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Abstract—In this paper, the flow-level performance of oppor-
tunistic scheduling in orthogonal frequency division multiplexing
(OFDM) networks is studied. The analysis accounts for the
applications with a dynamic number of competing flows, such
as continuous transfers of file transport protocol (FTP) or web
browsing sessions. An analytical model is developed to extend the
multi-class Processor-Sharing model in single-carrier networks to
multi-carrier OFDM networks, where the total service rate varies
with the number of flows. Based on the analytical model, the
scheduling gains in both OFDM-TDMA (time division multiple
access) and OFDMA (orthogonal frequency division multiple
access) networks are evaluated for low and moderate signal-to-
noise ratio (SNR). Different from previous works, we focus on the
scheduling performance at the flow level and consider a dynamic
network setting with random sized service demands. Further-
more, we use stochastic comparison techniques to examine the
effects of physical-layer characteristics, such as fading speed
and channel frequency selectivity, on flow-level performance.
Simulations are performed to verify the analytical results.

Index Terms—Opportunistic scheduling; OFDM-TDMA;
OFDMA; processor-sharing model.

I. INTRODUCTION

ORTHOGONAL frequency division multiplexing
(OFDM) is a physical-layer multi-carrier technology,

which has been successfully applied in a wide variety of
wireless communication systems such as wireless local
area networks (WLANs). The major advantages of OFDM
exist in its capability of effectively combating inter-symbol
interference (ISI) and its high spectral efficiency due
to spectrum overlapping. OFDM can be combined with
multiple access schemes, such as time division multiple
access (TDMA), to achieve efficient bandwidth utilization
in presence of multiple users. In IEEE 802.16 standard,
for instance, both OFDM-TDMA and orthogonal frequency
division multiple access (OFDMA) have been adopted at
2–11 GHz band [1].
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In multiuser wireless communication networks, opportunis-
tic scheduling (OS) provides an effective mechanism to im-
prove throughput performance by exploiting channel fluc-
tuations. The concept of OS is first applied for the third-
generation (3G) wireless systems such as Code Division Multi-
ple Access (CDMA) 2000 1xEV-DO [2] and Universal Mobile
Telecommunications System (UMTS) High Speed Downlink
Packet Access (HSDPA) [3]. Performance analysis of OS
algorithms provides guidelines for comparing and optimizing
these algorithms. Furthermore, it can also be used for radio
network planning and other radio resource management strate-
gies, e.g., admission control, to achieve the network quality
goals. The research work in this area belongs to two broad
categories. The first category focuses on the investigation of
OS algorithms at the packet level with an assumption of a
static user population [4]–[10]. The traffic pattern is usually
assumed to be saturated with infinite backlogs (i.e., each
user always has data to transmit) or features dynamic packet
arrivals [11]. For the saturated model, a common objective is
to optimize some utility functions of the throughput; while for
dynamic packet arrivals, the focus is on network stability, i.e.,
the queue occupancy can be bounded whenever feasible. The
second category investigates OS algorithms at the flow level
with time-variant user population [12]–[14]. In the flow-level
analysis, new users arrive according to a stochastic process,
and each user has a finite-length file for transmission. A user1

leaves the system when the entire file is transmitted. Important
flow-level performance metrics include the distribution of the
number of flows, flow throughput and mean response time.
Compared to the first category, the flow-level analysis is
based on more practical traffic patterns, which consider the
dependence of the throughput on both the user population and
the scheduling algorithms [12].

Due to its effectiveness, OS in sophisticated OFDM-based
beyond 3G (B3G) or fourth-generation (4G) wireless systems
has been attracting more and more interests. In [15], OS
algorithms in OFDM systems under infinite backlogs and
dynamic packet arrivals have been investigated; in [16], a gen-
eralized processor sharing (GPS) based scheduler integrated
with power and subcarrier allocation is proposed to maximize
the system throughput; and in [17], the OS performance
of OFDM-TDMA systems has been compared with that of
OFDMA systems at the packet level. So far, research on OS
for OFDM systems has mainly focused on the packet level.
The performance of OS at the flow level has not been well
addressed.

1For the flow-level analysis, the terms “user" and “flow" are usually used
exchangeably. Therefore, for the purpose of unification, only “flow" will be
used in the rest of the paper.
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The full analysis of flow-level performance can be very
complicated, as it may involve the analysis of a Markov chain
with a large state space. This complexity mainly results from
the following two aspects: 1) the service process is stochastic,
i.e., the service rate varies with time; and 2) the number of
users in the system is dynamic. To address these challenges,
an approximation technique is developed in [14] to simplify
the analysis at the flow level. It is shown that an approximate
analysis can be performed in a time-scale decomposable
regime, where the time scale of the data file transmission time
is much longer than that of the service process fluctuation.
Another equivalent way of stating the above condition is that
the channel fading is much faster than the flow dynamics, since
the channel fading determines the service process fluctuation
and the flow dynamics result from the arrival rate and the
size of the data files. In this case, the random fluctuations in
the service rate become negligible, and a simple constant-rate
service process can be applied. A rigorous justification is given
for the above approximation method. This approximation has
also been used in [12], which is different from [14] in that the
time-slotted system is represented by a Processor-Sharing (PS)
model in continuous time, based on the assumption that the
duration of the time slot is much shorter than that of the data
file transmission. Applying the approximation method in [14],
the service rate of the PS model is deterministic as the random
fluctuations become negligible, but it is state-dependent based
on the number of flows.

In this paper, an analytical model for performance evalua-
tion of an OFDM system with OS at the flow level is proposed.
It extends the multi-class Processor-Sharing (PS) model for
single-carrier system to the multi-carrier OFDM system, where
the total service rate varies with the total number of flows.
Although the queueing model for OFDM system has a multi-
server nature at packet-level, we show for the first time that
the single-server PS model can still be applied for flow-level
performance analysis if the duration of the time slot is much
shorter than that of the data file transmission. Based on this
model, the scheduling gains achieved by proportional fair
schedulers in both OFDMA and OFDM-TDMA systems are
analyzed for low and moderate signal-to-noise ratio (SNR),
where a linear relationship between the feasible rate and SNR
holds. It is shown that the scheduling gain achieved in the
OFDMA system is larger than that of the OFDM-TDMA sys-
tem. Furthermore, stochastic comparison techniques are used
to evaluate the impact of physical-layer characteristics on flow-
level performance of OFDM systems, which apply OFDMA
or OFDM-TDMA. The analytical results demonstrate that fast
fading helps to improve performance as that in single-carrier
system [13]. Moreover, the performance of the OFDM system
can also be improved by high channel frequency selectivity.
Fading variation has a less impact on performance in case of
a higher channel frequency selectivity. In order to describe
the channel variance in the frequency domain, we introduce
two limit regimes referred to as fully-selective and flat, which
indicate that the channel presents the same statistics but varies
in an infinitely fast and an infinitely slow scale in the frequency
domain, respectively. By combining the limit regimes in the
time domain [13], i.e., fluid and quasi-stationary, we show that
fluid and (flat, quasi-stationary) limit regimes provide good

performance estimates for OFDM systems. Finally, simulation
results are given to verify the analytical results.

The remainder of this paper is organized as follows. The
flow-level model is described in Section II. Section III an-
alyzes and compares the scheduling gains of OFDMA and
OFDM-TDMA systems, and examines the flow-level per-
formance of OFDM systems under different physical-layer
conditions. In Section IV, simulations are performed to verify
the analytical results. Section V concludes this paper.

II. FORMULATION OF FLOW-LEVEL MODEL

A. System Model

Consider the downlink of an OFDM system, where a single
base station (BS) communicates with multiple mobile stations
(MSs). At the base station, signal modulation is carried out
by Nc points inverse fast Fourier transform (IFFT), where
Nc ≥ K and K denotes the number of subcarriers. For ISI
elimination, a cyclic prefix (CP) of length Ncp is also added
before transmission.

For each MS i, the channel is a frequency-selective Rayleigh
fading channel with Li non-zero taps. The channel impulse
response (CIR) remains unchanged during at least one OFDM
symbol interval and can be expressed as

hi(t, τ) =
Li−1∑
l=0

αl,i(t)δ(τ − τl,i) (1)

where the lth tap gain αl,i(t) with propagation delay τl,i

is complex Gaussian random variable with zero mean and
variance of σ2

l,i. If the cyclic prefix is larger than the channel
delay spread, it is reasonable to assume that the narrow-
band signal transmitted through each subcarrier experiences a
flat Rayleigh fading channel. The channel frequency response
(CFR) with respect to the kth subcarrier for MS i can be
expressed as

Hk,i(t) =
Li−1∑
l=0

αl,i(t)e−j2πτl,ik/Nc . (2)

For OFDM, the cross covariance function of Hk,i(t) has
the following factorable form [18]

ΦHk,i,Hl,i
(τ) = Φi

T(τ)Φi
F(k − l), k, l = 1, . . . , K (3)

where ΦHk,i,Hl,i
(τ) = E[Hk,i(t)H∗

l,i(t + τ)]. Here, Φi
T(τ) =

ΦHk,i,Hk,i
(τ) gives the temporal correlation for Hk,i(t),

which is seen to be identical for all k = 1, . . . , K , and
Φi

F(k − l) = ΦHk,i,Hl,i
(0) represents the correlation in

frequency across subcarriers.
At the receiver end, the CP is removed first and the received

signals are demodulated by fast Fourier transform (FFT). The
received signal on the kth subcarrier of MS i can be expressed
as

Zk,i(t) = Xk,i(t)Hk,i(t) + Wk,i(t) (4)

where Xk,i(t) is the transmitted signal on the kth subcarrier
of MS i, and Wk,i(t) is the complex additive white Gaussian
noise (AWGN) with zero mean and variance of σ2

i .
Ideally, the MS adaptively determines the appropriate trans-

mission rate with the proper modulation and coding selec-
tion (MCS) at each subcarrier based on the received SNR
γk,i(t) = |Hk,i(t)|2/σ2

i , and feeds back the selection to the
BS through a uplink control channel.
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Fig. 1. Queueing model for multi-user scheduling in the OFDM system.

B. Channel Rate Process Model

The base station transmits information to n(t) MSs in equal-
length time slots. Let Rk

i (t), a stationary and ergodic process,
be the feasible rate for MS i at subcarrier k in time slot t.
For low and moderate SNR, Rk

i (t) can be approximated as a
linear function of the instantaneous SNR, γk,i(t) [12].

The random processes {Rk
i (t)}i=1,...,n(t);k=1,...,K have the

following properties:

1) For different MSs: ∀i1, i2 ∈ {1, . . . , n(t)}, Rk
i1

(t)
and Rk

i2(t) for different MSs i1 �= i2 are mutually
independent.

2) For a same MS:

a) ∀i ∈ {1, . . . , n(t)}, {Rk
i (t)}k=1,...,K for the same

MS i are identically distributed.
b) Different Time Slots: ∀t1,t2 ∈ Z

+, let Δt =
|t1−t2|. If Δt is small or large enough, Rk

i (t1) and
Rk

i (t2) are strongly correlated and approximately
independent, respectively, with the temporal corre-
lation function Ri

T(Δt) ≈ 1 and 0.
c) Different Subcarriers: ∀k1, k2 ∈ {1, . . . , K}, let

Δk = |k1 − k2|. For small or large enough Δk,
Rk1

i (t) and Rk2
i (t) are strongly correlated and

approximately independent, respectively, with the
frequency correlation function Ri

F(Δk) ≈ 1 and 0.

Let Y k
i (t) = Rk

i (t)/Ci, where Ci = E[Rk
i (t)] is the time-

average rate of MS i at any subcarrier. Y 1
i (t), . . . , Y K

i (t)
represent the relative rate fluctuations for subcarriers 1, . . . , K
of MS i. According to property 1), they are identically
distributed.

C. Dynamic Flow Model

We define a dynamic flow model, where a new flow arrives
into the system with a finite-length file request, and leaves the
system when the file is transmitted. Without loss of generality,
each MS is assumed to start a new transmission only after the
old one is finished, and each new transmission by the same MS
is treated as a new flow. The scheduler at the BS allocates each
subcarrier k to a flow εk(t) at a given time slot t, according to
different scheduling strategies. The queueing model of multi-
user scheduling in the OFDM system is shown in Fig.1.
This is a multi-server scheduling problem, and the actual

service rate of each server Sk is Rk
εk(t)(t), which depends

on the scheduling strategy and the number of flows. For the
packetized multi-server system where a packet of any flow can
be serviced at any of the servers, [19] shows that compared
with a single Generalized Processor Sharing (GPS) server
whose rate equals to the sum rate of all servers, performance
differences exist because the flow in the packetized system is
not infinitely divisible. Since the duration of the time slots is
relatively short with respect to the size and arrival frequency
of the service demands (e.g., the minimum scheduling time
unit is 1ms in 3G Long-Term Evolution (LTE) [20], while it
usually takes at least several seconds to transmit a file), the
flow-level performance can be analyzed in continuous rather
than discrete time, and it can be assumed that the flows are
served simultaneously by a single server with a service rate∑K

k=1 Rk
εk(t)(t), rather than by K servers in a time-slotted

fashion.
For comparison purpose, we consider the following three

scenarios.

1) Consider the situation that there is only a single flow i in
the system. Obviously, its transmission rate is T sg

i (t) =∑K
k=1 Rk

i (t). When fading is relatively fast compared
to flow dynamics, T sg

i (t) can be replaced by a constant
value E[

∑K
k=1 Rk

i (t)] = KCi.
2) Consider a simple round-robin (RR) scheduler. In

OFDM-TDMA systems, the scheduler assigns all the
subcarriers to one of the n(t) flows at each time slot
t in a round-robin fashion, where n(t) denotes the
total number of flows present at time slot t, while in
OFDMA systems, each subcarrier is assigned to one
of the n(t) flows in a round-robin fashion at each
time slot t. In both systems under Processor-Sharing
model, the transmission rate of flow i can be represented
as T rr

i (t) = T sg
i (t)/n(t), where T sg

i (t) represents the
transmission rate of user i if it was the only user in the
system at time t. This idealization is a typical use of the
Processor-Sharing discipline as a theoretical abstraction
of round-robin scheduling. Furthermore, if the fading
speed is relatively fast compared to flow dynamics,
T rr

i (t) can be replaced by a constant value KCi/n(t).
Notice that the value depends on the number of flows.

3) Consider an opportunistic scheduler to achieve fair shar-
ing. Let G

(
n(t)

)
denote the scheduling gain of the op-

portunistic scheduler, which accounts for the throughput
gain it achieves with respect to the simple round-robin
scheduling. Obviously, for n(t) = 1, G(1) = 1. It is
natural to represent the transmission rate of flow i as

T os
i (t) = T sg

i (t)
G

(
n(t)

)
n(t)

= KCi

G
(
n(t)

)
n(t)

(5)

where the second equality holds when the fading speed
is relatively fast compared to flow dynamics.

The flow-level model defined by (5) corresponds to a
Processor-Sharing type queue where the service rate of each
flow varies with the number of flows in the system. The model
belongs to the class of product-form queueing networks and is
analytically tractable [21]. We consider a scenario with P flow
classes. Class-p flows submit file transfer requests as a Poisson
process of rate λp. Let Fp be a random variable representing
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the file size of an arbitrary class-p flow. Let (N1, . . . , NP )
be a random vector representing the number of flows of the
various classes in the system at an arbitrary epoch in statistical
equilibrium. The joint stationary distribution of (N1, . . . , NP )
can be obtained as [13]

Pr(N1 = n1, . . . , NP = nP )

= Pr(0)(n1 + . . . + nP )!
P∏

p=1

(ρp)np

np!
(6)

where Pr(0) is determined by the normalizing condi-
tion. ρp is the class-p traffic loads defined as ρp :=
λpE[Fp]/

(
KCp

n
√∏n

i=1 G(i)
)
, where n = n1 + . . . + nP .

Then, the total traffic load equals ρ =
∑P

p=1 ρp. By the
Little’s law, we obtain the mean response time Tp and the
flow throughput ηp of class-p flows as

E[Tp] =
E[Np]

λp
, ηp =

E[Fp]
E[Tp]

. (7)

When G(n) ≡ 1, we have

ηp = KCp(1 − ρ). (8)

III. PERFORMANCE ANALYSIS AND COMPARISON

In this section, we analyze and compare the flow-level
performance based on the model in Section II. Section III(A)
focuses on the scheduling gains of the proportional fair (PF)
scheduler in OFDMA and OFDM-TDMA systems, respec-
tively. The impact of physical-layer factors on flow-level
performance is analyzed in Section III(B).

The PF algorithm in single-carrier systems has been ex-
tended to multi-carrier systems in [22]. In an OFDMA system,
subcarrier k is assigned to the flow that satisfies the following
condition at time slot t

εk(t) = arg max
i=1,...,n

Rk
i (t)/Ti(t), k = 1, . . . , K (9)

where Ti(t) is the exponential filtered average throughout of
flow i at time slot t.

In OFDM-TDMA systems, all the subcarriers are assigned
to the same flow that satisfies the following condition at time
slot t

ε(t) = arg max
i=1,...,n

K∑
k=1

Rk
i (t)/Ti(t), k = 1, . . . , K. (10)

A. Scheduling Gain

As indicated in Section II(B), {Y k
i (t)}i=1,...n(t) are inde-

pendent identically distributed (i.i.d.) r.v.’s, which means that
the fluctuations of flow feasible rates around the respective
time-average values are statistically identical. In this case,
the instantaneous rate Rk

i (t) and the exponential smoothed
average throughput Ti(t) of PF algorithm scales linearly with
the time average rate E[

∑K
k=1 Rk

i (t)] = KCi. A rigorous
justification of this claim is provided in [23]. In addition, Ti(t)
will not show any significant variation when the time constant
in the exponential smoothing is large. Therefore, we may write
Ti(t) ≈ V KCi, where V is some constant value and Ti(t) is
approximated as a constant independent of t [12]. As a result,
the allocation of time slots and subcarriers only depends on

the relative rate fluctuations instead of the time-average rates.
Thus, PF algorithm results in fair sharing, since the relative
rate fluctuations are statistically identical. This means that (5)
is valid for PF algorithm.

1) OFDMA system: Substituting Rk
i (t) := CiY

k
i (t) and

Ti(t) ≈ V KCi, we find that the expected rate of the selected
flow i at each sub-channel k approximately equals

E[CiY
k
i (t)|Y k

i (t) = max
j=1,...,n

Y k
j (t)] = CiE[ max

j=1,...,n
Y k

j (t)].

(11)
Therefore, the transmission rate of flow i is T os

i (t) =
KCiE[maxj=1,...,n Y k

j (t)]/n(t). Compared with (5), the
scheduling gain of the OFDMA system is

GOFDMA(n) = E[ max
j=1,...,n

Y k
j (t)]. (12)

Assume Rayleigh fading and the data rate are linear functions
of SNR, Y k

j (t), j = 1, . . . , n are exponentially distributed
with unit mean. According to the property 1) in Section II.B,
Y k

j (t), j = 1, . . . , n are mutually independent. We then obtain
[24]

GOFDMA(n) =
∫ ∞

0

1 −
(
1 − Pr

(
Y k

i (t) > x
))n

dx

= 1 +
1
2

+ . . . +
1
n

. (13)

2) OFDM-TDMA system: Substituting Rk
i (t) := CiY

k
i (t),

the expected rate of the selected flow i can be approximated
as

E[
K∑

k=1

CiY
k
i (t)|

K∑
k=1

Y k
i (t) = max

j=1,...,n

K∑
k=1

Y k
j (t)]

= CiE[ max
j=1,...,n

K∑
k=1

Y k
j (t)]. (14)

Therefore, the transmission rate of flow i is T os
i (t) =

CiE[maxj=1,...,n

∑K
k=1 Y k

j (t)]/n(t). Compared with (5), the
scheduling gain of OFDM-TDMA system is

GOFDM−TDMA(n, K) =
1
K

E[ max
j=1,...,n

K∑
k=1

Y k
j (t)] (15)

which is a function of both n and K .
With Rayleigh fading,

∑K
k=1 Y k

j (t), j = 1, . . . , n are the
sum of K identically distributed (but not necessarily in-
dependent according to the property 2c) in Section II.B)
exponential r.v.’s at any time t, which has no closed-form
expression for the probability distribution function. How-
ever, an upper and lower bound for GOFDM−TDMA(n, K)
can be derived using stochastic comparison technique. Ac-
cording to the result of convex ordering,

∑K
k=1 Y

k

j (t) ≤cx∑K
k=1 Y k

j (t) ≤cx

∑K
k=1 Y 1

j (t), where {Y 1

j(t), . . . , Y
K

j (t)}
are the independent version of {Y 1

j (t), . . . , Y K
j (t)

}
[26]

(some basic definitions of stochastic comparison are given in
Appendix (A)). The above inequality means that

∑K
k=1 Y k

j (t)
is most variable when the data rates of all subcarriers are
the same, and least variable when the data rates are stochas-
tically independent. Since maximization is a convex func-
tion, the upper bound GOFDM−TDMA

UB (n, K) and the lower
bound GOFDM−TDMA

LB (n, K) can be derived by replacing
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∑K
k=1 Y k

j (t) in (15) with
∑K

k=1 Y 1
j (t) and

∑K
k=1 Y

k

j (t), re-
spectively. In obtaining the upper bound, the wireless channel
reduces to flat fading and

∑K
k=1 Y 1

j (t) is exponentially dis-
tributed with expectation K . Therefore, GOFDM−TDMA

UB (n, K)
equals GOFDMA(n) given in (13), i.e., GOFDM−TDMA(n, K)
is always smaller than or equal to GOFDMA(n).

To obtain the lower bound, the data rates over any two sub-
carriers are considered to be independent, so that

∑K
k=1 Y

k

j (t)
is an Erlang-K r.v. at any time t. In this case, it is difficult to
obtain a closed-form solution as in (13). Therefore, we derive
another upper bound for the low bound based on the result in
[25], i.e.,

GOFDM−TDMA
LB (n, K)

≤ 1
K

(
mn + n

∫ ∞

mn

Pr
( K∑

k=1

Y k
j (t) > x

)
dx

)
= 1 + ne−mn(mn)K/K! (16)

where mn is the smallest positive solution of the equation

Pr
( K∑

k=1

Y k
j (t) > x

)
= ne−mn

K−1∑
i=0

(mn)i/i! = 1. (17)

It has been shown in [25] that the upper bound is relatively
tight. For example, the upper bound for GOFDMA(n) is 1 +
log(n) using the above method.

The upper and lower bounds derived for
GOFDM−TDMA(n, K) above are generally not very tight.
However, by letting K ′ represent the number of independent
subcarriers instead of the total number of subcarriers,
GOFDM−TDMA

LB (n, K ′) provides a close approximation
of GOFDM−TDMA(n, K ′), and a tight upper bound of
GOFDM−TDMA(n, K ′) can be derived based on the solution
of (16) and (17). Note that the number of independent
subcarriers K ′ equals to 	K/Δk∗
, where 	x
 denotes
the largest integer which is less than or equal to x and
Δk∗ is the smallest solution of the equation for frequency
correlation function Ri

F(Δk∗) = 0. The theoretical gains
of PF algorithm in OFDM-TDMA and OFDMA systems
with different numbers of independent subcarriers are
shown in Fig.2, where UB stands for “upper bound". Since
K ′ = 2, 10, 100, 1000 represents the number of independent
subcarriers instead of the total number of subcarriers in the
system, the four curves obtained from (16) show the upper
bounds of GOFDM−TDMA(n, K ′).

From the above discussion, it can be seen that the schedul-
ing gain of the PF algorithm in OFDMA systems is always
larger than or equal to that of the PF algorithm in OFDM-
TDMA systems, and the scheduling gain of the latter decreases
with the increase of the number of independent subcarriers.
This is because by the law of large numbers, the variation of
the average rate of all subcarriers becomes smaller with the
increasing number of subcarriers in OFDM-TDMA systems.
By (15), the scheduling gain tends to 1 when there are infinite
independent subcarriers.

B. Impact of Physical-Layer Characteristics on Flow-Level
Performance

In this section, the impact of several physical-layer char-
acteristics, including fading speed and frequency selectivity,

Fig. 2. Theoretical scheduling gain of OFDMA and OFDM-TDMA systems.

on the flow-level performance is examined by assuming a
fixed scheduling gain function from the OS algorithm. It will
be shown below that the flow-level performance measures
behave as convex and supermodular functions of the rate
process, which is only impacted by the physical-layer charac-
teristics and independent of the specific scheduling algorithm.
Therefore, the OFDMA and OFDM-TDMA systems are not
differentiated in the following analysis based on stochastic
ordering [26].

We consider a finite-length duration, which is divided into
T slots such that the feasible rate remains constant during each
time slot. Let Np(t) be the number of class-p flows at the end
of time slot t ∈ {1, . . . , T}. Assume that there is no flow at
the beginning of this observation period and the set of flows
that arrive at the system during this period is denoted by N .
Obviously, Np(T ) is a function of the following r.v.’s : the
file size Fi and the feasible rate

∑K
k=1 Rk

i (t), t ∈ {1, . . . , T}
of each flow i ∈ N . Note that the variation of physical-layer
characteristics for any flow only affects its own rate process,
and has no impact on the rate processes of other flows. Without
loss of generality, we fix the file sizes and feasible rates of all
the flows except flow j to focus on the variation of physical-
layer characteristics for only one flow, and denote the rate
process of flow j as

Sj := {
K∑

k=1

Rk
j (1), . . . ,

K∑
k=1

Rk
j (T )}.

Therefore, Np(T ) is a function of Fj and Sj only. Denote the
conditional expectation of Np(T ) given Sj by

EFj [Np(T )] := E
[
Np(T )

∣∣( K∑
k=1

Rk
j (1), . . . ,

K∑
k=1

Rk
j (T )

)]
which is a function of the rate process Sj . Note that EFj

means that the expectation is taken over the r.v. Fj .
The following theorem gives a formal statement that the

flow-level performance measures behave as convex and su-
permodular functions of the rate process, which can be easily
derived from the Lemma 2 of [13]. Although the study below
only considers the flow number, similar results can be extended
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to other flow-level performance measures such as the response
time and flow throughput.

Theorem 1: Assume the cumulative distribution function
(c.d.f.) associated with the random flow size Fj is concave.
For all increasing functions f(·), the conditional expectation
of the number of flows EFj

[
f
(
Np(T )

)]
is a supermodular

and convex function of the rate process Sj of flow j.
The assumption on the flow size distribution is satisfied by a

broad class of distributions, e.g., exponential and Weibull, etc.
The definition of supermodular function is given in Appendix
A. Theorem 1 is proved by expressing EFj

[
f
(
Np(T )

)]
as

the sum of T supermodular and convex functions, where each
supermodular and convex function includes the composition
of an affine function and a convex function, which denotes
the probability that flow j leaves the system at the end of slot
t, t = 1, . . . , T .

Next, we show that the physical-layer characteristics, such
as fading speed and frequency selectivity, impact the flow-
level performance through the change of stochastic orders of
the rate process Sj . We first arrange the feasible rate of flow
j at each subcarrier and time slot into a random matrix

Rj =

⎛
⎜⎝

R1
j(1) . . . R1

j (T )
...

. . .
...

RK
j (1) . . . RK

j (T )

⎞
⎟⎠ .

Denote the covariance of any two elements in the same row
or column of Rj by Ψr(Δt) := cov

(
Rk

j (t), Rk
j (t +Δt)

)
and

Ψc(Δk) := cov
(
Rk

j (t), Rk+Δk
j (t)

)
, respectively.

1) Impact of fading speed: We assume that the channel
frequency selectivity is fixed, and examine the impact of
fading speed on the flow-level performance only. Let a random
matrix Rj representing the feasible rate of flow j be replaced
by another random matrix R̃j = {R̃k

j (t)}, k = 1, . . . , K ,
t = 1, . . . , T , when the fading speed of flow j is increased
while all other conditions are the same. Denote the covariance
of any two elements in the same row or column of R̃j by
Ψ̃r(Δt) and Ψ̃c(Δk), respectively.

The two random matrices Rj and R̃j have the following
properties:
(i) All the elements of Rj and R̃j are identically distributed;
(ii) Since the fading speed is higher in the latter scenario,

Ψr(Δt) ≥ Ψ̃r(Δt);
(iii) Since the channel frequency selectivity is the same for

both scenarios, Ψc(Δk) = Ψ̃c(Δk).
According to Appendix (B), we have the following theorem.
Theorem 2: The flow-level performance is improved when

the fading speed of flow j is accelerated, i.e.,

Ñp(T ) ≤st Np(T ), p = 1, . . . , P (18)

where Ñp(T ) is the number of class-p flows when the rate
process of flow j is

S̃j := {
K∑

k=1

R̃k
j (1), . . . ,

K∑
k=1

R̃k
j (T )}.

Under each channel frequency selectivity condition, we
define two limit regimes referred to as fluid and quasi-
stationary, where the rate variation speed remains unchanged
in the frequency domain, while it is infinitely fast and infinitely

slow in the time domain, respectively. Two similar limits have
been given in [13] for single-carrier systems.

In the fluid limit regime, the rate process of flow j (Sj)
completely averages out over the time scale of the transmission
of data file. Therefore, it can be replaced by a constant
according to [14], which is defined as

Sfl
j := {

K∑
k=1

E[Rk
j (1)], . . . ,

K∑
k=1

E[Rk
j (T )]}.

In the quasi-stationary limit regime, the rate process of flow
j remains in the initial state during the transmission of data
file. Therefore, it also reduces to a constant, which is defined
as

Sqs
j := {

K∑
k=1

Rk
j (1), . . . ,

K∑
k=1

Rk
j (1)}.

According to the definitions of the two limit regimes, we
have

Theorem 3: The flow-level performance is improved or
deteriorated when the rate process of flow j is replaced by
the corresponding fluid and quasi-stationary versions, respec-
tively, i.e.,

Nfl
p (T ) ≤st Np(T ) ≤st Nqs

p (T ), p = 1, . . . , P (19)

where the superscripts fl and qs refer to the system in the fluid
and quasi-stationary limit regimes, respectively.

Similar results from the above Theorems 2 and 3 have
been observed in the single-carrier system [13]. However,
the proofs of these comparison results are more complex in
OFDM systems, which have been given in Appendix (B).

2) Impact of channel frequency selectivity: Let the fading
speed be fixed. We investigate how the performance varies
with the frequency selectivity of the multipath fading channel.
In order to do so, we define a new random matrix R̂j to
represent the feasible rate of flow j when the frequency
selectivity is increased while all other conditions are the same.
Denote the covariance of any two elements in the same row
or column of R̂j by Ψ̂r(Δt) and Ψ̂c(Δk), respectively. Then
the two random matrices Rj and R̂j have the following
properties:
(i) All the elements of Rj and R̂j are identically distributed;
(ii) Since the fading speed is the same for both scenarios,

Ψr(Δt) = Ψ̂r(Δt);
(iii) Since the channel frequency selectivity is higher in the

latter scenario, Ψc(Δk) ≥ Ψ̂c(Δk).
Theorem 4: The flow-level performance is improved when

the frequency selectivity of flow j is increased, i.e.,

N̂p(T ) ≤st Np(T ), p = 1, . . . , P (20)

where N̂p(T ) is the number of class-p flows when the rate
process of flow j is

Ŝj := {
K∑

k=1

R̂k
j (1), . . . ,

K∑
k=1

R̂k
j (T )}.

Similarly, we define two limit regimes, termed fully-
selective and flat, where the rate variation speed remains
unchanged in the time domain, while it is infinitely fast and
infinitely slow in the frequency domain, respectively. The
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elements in the same column of Rj are independent in the
former regime, and reduces to flat fading where Rj(t) =
(R1

j (t), . . . , R
1
j (t)) in the latter regime. Therefore, the rate

processes in the fully-selective and flat limit regimes can be
denoted as

Sfsel
j := {

K∑
k=1

R
k

j (1), . . . ,
K∑

k=1

R
k

j (T )}

Sflat
j := {KR1

j(1), . . . , KR1
j(T )}

where the random vector {Rk

j (t)}k=1,...,K is the independent
version of {Rk

j (t)}k=1,...,K .
Theorem 5: The flow-level performance can be improved

or deteriorated when the rate process of flow j is replaced
by the corresponding fully-selective and flat versions, respec-
tively, i.e.,

N fsel
p (t) ≤st Np(t) ≤st Nflat

p (t), p = 1, . . . , P (21)

where the superscripts fsel and flat refer to the system in the
fully-selective and flat limit regimes, respectively.

Now we have four limit regimes for flow-level performance
termed fluid, quasi-stationary, fully-selective and flat, when the
rate process of flow j is replaced by its corresponding limit
versions, respectively. Combining these four limit regimes,
we can derive simple upper and lower bounds for the flow-
level performance, which only depend on easily calculated
load factors. The rate processes in the four limit regimes are
denoted as follows

Sfl,fsel
j := {E[

K∑
k=1

R
k

j (1)], . . . ,E[
K∑

k=1

R
k

j (T )]}

Sfl,flat
j := {E[KR1

j(1)], . . . ,E[KR1
j(T )]}

Sqs,fsel
j := {

K∑
k=1

R
k

j (1), . . . ,
K∑

k=1

R
k

j (1)}

Sqs,flat
j := {KR1

j(1), . . . , KR1
j(1)}.

According to Theorems 3 and 5, we can derive the fol-
lowing theorem, which compares the performance of different
combinations of the limit regimes.

Theorem 6: The performance of different combinations of
limit regimes are ranked as follows

Nfl
p (T ) =st Nfl,fsel/flat

p (T ) ≤st Nqs,fsel
p (T )

≤st Nqs,flat
p (T ), p = 1, . . . , P. (22)

The theorem states that performance in the (fluid, fully-
selective) and (fluid, flat) limit regimes are statistically the
same, both providing an optimistic estimate of performance.
The performance in (quasi-stationary, fully-selective) limit
regime is better than that in the (quasi-stationary, flat) limit
regime, while the latter provides a conservative estimate of
performance. Therefore, the performance difference between
the fluid limit regime and quasi-stationary limit regime is
larger when they are combined with the flat limit regime
than that when they are with fully-selective limit regime. The
following corollary follows from the above observation.

Corollary 1: When the channel frequency selectivity is
larger, the fading speed has relatively smaller impact on
performance.

TABLE I
SIMULATION PARAMETERS

Carrier 2GHz

Bandwidth 10MHz

time slot duration (ms) 0.5

DFT size 1024

Subcarrier separation (kHz) 15

OFDM block duration (µs) 83.34

Number of OFDM symbols 7

Number of useful subcarriers 600

Fading channel model TU, PA

Average SNR (dB) 0

Velocity (km/h) 3, 30

The above discussion didn’t consider the transmission time
of data files. The following theorem shows that the data file
sizes (in transmission time) have an effect on the degree of
impact of physical-layer characteristics on performance.

Theorem 7: When the transmission time of the data file is
larger, the physical-layer characteristics, e.g., fading speed and
channel frequency selectivity, have relatively smaller impact
on performance.

Let the rate processes of all the P -class flows be re-
placed by the different combinations of limit regimes. The
performance in these limit regimes can be easily derived
by replacing Cp and ρ for p = 1, . . . , P in (6), (7), (8)
with Cfl

p , Cqs,fsel
p , Cqs,flat

p and ρfl, ρqs,fsel, ρqs,flat, respec-
tively. From the above discussion, the instantaneous rate in
the fluid regime can be replaced by the time average rate
E[

∑K
k=1 Rk

p(t)], and the instantaneous rate in the quasi-
stationary regime is the rate at the initial state

∑K
k=1 Rk

p(0),
where Rk

p(0) =st Rk
p(t). Therefore, Cfl

p and ρfl equal to
Cp and ρ derived in Section III(B), respectively. On the
other hand, ρqs =

∑P
p=1 λpE[Fp]/

(
KCqs

p
n
√∏n

i=1 G(i)
)
,

where Cqs
p = E[1/

∑K
k=1 Rk

p(0)]−1. Therefore, Cqs,flat
p =

E[1/KR1
p(0)]−1 and Cqs,fsel

p = E[1/
∑K

k=1 R
k

p(0)]−1.
The proofs of Theorems 4-7 are given in Appendix (B).

IV. SIMULATION RESULTS

A. Parameter Setting

The analytical performance is illustrated and verified by
simulations in this section. The simulation parameters are
given in Table I [27]. The OFDM system has N = 600 avail-
able sub-carriers with DFT size of 1024. Multipath Rayleigh
fading channels are considered, with each independent fading
path generated by the Jakes Model using a U-shape Doppler
power spectrum [28].

B. Scheduling Gain

This set of simulations compare the scheduling gains of the
PF algorithm in OFDMA and OFDM-TDMA systems, and
verify the analytical results in Section IV(A). The scheduling
gain is calculated as the ratio between the average throughput
of PF algorithm and RR algorithm. In order to examine
the impact of the number of independent subcarriers on the
scheduling gain of the OFDM-TDMA system, the 600 subcar-
riers are divided into 24 chunks, with each chunk consisting of
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1 13 24

1 9 2417

1 7 241913

U = 2

U = 3

U = 4

1 24
U = 24

Fig. 3. Distribution of chunks in use with a total of 24 chunks.

25 subcarriers as defined in [27]. We assume that there exist
circumstances when not all the chunks are in use, and perform
simulations to compare the scheduling gains when the number
of chunks in use (U ) are increased from 2 to 24. The chunks
in use are not selected continuously, but from chunk 1 with an
increment of (total chunk number/U ), as shown in Fig.3. For
example, when U is 2, chunk 1 and chunk 13 are selected.
In this way, it can be guaranteed that when the value of U is
small, it can accurately represent the number of independent
subcarriers in the system.

The simulation results in Fig. 4 show the scheduling gains
of the PF algorithm in OFDMA and OFDM-TDMA systems
when the numbers of chunks in use (U ) are 2, 3, 4 and 24.
In the figure, the theoretical results for OFDMA and the an-
alytical upper bound for OFDM-TDMA are derived based on
(13) and (16), respectively, where K ′ represents the number of
independent subcarriers. It can be seen that scheduling gain for
OFDMA system is approximately the same as the theoretical
results. Furthermore, the variation in the number of chunks in
use has little impact on the performance. The scheduling gain
for the OFDM-TDMA system, on the other hand, decreases
significantly when the number of chunks in use increases from
2 to 4. This is in accordance with the analytical results that
the scheduling gain of the OFDM-TDMA system decreases
with the increase of the number of independent subcarriers.
The theoretical upper bounds are proved to be accurate when
the number of chunks in use are 2, 3 and 4, respectively.
Compared with Fig. 2, it can be seen that difference between
the upper bound and simulation results of the scheduling gain
in the OFDM-TDMA system is approximately the same as
the difference between the upper bound and the theoretical
result. Note that when U = 24 and U = 4, the scheduling
gains of OFDM-TDMA system are nearly the same. Since the
scheduling gains remain approximately constant when U ≥ 4,
the simulation results for 4 < U < 24 are omitted.

C. Flow-Level Performance

This set of simulations evaluate the impact of different
physical-layer characteristics on flow level performance of
the OFDM system and verify the analytical results in Section
IV(B).

The physical-layer parameters of the OFDM system is
described in Section V(A). The instantaneous rate in the
simulation is logarithmic as the instantaneous SNR: R =
C × log2(1 + SNR), where C = 15kbps is the subcarrier
separation. The mean file sizes are set to be 48kbits and

480kbits, which can be considered as the sizes of HTTP
objects and FTP files, respectively [29].

Fig. 5 compares the flow-level performance for varying ar-
rival rates under different fading speed and channel frequency
selectivity. The channel types are set to be PA (pedestrian
A) and TU (Typical Urban), respectively, which belong to
the tapped-delay-line channel models widely used in 3G LTE
system evaluation [27]. The channel frequency selectivity is
TU > PA, due to the difference in maximum multipath
delays. A detailed treatment of the propagation models is given
in Table II. The MS velocity is set to be 3 and 30, where
increasing MS velocity leads to increased fading speed. As
expected from the analytical results in Section IV(B), the fluid
regime provides an optimistic estimate of the throughput. By
observing Figs. 5(a) and 5(b), which respectively show the
mean flow throughput and flow number when the files size
is 48kbits, it can be seen that 1) increasing fading speed im-
proves the performance when the frequency selectivity is fixed,
and 2) increasing channel frequency selectivity improves the
performance when the fading speed is fixed. Furthermore, the
performance is less sensitive to the fading speed when the fre-
quency selectivity is high. Since the throughput improvement
under PA is larger than that under TU, when the MS velocity
is increased from 3km/h to 30km/h. Finally, the impact of
physical-layer characteristics on flow-level performance is less
obvious when the file size is 480kbits, as shown in Figs. 5(c)
and 5(d). This matches the analytical results given in Theorem
7.

V. CONCLUSIONS

In this paper, a flow-level model for performance analysis
in OFDM systems has been proposed by extending the multi-
class Processor-Sharing model for single-carrier systems to
OFDM systems. Based on this model, we analyze and compare
the scheduling gains achieved by proportional fair schedulers
in both OFDMA and OFDM-TDMA systems. Moreover, the
impacts of several physical-layer characteristics on the flow-
level performance of OFDM systems are then evaluated using
stochastic comparison, and the upper and lower bounds for the
flow-level performance of OFDM systems have been derived.
Both analytical and simulation results show that

• the scheduling gain achieved in the OFDMA system is
larger than that of the OFDM-TDMA system;

• faster fading speed and higher channel frequency selec-
tivity can both improve performance;

• fading speed variation has less impact on the performance
in case of a higher channel frequency selectivity;

• fluid and (flat, quasi-stationary) limit regimes provide
optimistic and conservative performance estimates for
the OFDM system, respectively. The performance in
both limit regimes only depends on appropriately defined
traffic loads ρfl and ρqs,flat.

Our future work will focus on quantifying the impacts of
these physical-layer characteristics on the performance, and
improving the accuracy of this first-order approximation by
incorporating the effects of service variability more precisely.
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TABLE II
CHANNEL MODELS IN SIMULATION

Tap PA TU

Relative delay (ns) Average power (dB) Relative delay (ns) Average power (dB)

1 0 0.0 0 0

2 0 -6.51 200 3

3 110 -16.21 600 1

4 190 -25.71 1600 -3

5 410 -29.31 2400 -5

6 5000 -7

Fig. 4. Scheduling gain of OFDMA and OFDM-TDMA systems with different number of chunks in use.
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APPENDIX

A. Basic Concepts of Stochastic Ordering

We introduce some basic definitions and properties of
stochastic ordering from [26].

Definition 1: For random variables (vectors) X and Y,
define

X ≤st (or ≤cx)Y iff Eφ(X) ≤ Eφ(Y),
∀ increasing (or convex) functions φ

provided the expectations exist.
The stochastic order ≤st and the convex order ≤cx compare

the magnitude and variability of random variables (vectors),
respectively. X ≤st Y means X is less likely than Y to take
large values. On the other hand, X ≤cx Y means X is “less
variable" than Y, and we have

E[X] = E[Y], Var[X] ≤ Var[Y]. (23)

Let ei denote the i-th n-dimensional unit vector. For x =
(x1, . . . , xn) and an arbitrary function φ : Rn → R, we define
Δε

i φ = φ(x + εei) − φ(x).
Definition 2: A function φ : Rn → R is said to be

supermodular if
Δε

i Δ
δ
jφ(x) ≥ 0

holds for all x ∈ Rn, 1 ≤ i ≤ j ≤ n and ε, δ > 0.
The supermodular order ≤sm is defined by substituting the

‘increasing’ or ‘convex’ functions in Definition 1 with the
‘supermodular’ function.

Definition 3: For random vectors X and Y with the same
marginal distributions, X is said to be less correlated than Y,
written as X ≤c Y, if

cov
(
φ(Xi)η(Xj)

) ≤ cov
(
φ(Yi)η(Yj)

)
where cov(·) denotes covariance and both φ and η are increas-
ing functions for which the covariance exists.

Both the supermodular order ≤sm and the correlation order
≤c are introduced to mathematically describe the property of
dependencies among the r.v.’s within a random vector.

B. Proofs of Theorems 2-7

The proofs of Theorems 2-5 are to verify the ≤st

ordering of the flow numbers N∗
p (T ), p = 1, . . . , P ,

with respect to different physical-layer conditions,
which lead to different rate processes S∗

j . Here,(
N∗

p (T ), S∗
j

)
represents any pair of

(
Np(T ), Sj

)
,(

Ñp(T ), S̃j

)
,

(
N̂p(T ), Ŝj

)
,

(
Nfl

p (T ), Sfl
j

)
,

(
Nqs

p (T ), Sqs
j

)
,(

N fsel
p (T ), Sfsel

j

)
,

(
Nflat

p (T ), Sflat
j

)
,

(
Nfl,fsel

p (T ), Sfl,fsel
j

)
,(

Nfl,flat
p (T ), Sfl,flat

j

)
,

(
Nqs,fsel

p (T ), Sqs,fsel
j

)
, or

(
Nqs,flat

p (T ),
Sqs,flat

j

)
.

According to the definition of ≤st ordering, it is sufficient
and necessary to prove that for any increasing function f ,
E

[
f
(
N∗

p (t)
)]

obeys the same ordering. From Theorem 1,
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(a) flow throughput (file size=48kbits) (b) flow number (file size=48kbits)

(c) flow throughput (file size=480kbits) (d) flow number (file size=480kbits)

Fig. 5. Flow-level performance with different fading speed and frequency selectivity (TU>PA).

since for any increasing function f , EFj

[
f
(
N∗

p (T )
)]

is a
supermodular and convex function of the rate process S∗

j . By
the property of conditional expectation, we have

E
[
f
(
N∗

p (T )
)]

= E
[
EFj

[
f
(
N∗

p (T )
)]

(S∗
j )

]
. (24)

Thus, in order to prove the ≤st ordering of the flow
numbers, it is sufficient to show that the rate processes hold
relative order in terms of supermodular or convex ordering. For
example, it is sufficient to show S̃j ≤sm Sj or S̃j ≤cx Sj in
order to prove Ñp(T ) ≤st Np(T ).

1) Proof of Theorem 2: We first introduce two lemmas,
which are on the equality of correlation order and supermod-
uler order [30], and on the covariance between functions [31].

Lemma 1: Suppose X and Y are n-dimensional random
vectors. If X ≤c Y, then X ≤sm Y.

Lemma 2: Let X and Y be two random variables with
continuous cumulative distribution function (cdf) H(x, y) and
marginal cdf’s F (x) and G(y), respectively. Assume φ and η
are monotonic functions. Then,

cov
(
φ(X), η(Y )

)
=

∫ (
H(x, y) − F (x)G(y)

)
dφ(x)η(y).

(25)

With Lemma 1, it is sufficient to show that

S̃j ≤c Sj . (26)

Compared with Rj , since the channel frequency selectivity
of R̃j is the same and only the fading speed of flow j is
accelerated, we have

{R1
j (t), . . . , R

K
j (t)} =st {R̃1

j(t), . . . , R̃
K
j (t)}

which means that the marginal distributions of Sj and S̃j are
identical, i.e.,

K∑
k=1

Rk
j (t) =st

K∑
k=1

R̃k
j (t), t = 1, . . . , T. (27)

The covariance of Sj is

cov
( K∑

k=1

Rk
j (t),

K∑
k=1

Rk
j (t + Δt)

)

=
K∑

k=1

K∑
k′=1

cov
(
Rk

j (t), Rk′
j (t + Δt)

)
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=
K∑

k=1

K∑
k′=1

Ψr(Δt)Ψc(k − k′). (28)

The second equality in (28) is based on the factorable form
of (3). It can be proved that the covariance function of SNR
is simply the square of covariance function of channel gain
[34]. Similarly, for R̃j , we have

cov
( K∑

k=1

R̃k
j (t),

K∑
k=1

R̃k
j (t+Δt)

)
=

K∑
k=1

K∑
k′=1

Ψ̃r(Δt)Ψ̃c(k−k′).

(29)
By the properties (ii) and (iii) of Rj and R̃j in Section

IV(B), we have Ψr(Δt) ≥ Ψ̃r(Δt) and Ψc(Δk) = Ψ̃c(Δk).
Therefore,

cov
( K∑

k=1

Rk
j (t),

K∑
k=1

Rk
j (t + Δt)

)

≥ cov
( K∑

k=1

R̃k
j (t),

K∑
k=1

R̃k
j (t + Δt)

)
. (30)

For increasing functions φ and η, their derivatives φ′ > 0
and η′ > 0. According to Lemma 2, (30) leads to

cov
(
φ
( K∑

k=1

Rk
j (t)

)
, η

( K∑
k=1

Rk
j (t + Δt)

))

≥ cov
(
φ
( K∑

k=1

R̃k
j (t)

)
, η

( K∑
k=1

R̃k
j (t + Δt)

))
. (31)

Combining (27) and (31), (26) can be proved according to
Definition 3, and therefore by Lemma 1 we have

S̃j ≤sm Sj . (32)

The similar analysis procedure can be applied to the proofs
of all other theorems, except that each proof may be based
on different lemmas. In the following, we omit the detailed
analysis procedure and only present the necessary lemmas for
each proof.

2) Proof of Theorem 3: The proof of Theorem 3 is based
on the following two lemmas [13]:

Lemma 3: Let X1, . . . , Xn be identically distributed ran-
dom variables. Then (E[X1], . . . ,E[Xn]) ≤sm (X1, . . . , Xn).

Lemma 4: (Lorentz inequality) Let X1, . . . , Xn be identi-
cally distributed random variables. Then (X1, . . . , Xn) ≤sm

(X1, . . . , X1).
3) Proof of Theorem 4: Theorem 4 can be proved based

on the following two lemmas on stochastic comparison [32],
[33].

Lemma 5: Assume that there are two random vectors X =
(X1, . . . , Xn) and Y = (Y1, . . . , Yn), we have

X ≤sm Y =⇒
n∑

i=1

Xi <cx

n∑
i=1

Yi.

Lemma 6: Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn)
be random vectors having multivariate exchangeable distri-
butions with E[Xi] = μX , Var[Xi] = σ2

X , cov[Xi, Xj] =
ρXσ2

X , E[Yi] = μY , Var[Yi] = σ2
Y , cov[Yi, Yj ] = ρY σ2

Y .
Then, the following conditions are equivalent:

(i) μX = μY , σ2
X ≤ σ2

Y , and

σ2
X

σ2
Y

≤ max
{

1 − ρY

1 − ρX
,
1 + (n − 1)ρY

1 + (n − 1)ρX

}
;

(ii) X ≤cx Y .

4) Proof of Theorem 5 and 6: The proof of Theorem 5 is
based on the following lemma on supermodular comparison
[32].

Lemma 7: Let X = (X1, . . . , Xn) be a random vector and
let Y = (Y1, . . . , Yn) be a vector of independent random
variables such that, marginally, Xi =st Yi, i = 1, . . . , n. If
X1, . . . , Xn are weakly positively associated, then X ≥sm Y .

The proof of Theorem 6 can be obtained by combining the
proofs of Theorem 3 and 5.

5) Proof of Theorem 7: First assume that the transmission
time of flow j is T time slots. Consider the case when the
fading speed is relatively slow and the rate process within
T time slots can be considered constant as in the quasi-
stationary limit regime, i.e., the worst case scenario. Then we
increase the transmission time of flow j to 2T time slots.
Assume that the rate process within duration {T, . . . , 2T }
varies from those within duration {1, . . . , T}. Therefore, the
supermoduler order of the rate process of flow j is smaller
than that of the quasi-stationary limit regime, which means
that the performance of flow j is better than the worst case.
Therefore, when the transmission time of flow j is larger,
the performance difference between flow j and the fluid limit
regime becomes smaller.
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