig. 9, ðai; biÞ ¼ ð1;0:5Þ for
i ¼ 1;2;3; in Fig. 10, ðai; biÞ ¼ ð0:2;0:875Þ for i ¼ 1;2;3;
and in Fig. 11, ða1; b1Þ ¼ ða3; b3Þ ¼ ð1;0:5Þ, ða2; b2Þ ¼
ð0:2;0:875Þ. As shown in the figures, all the trajectories
are locally asymptotically stable, and the numerical results
validate the theorems.

In the last part of this section, we give an example of an
unstable multiple-bottleneck RED network. We choose
N1 ¼ N3 ¼ 4; N2 ¼ 8, C1 ¼ 1000 packet/sec, C2 ¼ 1000
packet/sec with Kp1

¼ Kp2
¼ 0:05 and ðai; biÞ ¼ ð1; 0:5Þ for

i ¼ 1;2;3 with Tp1 ¼ 0:03 s, Tp2 ¼ 0:03 s and Tp3 ¼ 0:04 s.
This case has been shown unstable in [1] and it is
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Fig. 9. Homogeneous TCP flows, with feedback delay.
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Fig. 8. TCP and AIMD(0.2,0.875) flows, delay-free, three bottleneck links.
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Fig. 10. Homogeneous AIMD flows, with feedback delay.
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Fig. 11. TCP and AIMD flows, with feedback delay.
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Fig. 12. Homogeneous TCP flows: unstable case.
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consistent with our results in Fig. 12. It is easy to check
that this case does not satisfy the conditions of Theorems
2 and 3.

6.2. Simulation results

We use network simulator (NS-2) to further study the
performance of the AIMD/RED system with realistic proto-
cols and network topologies. The same multiple-bottleneck
topology as in Fig. 2 is used in the simulations.

We first validate a theoretically stable setting. The
parameters used are the same as those used for Fig. 11. It
should be mentioned that, since the fluid model describes
the ensemble averages of window size and queue length,
the asymptotically stable property applies to the ensemble
averages or time averages over a round. Here, a round is
defined as the time interval between two instants at which
the sender reduces its window size consecutively. There-
fore, we focus on the time averages of the window size
and queue length over a round. Fig. 13 shows that the time
averages of the flow window sizes and queue lengths are
converging to certain values, i.e., their time averages over
a round are asymptotically stable. The average window
sizes in the NS-2 simulation results are slightly larger than
the numerical results. This is because the numerical simu-
lations with Matlab ignore the queuing delay in rtts, which
under-estimates the window size.

We also run the simulation for the unstable case with
the same parameters as those used in Fig. 12, and the re-
sults are shown in Fig. 14. It can be seen that even averag-
ing over a round, the window sizes and queue lengths are
still highly oscillating. The oscillation of queue length with
NS-2 is smaller than that with Matlab because larger win-
dow size in NS-2 causes smaller queue length (since both
Eqs. (2) and (6) show that the product of window size
square and queue length is a constant in equilibrium). In
addition, the variation of queuing delay and the noises
coherent in NS-2 also moderate the oscillations of queue
length as mentioned in [22]. As shown in the figures, the
queue length in equilibrium in Fig. 14b is also smaller than
that in Fig. 12b. Since the simulation results show that the
oscillation amplitude of the queue length w.r.t. that in
equilibrium is very significant and the queue in Fig. 14b
is still unstable. Thus, the simulation results validate the
analytical ones.

7. Conclusions

In this paper, we have developed a class of general
AIMD/RED models for multi-bottleneck systems and have
studied stability properties for the models with delay-free
marking and with heterogeneous delays. Global asymp-
totic stability is proven for the multiple-bottleneck
AIMD/RED systems without feedback delay and sufficient

Fig. 13. Simulation results for a stable system.

 

 

 
 

 

 

 

 

 

Fig. 14. Simulation results for an unstable system.
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conditions have been derived for the asymptotic (local)
stability of multiple-bottleneck AIMD/RED systems with
heterogeneous delays, by applying the methods of Lyapu-
nov functional and Lyapunov function with the Razumik-
hin condition. These results are obtained for general
multiple-bottleneck scenarios and provide important
guidelines for setting system parameters that guarantee
the efficient utilization of network resources in multi-bot-
tleneck networks without excessive delay jitter. We are
currently investigating sufficient conditions for establish-
ing global stability in the presence of heterogeneous de-
lays, by developing a sequence of upper and lower
bounds of system trajectories and applying these bounds
in Razumikhin’s Theorem. The generalization of stability
analysis for networks with mesh topologies should also
be an interesting research direction.

Acknowledgement

This work has been supported in part by a research
grant from the Natural Science and Engineering Council
of Canada.

Appendix A. Proof of Theorem 1

With the transformed variables fW iðtÞ ¼WiðtÞ �W�
i ; for

i ¼ 1; . . . ;N; ~qjðtÞ ¼ qjðtÞ � q�j ; for j ¼ 1; . . . ;M; the delay-
free marking system becomes

_fW 1ðtÞ ¼ � 2ð1�b1Þ
1þb1

ðeW IðtÞþW�
1Þ

2

R1

P
i2rð1Þ

Kpi
~qiðtÞ

 !

� 2ð1�b1Þ
1þb1

eW 2
1ðtÞþ2W�

1
eW 1ðtÞ

R1

P
i2rð1Þ

Kpi
q�i

 !
. . . . . . . . . . . . . . . . . . . . . . . .

_fW NðtÞ ¼ � 2ð1�bNÞ
1þbN

ðeW NðtÞþW�
NÞ

2

RN

P
j2rðNÞ

Kpj
~qjðtÞ

 !

� 2ð1�bNÞ
1þbN

eW 2
NðtÞþ2W�

N
eW N ðtÞ

RN

P
j2rðNÞ

Kpj
q�j

 !

_~q1ðtÞ ¼
P

n2f ð1Þ

Nn �eW nðtÞ
Rn

. . . . . . . . . . . .

_~qMðtÞ¼
P

m2f ðMÞ

Nm �eW mðtÞ
Rm

:

ðA:1Þ

with the equilibrium point ðfW 1; . . . ;fW N; ~q1; . . . ~qMÞ ¼
ð0;0; . . . ;0;0Þ. With system (A.1), we choose Lyapunov
function with the following form:

VðfW 1ðtÞ; . . . ;fW NðtÞ; ~q1ðtÞ; . . . ; ~qMðtÞÞ

¼ 1
2

PN
i¼1

ð1þbiÞNi

ð1�biÞeW �2
i

fW 2
i ðtÞ þ 1

2

PM
j¼1

Kpj
~q2

j ðtÞ:
ðA:2Þ

Computing the time-derivative of V along the solution of
system (A.1) gives,

_V ¼
XN

i¼1

ð1þ biÞNi

ð1� biÞfW �2
i

fW iðtÞ
_fW i þ

XM

j¼1

Kpj
~qjðtÞ _~qj

¼ �
XN

i¼1

Ni
fW iðtÞfW �2

i Ri

� ðfW iðtÞ þ fW �
i Þ

2 �
X
j2rðiÞ
ðKpj

~qjðtÞÞ
"

þðfW 2
i þ 2fW �

i
fW iðtÞÞ �

X
j2rðiÞ
ðKpj

q�j Þ
#

þ
XM

j¼1

ðKpj
~qjðtÞÞ �

X
m2f ðiÞ

Nm
fW mðtÞ
Rm

¼ �
XN

k¼1

Nk

W�2
k Rk

�
�fW 2

kðtÞ � ðfW kðtÞ þ 2fW �
kÞ
�

�
X
i2rðkÞ

Kpi
ð~qiðtÞ þ q�i Þ:

The last step above is derived because the termPM
j¼1ðKpj

~qjðtÞÞ �
P

m2f ðiÞ
Nm eW mðtÞ

Rm
can be canceled by part ofPN

i¼1
ð1þbiÞNi

ð1�biÞeW �2
i

fW iðtÞ
_fW i. Note that fW kðtÞ þW�

k ¼WkðtÞP 0

for k ¼ I; . . . ;N; and ~qiðtÞ þ q�i ¼ qiðtÞP 0 for i ¼ 1; . . . ;M;

which implies _V 6 0: Thus, we prove that the equilibrium
point of system (A.1) is stable. Next, we show the globally
asymptotic stability of the system by applying LaSalle’s
Invariance Principle. Consider the set of states where
_V ¼ 0,

M :¼ fðfW 1; . . . ;fW N; ~q1; . . . ; ~qMÞ : _V ¼ 0g
¼ fðfW 1; . . . ;fW N ; ~q1; . . . ; ~qMÞ :fW 1 ¼ . . . ¼ fW N ¼ 0;

or ~q1 ¼ �q�1; . . . ; ~qM ¼ �q�M:g:

Applying LaSalle’s Invariance Principle [24,25], trajec-
tories of (A.1) converge to the largest invariant set con-
tained in M. We then prove that the only invariant set
contained in M is the equilibria (0;0; . . . ;0;0). If
ðfW 1; . . . ;fW N; ~q1; . . . ~qMÞ is equal to ð0; . . . ;0; ~q1; . . . ; ~qMÞ or
ðfW 1; . . . ;fW N;�q�1; . . .� q�MÞ, we can then conclude that
ðfW 1ðtþÞ; . . . ;fW NðtþÞ; ~q1ðtþÞ; . . . ~qMðtþÞÞ is not in M by
applying (A.1), which implies that no trajectory can stay
in M, other than the equilibrium point (0;0; . . . ;0;0).
Therefore, the equilibrium point of system (A.1) is asymp-
totically stable. �

Appendix B. Two types of AIMD flows within the group I

Assume there are two types of AIMD flows within the
group I: NI1 AIMD (aI1; bI1) flows denoted by WI1, and NI2

AIMD (aI2; bI2) flows denoted by WI2, with round-trip time
RI1 and RI2, respectively. Then these flows can be modeled
as follows:

dWI1ðtÞ
dt

¼ aI1

RI1
� 2ð1� bI1Þ

1þ bI1

W2
I1ðtÞ
RI1

X
i2rðIÞ

Kpi
qiðtÞ

 !
dWI2ðtÞ

dt
¼ aI2

RI2
� 2ð1� bI2Þ

1þ bI2

W2
I2ðtÞ
RI2

X
i2rðIÞ

Kpi
qiðtÞ

 ! ðB:1Þ

We can then obtain the global asymptotic stability by
choose the following Lyapunov function:
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VðfW I1ðtÞ;fW I2ðtÞ; . . . ;fW NðtÞ; ~q1ðtÞ; . . . ; ~qMðtÞÞ

¼ 1
2
ð1þ bI1ÞNI1

ð1� bI1ÞfW �2
I1

fW 2
I1ðtÞ þ

1
2
ð1þ bI2ÞNI2

ð1� bI2ÞfW �2
I2

fW 2
II2ðtÞ

þ 1
2

X
i–I

ð1þ biÞNi

ð1� biÞfW �2
i

fW 2
i ðtÞ þ

1
2

XM

j¼1

Kpj
~q2

j ðtÞ

ðB:2Þ
Similar to the analysis as in Appendix A, global asymptotic
stability for this case can be proven. Same conclusion can
be drawn for more general cases, i.e., when more than
two kinds of AIMD flows in each group are sharing the link
capacities. The corresponding mathematical models can be
constructed along similar lines as above, by extending the
model (6) to higher dimensions to include more terms,
each representing another kind of flow.
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