
1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2019.2944371, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING 1

A Cloud-guided Feature Extraction Approach for
Image Retrieval in Mobile Edge Computing

Shangguang Wang, Senior Member, IEEE, Chuntao Ding, Ning Zhang, Member, IEEE, Xiulong Liu,
Ao Zhou, Member, IEEE, Jiannong Cao, Fellow, IEEE, and Xuemin (Sherman) Shen, Fellow, IEEE

Abstract—Mobile Edge Computing (MEC) can facilitate various important image retrieval applications for mobile users by offloading
partial computation tasks from resource-limited mobile devices to edge servers. However, existing related works suffer from two major
limitations. (i) High network bandwidth cost : they need to extract numerous features from the image and upload these feature data to
the cloud server. (ii) Low retrieval accuracy : they separate the feature extraction processes from the image data set in the cloud server,
thus unable to provide effective features for accurate image retrieval. In this paper, we propose a cloud-guided feature extraction
approach for mobile image retrieval. In the proposed approach, the cloud server first leverages the relationships among labeled images
in the data set to learn a projection matrix P. Then, it uses the matrix P to extract discriminative features from the image data set and
form a low-dimensional feature data set. Follow that, the cloud server sends the matrix P to the edge server and uses it to multiply the
image x. The result PTx, i.e., image features, is uploaded to the cloud server to find the label of the image with the most similar
multiplying result. The label is regarded as the retrieval result and returned to the mobile user. In the cloud-guided feature extraction
approach, the matrix P can extract a small number of effective image features, which not only reduces network traffic but also improves
retrieval accuracy. We have implemented a prototype system to validate the proposed approach and evaluate its performance by
conducting extensive experiments using a real MEC environment and data set. The experimental results show that the proposed
approach reduces the network traffic by nearly 93% and improves the retrieval accuracy by nearly 6.9% compared with the
state-of-the-art image retrieval approaches in MEC.

Index Terms—Mobile Edge Computing, cloud-guided, feature extraction, image retrieval, edge servers.
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1 INTRODUCTION

1.1 Motivation & Problem Statement

W ITH the growing popularity of mobile devices, image
retrieval approaches can facilitate various promising

applications, e.g., object identification for visually impaired
individuals, and facial recognition for authentication [1]–
[3]. The most popular solution is based on mobile cloud
computing [4]–[6], i.e., a mobile user uploads raw image
data (or pre-processed data) to cloud servers, and then gets
retrieval results from the cloud servers. However, directly
uploading image-related data to cloud servers can incur
a long network transmission delay. We use Mobile Edge
Computing (MEC) [7]–[10] to solve the network trans-
mission delay problem. This is because mobile users can
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Fig. 1. System architecture of image retrieval in mobile edge computing.

launch image retrieval requests and get retrieval results
from edge servers, which are closer to users than cloud
servers. Moreover, MEC and image retrieval can mitigate
many challenges of the Internet of Things (IoT), e-healthcare
and autonomous car under the existing network and 5G
environment. For example, various IoT devices can upload
corresponding IoT data [11], [12] to edge servers to reduce
response time [13]. MEC can enable e-healthcare to help
patients access different healthcare assistance quickly [14].
In the autonomous car application, MEC can help obstacle
detection systems quickly detect obstacles [15]. In these
applications, the primary role of edge servers is to reduce
the stress on the core network and transmission delay by
pre-processing the uploaded data.

However, most existing related MEC-based image re-
trieval approaches need to extract numerous features from
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Fig. 2. The cloud-guided feature extraction approach for image retrieval.

the image since they aim to preserve its intrinsic structure.
Hence, a large amount of feature data needs to be uploaded
from edge servers to cloud servers. In addition, their feature
extraction processes are isolated from image data set stored
on the cloud servers. Thus, they cannot extract effective
discriminative features and result in low retrieval accuracy.

In this paper, we study the problem of image retrieval in
the MEC context, which is described as follows. As illustrat-
ed in Fig. 1, the system architecture of MEC consists of three
layers of components: mobile devices (users), edge servers,
and cloud servers. Mobile devices communicate with edge
servers through LTE or WiFi and the edge servers connect
to cloud servers via the Internet backbone. A large amount
of labeled image data is stored on cloud servers. From the
perspective of mobile users, edge servers and cloud servers
are together regarded as a service provider. A mobile user
uploads an image to the service provider to launch an image
retrieval request. Then, the service provider processes and
returns the label information of the most similar image to
the mobile user.

1.2 Proposed Approach

In this paper, we propose a cloud-guided feature extraction
approach for image retrieval in MEC, as shown in Fig. 2. We
first, propose a Weight-Adaptive Projection matrix Learning
algorithm (WAPL) to learn a projection matrix P, which is
used to extract discriminative features from the image data
set on cloud servers to generate a low-dimensional feature
data set. That is, we use the matrix P to multiply each image
data in the image data set. The multiplying result can be
interpreted as the discriminative features of the correspond-
ing image. Then, cloud servers send the matrix P to edge
servers. When receiving the image data, edge servers first
pre-process it, such as objection detection and gray scale.
Then, the edge servers use the matrix P to multiply the
pre-processed image x. The result PTx, i.e., feature data, is
uploaded to cloud servers to find the label of an image with
the most similar multiplying result. The label is regarded
as the retrieval result and returned to mobile users. Since
the matrix P can extract effective discriminative features
from the image, edge servers just upload a small amount
of feature data to cloud servers. Compared with existing
MEC-based image retrieval approaches, our approach has
less network traffic and faster responses. In addition, our
approach can achieve higher retrieval accuracy.

Fig. 3. Illustration of global and local relationships. (a1), (a2), (a3),
(a4), (c1) are indexes of images, and (a), (b), (c) and (d) are indexes
of centers of images. The global relationship includes the relationship
between the image and the center of images with the same label and
the relationship between the image centers and the center of all images.
The local relationship includes the relationship between images with the
same label and the relationship between images with different labels.

1.3 Challenges and Proposed Solutions

The first challenge is to guarantee that the projection matrix
P can extract effective discriminative features. Some related
MEC-based image retrieval approaches use the Local Binary
Patterns (LBP) algorithm [16] to extract features. Since the
LBP algorithm aims to preserve the intrinsic structure of the
image, it needs to extract numerous features. In addition,
a number of algorithms have been proposed for learning
the projection matrix P to extract discriminative features.
However, most of them either consider partial relationships
(i.e., global or local relationship) of the image data set
or assign the same weights to global and local relation-
ships (as illustrated in Fig. 3). Different relationships are
equally treated, which is not reasonable for most image
data sets. Since the importance of different relationships
can be quite different, their weights need to be carefully
decided. Therefore, we propose a WAPL algorithm where
global and local relationships are divided into four types of
dissimilarities. Moreover, the WAPL algorithm introduces
trade-off parameters α, β and γ to control the weight of
these dissimilarities. Thus, the learned matrix P can extract
effective discriminative features.

The second challenge is to reduce manpower cost involved in
determining the dimension of the feature data set. The matrix
P is used to extract discriminative features from the image
data set in cloud servers and the image in edge servers.
Hence, it is necessary to determine the optimal number of
discriminative features (i.e., the dimension of the feature
data set). However, most existing algorithms empirically es-
timate the optimal number of discriminative features, which
may require a lot of manpower costs. To circumvent this
problem, we theoretically study the relationship between
the optimal number of discriminative features, the retrieval
accuracy and the number of eigenvalues. Finally, we prove
that the optimal number of discriminative features can be
evaluated in terms of the number of positive eigenvalues.
Thus, considerable manpower costs can be saved by deter-
mining the dimension of the feature data set in terms of the
number of positive eigenvalues.

The third challenge is to meet the different requirements of
users. In real-world scenarios, users have different require-
ments for accuracy and response time. For example, in an
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authentication system, users pay more attention to retrieval
accuracy compared with response time. However, in an
autonomous driving system, obstacle detection needs to
the real-time response. Therefore, it is necessary to design
different interaction strategies between edge servers and
cloud servers since both retrieval accuracy and response
time depend on these strategies. Based on the results of
the challenge 2, we develop different interaction strategies
between edge servers and cloud servers. Thus, we can meet
the different requirements of users.

1.4 Novelty and Advantage over Prior Art
The technical novelty of this paper is to propose a cloud-
guided feature extraction approach. The technical depth
of this paper is to learn a projection matrix, automatically
determine the dimension of the feature data set, and meet
various requirements of users. Compared with the state-
of-the-art image retrieval approaches in MEC context, the
key advantages of the proposed approach are two-fold:
(i) Experimental results reveal that the proposed approach
reduces the network traffic by 93%. (ii) The image retrieval
accuracy is improved by 6.9%.

The remainder of this paper is organized as follows.
Section 2 reviews the related work. The proposed MEC-
based image retrieval approach is presented in Section 3.
Section 4 introduces a novel projection matrix algorithm.
The interaction strategies between edge servers and cloud
servers are introduced in Section 5. In Section 6, we im-
plement a prototype system to evaluate the performance of
the approach. Section 7 discusses the proposed approach.
Section 8 concludes this paper and outlines future work.

2 RELATED WORK

2.1 Image Retrieval
For decades, image retrieval [17], [18] has been a hot re-
search topic in the computer vision, with the goal of retriev-
ing labels of similar images from data sets. In the following,
we will discuss two main procedures in image retrieval
systems, namely feature extraction and feature matching.

Feature extraction aims to extract features from the o-
riginal high-dimensional data sets. In general, it consists of
two steps. The first step is to learn the projection matrix.
The second step is to use the projection matrix to extract
features from the original image data set and form a low-
dimensional feature data set. Local Binary Pattern (LBP) [16]
and Principle Component Analysis (PCA) [19] are two clas-
sic feature extraction algorithms. LBP extracts features to
preserve the intrinsic structure of the image. PCA extracts
features to preserve the global information of the image.
However, since they do not utilize the label information of
the image, it is difficult to extract discriminative features
useful for image retrieval. To address this problem, a num-
ber of algorithms for using the label information to learn
the projection matrix are proposed, such as [20]–[23]. For
example, Linear Discriminant Analysis (LDA) [20] aims to
preserve the global relationship of the image data. Marginal
Fisher Analysis (MFA) [21] focuses on the local relation-
ship of the image data. Joint Global and Local-structure
Discriminant Analysis (JGLDA) [22] considers both global
and local structures. However, JGLDA treats the importance
of both structures equally when dealing with different data

sets. In practice, the importance of different relationships
when extracting features on different data sets is different.
In addition, above algorithms are empirical to estimate the
dimension of the extracted feature data set. The inability
to automatically determine the dimension of the extracted
feature data set affects their applications because tuning it
requires considerable manpower costs.

Feature matching aims to design effective classifiers to
recognize different images. There are multi-class classifiers,
such as the nearest neighbor classifier [24] and support
vector machine [25]. Feature matching is the most time-
consuming procedure in a real image retrieval system be-
cause the image to be retrieved needs to match all the
images stored in the image data set, and the images stored
in the image data set are high-dimensional.

2.2 Mobile Edge Computing
Mobile Edge Computing (MEC) [26], [27] has recently be-
come a new computing paradigm with proximate access
and is a promising complement to centralized Mobile Cloud
Computing (MCC). In the MEC paradigm, a number of
small scales edge servers are placed at the edge of the
network. Mobile users can connect these edge servers via
LTE or WiFi connection. The main idea of MEC is to deploy
edge servers on the edge of the network close to the user
so that users can use the computing, storage and other
resources provided by the edge servers. Compared with
MCC, the network traffic and network transmission time of
MEC architecture can be significantly reduced because the
edge servers are closer to mobile users.

A lot of research has been carried out on MEC
[28]–[37]. For example, Soyata et al. [9] proposed a
mobile-cloudlet-cloud architecture designed to perform task
load between cloud servers to minimize response time.
Hu et al. [10] proposed a face identification and resolution
scheme based on fog computing, which can reduce network
traffic by offloading partial process of the image data on fog
nodes. Liu et al. [28] proposed a food recognition system
based edge computing architecture that pre-processes the
captured food image on the mobile devices before upload-
ing it to cloud servers. However, they need to upload a
large amount of data from edge servers to cloud servers
because they extract numerous features from the image
to preserve its intrinsic structure. In addition, they cannot
extract effective discriminative features because their feature
extraction processes are isolated from image data set stored
on cloud servers.

3 THE CLOUD-GUIDED FEATURE EXTRACTION
APPROACH

In this section, we present the architecture of our MEC-
based image retrieval system and describe the detailed
design of the cloud-guided feature extraction approach.

The proposed system architecture consists of three layers
of components: mobile users (devices), e.g., smartphones;
edge servers, e.g., micro servers; and cloud servers, e.g.,
Alibaba cloud servers. In general, a large number of image
data sets are stored on cloud servers. The image data sets are
usually high-dimensional, which contain a large number of
redundant features. These features not only impair retrieval
accuracy but also incur long feature matching time.
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As shown in Fig. 2, we first propose the WAPL al-
gorithm. Then, we perform the WAPL algorithm to learn
the projection matrix P on the image data set of cloud
servers. Follow that, we use the matrix P to extract dis-
criminative features from the image data set and form a
low-dimensional feature data set, i.e., PTX. The result PTX
satisfies that, if images have the same label, their features are
compact; otherwise, their features are separable. In other
words, if two images xi and xj have the same label, the
results PTxi and PTxj will be quite similar; otherwise, the
results will be significantly different. Then, cloud servers
send the matrix P to edge servers. When mobile users
use mobile devices to capture images and launch image
retrieval requests, they first upload image data to edge
servers via LTE or WiFi. When receiving the image data,
edge servers first pre-process it. For example, edge servers
perform object detection algorithm to extract object region,
remove unrelated regions [38], and resize the object region.
In addition, edge servers convert the object region to gray
scale image [10]. Note that, the pre-processed image should
be a particular size. That is, the number of rows of P
is the same as the number of rows of the pre-processed
image x. Then, edge servers use the matrix P to extract
discriminative features from the pre-processed image x, i.e.,
PTx, and upload PTx to cloud servers. When receiving the
image feature data PTx, cloud servers perform the feature
matching algorithm (e.g., the nearest neighbor classifier [24])
to find the most similar images in data sets. Note that, two
images are similar when the Euclidean distance of their
feature data is small. Finally, cloud servers send back the
labels of the most similar images to edge servers and the
edge servers send back these labels as retrieval results to
mobile users. In addition, if the image is not in the data set,
the retrieved results are also the labels of the image on the
cloud server that is most similar to the image. That is, the
process of retrieving a new image is similar to retrieving
an image in a data set. Hence, retrieving new images and
retrieving images from the data set all benefit from the
proposed approach. Furthermore, the proposed approach
can be applied to identify and retrieve any image because
the proposed approach is general.

Our approach has three advantages compared with ex-
isting MEC-based image retrieval approaches. First, our
approach consumes less core network bandwidth because
it uses matrix P to extract discriminative features from the
image. Thus, edge servers only need to upload less feature
data to cloud servers and consume less core network band-
width. Second, our approach can provide faster responses.
The response time mainly consists of network transmission
time and feature matching time. Edge servers consume less
network transmission time since they only upload less fea-
ture data to cloud servers. In addition, the feature matching
operation takes less time because it is performed in the low-
dimensional feature data set space. Hence, our approach
can achieve a lower response time. Third, our approach can
provide higher retrieval accuracy because we perform the
WAPL algorithm on the image data sets of cloud servers to
obtain matrix P. In other words, image data sets stored on
cloud servers guide the extraction of discriminative features
from the image data on edge servers. Therefore, using
matrix P can extract effective discriminative features and

TABLE 1
Frequently Used Notations

Symbol Descriptions

X an image data set, where X={xi}Ni=1
xi i-th image
N number of images
d dimensionality of the images
Y corresponding label matrix, where Y={yi}Ci=1
C number of classes
r dimension of the feature data set space
P projection matrix, where PTP=I
I identity matrix
µm mean of the images in class m
Nm number of images in class m
µ mean of all the images
xm
i i-th image in class m
fgw global intra-class dissimilarity
fgb global inter-class dissimilarity
flw local intra-class dissimilarity
flb local inter-class dissimilarity
Llw Laplacian matrix, where Llw=Dlw−Wlw

Llb Laplacian matrix, where Llb=Dlb−Wlb

Wlw , Wlb symmetric similarity matrices
Dlw , Dlb diagonal matrices, i.e., Dlw

ii =
∑

j W
lw
ij , Dlb

ii =
∑

j W
lb
ij

Sw , Sb intra-class/inter-class scatter matrices

achieve higher retrieval accuracy.

4 PROJECTION MATRIX LEARNING ALGORITHM

So far, the unclear issue of the proposed approach is to
learn the projection matrix P, which is important because
the matrix P is used to extract discriminative features from
the image data set on cloud servers and the image on edge
servers. Moreover, the matrix P determines whether the ex-
tracted discriminative features are effective. In this section,
we propose the WAPL to learn the matrix P. Frequently
used notations are summarized in Table 1.

To ensure that the matrix P can extract effective dis-
criminative features, the WAPL algorithm should contain
both global and local relationships. This is because global
and local relationships are beneficial to make the matrix
P extract effective discriminative features. To this end, the
WAPL algorithm first divides the traditional global and local
relationships into four types of dissimilarities: global intra-
class, global inter-class, local intra-class, and local inter-class
dissimilarities. Fig. 3 shows an example of these dissimilar-
ities. These four types of dissimilarities are more granular
than global and local relationships. Motivated by [20], [21],
we first give the quantification of these four types of dis-
similarities. The global intra-class dissimilarity fgw indicates
the relationship between image xm

i and µm, which can be
quantified as:

fgw =
C∑

m=1

Nm∑
i=1

PT (xm
i − µm)(xm

i − µm)TP . (1)

The global inter-class dissimilarity fgb indicates the re-
lationship between µm and µ, which can be quantified as:

fgb =
C∑

m=1

NmPT (µm − µ)(µm − µ)TP . (2)

The local intra-class dissimilarity flw indicates the pair-
wise relationship between the images with the same label,
which can be quantified as:

flw=
∑
ij

||PTxi−PTxj ||2W lw
ij , (3)
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W lw
ij =

{
e−
||xi−xj ||

2

t1 , i ∈ NSw
k1
(j) or j ∈ NSw

k1
(i)

0, otherwise
, (4)

where NSw
k1
(i) denotes the index set of the k1 nearest

neighbors of image xi with the same label. t1 is a constant
parameter, which controls how rapidly the W lw

ij falls off
with the distance between xi and xj . In general, the constant
t1 is equal to the square of the mean of the distance between
xi and its k1 nearest neighbors [39].

The local inter-class dissimilarity flb indicates the pair-
wise relationship between the images with different labels,
which can be quantified as:

flb=
∑
ij

||PTxi−PTxj ||2W lb
ij , (5)

W lb
ij =

{
e−
||xi−xj ||

2

t2 , i ∈ NSb
k2
(j) or j ∈ NSb

k2
(i)

0, otherwise
, (6)

where NSb
k2
(i) denotes the index set of k2 nearest neighbors

of image xi with different labels. The constant t2 is equal to
the square of the mean of the distance between xi and its k2
nearest neighbors.

Combined with Fig. 3, we explain Eqs. (1-6) as follows. E-
q. (1) reflects the relationship between images and the center
of images with the same label, e.g., the relationship between
(a1), (a2), (a3), (a4) and (a). Eq. (2) reflects the relationship
between the centers of images with the same label and the
center of all images, e.g., the relationship between (a), (b),
(c) and (d). Eq. (3) reflects the relationship between images
with the same label, e.g., the relationship between (a1), (a2),
(a4) and (a3). Eq. (5) reflects the relationship between images
with different labels, e.g., the relationship between (a2), (a3),
(a4) and (c1). Eq. (4) and Eq. (6) indicate adjacency matrices.
Eq. (4) indicates the intra-class adjacency matrix, which aims
to preserve the structure of images with the same label.
Eq. (6) indicates the inter-class adjacency matrix, which aims
to preserve the structure of images with different labels.

To improve the retrieval accuracy, it is necessary to min-
imize fgw and flw while maximizing fgb and flb. However,
for most data sets, it is unreasonable to simply integrate
these dissimilarities. This is because the importance of dif-
ferent types of dissimilarities can be quite different when
the projection matrix learning algorithm processes different
data sets. Therefore, we introduce three trade-off parame-
ters α, β and γ to control their weights. However, most
existing projection matrix learning algorithms use the Fisher
criterion [21] to formalize the objective function. Although
these algorithms incorporate all types of dissimilarities, they
are difficult to reasonably control the weight of each type
of dissimilarity. Motivated by [40], the objective function is
defined as follows:

max
P

[γβfgb+γ(1−β)flb]−[α(1−γ)fgw
+(1−γ)(1−α)flw]

s.t. PTP=I

, (7)

where α, β, γ ∈ [0, 1] are trade-off parameters that reflect the
importance between fgw and flw, the importance between
ggb and glb, and the importance between αfgw+(1−α)glw
and βfgb+(1−β)flb, respectively. When α=β=γ=0, Eq. (7)
aims to minimize flw. When α = β = γ = 1, Eq. (7) aims

to maximize fgb. When α, β, γ ∈ (0, 1), fgb and flb can be
maximized while fgw and flw can be minimized.

In doing so, the importance of all types of dissimilarities
can be controlled according to the requirements in different
image data sets. For brevity, Eq. (7) can be rewritten as:

P∗=arg max
P

tr(PTHP) s.t. PTP=I , (8)

where
H=γβSb−(1−γ)αSw+X[2γ(1−β)Llb

−2(1−γ)(1−α)Llw]X
T . (9)

Eq. (8) ensures that the matrix P can extract effective dis-
criminative features because the WAPL algorithm includes
all types of dissimilarities. Moreover, the WAPL algorithm
controls the importance of these dissimilarities by using
trade-off parameters.

In addition, the WAPL algorithm runs on cloud servers,
the optimal dimension of the feature data set should be
automatically estimated to avoid a lot of manpower costs.
Since different data sets correspond to different optimal
dimensions, it is difficult to empirically estimate the optimal
dimensions of all data sets. To address this problem, we first
study the properties of H. Eq. (1) and Eq. (2) exhibit that
xm
i − µm and µm−µ are real matrices. Thus, based on [41],

ST
w can be written as:

ST
w=

C∑
m=1

Nm∑
i=1

{(xm
i − µm)(xm

i − µm)T }T

=
C∑

m=1

Nm∑
i=1

{(xm
i − µm)T }T {(xm

i − µm)T }

=
C∑

m=1

Nm∑
i=1

(xm
i − µm)(xm

i − µm)T = Sw

. (10)

Similarly, ST
b can be written as:

ST
b =

C∑
m=1

Nm{(µm−µ)(µm−µ)T }T

=
C∑

m=1

Nm{(µm−µ)T }T {(µm−µ)T }

=
C∑

m=1

Nm(µm−µ)(µm−µ)T = Sb

. (11)

Hence, Sw and Sb are real symmetric matrices. In ad-
dition, according to Eq. (4) and Eq. (6), Wlw and Wlb

are symmetric matrices. Moreover, since the real diagonal
matrix must be a real symmetric matrix according to [41],
Dlw and Dlb are symmetric matrices. Thus, Llw=Dlw−Wlw

and Llb = Dlb−Wlb are real symmetric matrices. Since
Sb, Sw, Llb and Llw are real symmetric matrices, based on
Eq. (9) and [41], H is a real symmetric matrix. In addition, it
is also non-positive definite and the eigenvalues of H can be
positive, zero, or negative. This motivates us to solve Eq. (8)
by utilizing the relationships between the eigenvalues of H,
the eigenvectors of H and H. According to [40], [41], we
propose Theorem 1 in the following.

Theorem 1. The solution P∗ of the objective function in Eq. (8)
is composed of eigenvectors [p0, · · · ,pr−1] of H corresponding
to the top r positive eigenvalues, where r is the number of positive
eigenvalues of H.
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Proof. The Lagrangian function of problem in Eq. (8) is:

ζ(P,Λ) = tr(PTHP)−tr(Λ(PTP−I)) , (12)

where Λ = [λ1, . . . , λn]. By calculating its derivative with
respect to P and setting it to zero, we have Hpi = λipi.
Thus, Eq. (8) can be rewritten as:

tr(PTHP) =
d−1∑
i=0

pT
i Hpi =

d−1∑
i=0

pT
i λipi =

d−1∑
i=0

λi. (13)

From Eq. (13), to maximize tr(PTHP), only the posi-
tive eigenvalues should be chosen since zero eigenvalues
have no effect on tr(PTHP), and negative eigenvalues are
harmful to tr(PTHP). The solution to Eq. (8) must be

P∗=[p0, · · · ,pr−1]. (14)

Hence, the statements in this theorem are proved.

The optimal projection matrix P∗ consists of eigenvec-
tors corresponding to the top r positive eigenvalues based
on Theorem 1. Fig. 4 depicts the relationship between accu-
racy and the eigenvectors corresponding to the eigenvalues.
As analyzed in Theorem 1, the eigenvectors corresponding
to the positive eigenvalues are advantageous for extracting
discriminative features. The eigenvectors corresponding to
the zero eigenvalues are useless for extracting discrimina-
tive features. The eigenvectors corresponding to the nega-
tive eigenvalues are detrimental to extracting discriminative
features. Thus, as shown in Fig. 4, when the matrix P con-
sists of eigenvectors corresponding to r positive eigenval-
ues, the WAPL algorithm can achieve the highest accuracy,
e.g., 95%. The accuracy of the WAPL algorithm tends to sta-
bilize with the increase of the number of zero eigenvalues.
It means the ability of the matrix P to extract discriminative
features is invariable with the increase of the number of zero
eigenvalues. The accuracy of the WAPL algorithm decreases
with the increase of the number of negative eigenvalues,
i.e., the accuracy of the WAPL algorithm is lower than 95%.
Hence, the value of r can be estimated, which is equals to
the number of positive eigenvalues of H. In other words,
the optimal dimension of the feature data set space can be
automatically estimated based on the number of positive
eigenvalues rather than empirically. Therefore, the proposed
approach can save a lot of manpower costs.

In addition, given N images of dimension d, the compu-
tational complexity of the WAPL algorithm is divided into
three parts. First, the WAPL algorithm needs to compute
the distance between µm and µ, the distance between xi

and µm, and the distance between xi and xj . The com-
putational complexity of the first part is O(cdN). Second,
the WAPL algorithm needs to construct adjacency graphs.
The computational complexity of the second part isO(dN2).
Third, the WAPL algorithm performs Eigen-decomposition
on H. The computational complexity of the third part is
O(d3). In general, the dimensions of the image data set are
relatively high. Thus, the computational complexity of the
WAPL algorithm is O(d3).

5 INTERACTION STRATEGY

In real-world scenarios, users have different requirements
in terms of retrieval accuracy and response time. We divide
the requirements of users into three categories in terms of
different scenarios. Scenario I: users pay more attention to

Fig. 4. The contour of Theorem 1. The eigenvalues have been sorted in
reverse order. r, q, and d are indexes of eigenvalues. There are r positive
eigenvalues, q−r zero eigenvalues, and d−q negative eigenvalues.

retrieval accuracy. For example, in an authentication system,
users can tolerate long response time (e.g., within several
seconds) but expect high retrieval accuracy. Scenario II:
users pay more attention to response time. For example, in
an autonomous driving system, obstacle detection needs the
real-time response because users may not need to know ex-
actly what the obstacles is. Scenario III: users pay attention
to both retrieval accuracy and response time.

To meet the requirements of users in terms of retrieval
accuracy and response time, different interaction strategies
between edge servers and cloud servers are required. This is
because both retrieval accuracy and response time depend
on different network traffic (i.e., the feature data) from
edge servers to cloud servers. That is, when edge servers
upload little discriminative feature data to cloud servers, the
network transmission time and feature matching time can
be reduced. However, little feature data incurs low accuracy.
In contrast, when edge servers upload all discriminative
feature data to cloud servers, users can achieve high accu-
racy. However, users have to tolerate long response time.
In addition, Theorem 1 exhibits that the optimal dimension
of the feature data set can be evaluated in terms of the
number of positive eigenvalues. In other words, the optimal
dimension of the feature data set is determined and equal
to the dimension of the matrix P. Hence, we can design
different interaction strategies between edge servers and
cloud servers according to the conclusion of Theorem 1.

Based on Theorem 1, when the matrix P consists of
eigenvectors corresponding to all positive eigenvalues, it
can extract all discriminative features and enable users to
achieve the highest accuracy. Hence, for the Scenario I
that pursues the highest accuracy, the matrix P needs to
be composed of eigenvectors corresponding to all positive
eigenvalues. That is, P = [p0, · · · ,pr−1], where r is the
number of positive eigenvalues.

The matrix P containing eigenvectors corresponding to
all positive eigenvalues is not suitable for scenarios that
require a fast response. This is because the matrix P extracts
numerous discriminative features. Uploading these feature
data from edge servers to cloud servers results in a large
amount of network traffic and long network transmission
time. Moreover, the dimension of the feature data set is
the dimension of PTx. Performing the feature matching
operation will also incur long matching time since the di-
mension of PTx is high. Hence, the matrix P is not suitable
for scenarios that require fast responses. For Scenario II,
since it requires fast responses and can tolerate low retrieval
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accuracy, we can use a part of the matrix P in Scenario I
as the projection matrix of Scenario II. To distinguish the
matrix P of the Scenario I, we denote matrix P2 as the
projection matrix in Scenario II. Thus, based on Theorem
1, we use a part of the matrix P as the projection matrix,
then P2=P(:, 1:z), where z∈ [1, r) is a positive integer and
P(:, 1 :z) refers to the first z columns of the matrix P. Since
Scenario II requires a fast response, we specify z� r. The
matrix P2 extracts less discriminative features compared
with the matrix P. Although the matrix P2 results in lower
retrieval accuracy, it can meet the user’s requirements for a
fast response.

Scenario III requires both retrieval accuracy and re-
sponse time. We cannot use matrix P and P2 as the pro-
jection matrix in Scenario III because they only consider
retrieval accuracy or response time. We denote matrix P3

as the projection matrix in Scenario III. Thus, we introduce
a positive integer o, where z≤ o≤ r. Similar to Scenario II,
we use a part of the matrix P as the projection matrix of
Scenario III, then P3=P(:, 1:o). The matrix P3 is a tradeoff
between the matrix P and the matrix P2. The matrix P3

extracts less discriminative features than the matrix P. Al-
though matrix P3 results in lower retrieval accuracy, it can
meet the user’s requirements for a fast response. In addition,
the matrix P3 extracts more discriminative features than
the matrix P2. Although the matrix P3 results in longer
responses, it can meet the user’s requirements for high
retrieval accuracy.

6 PERFORMANCE EVALUATION

In this section, we first evaluate the WAPL algorithm on
three benchmark data sets. Then, we implement a prototype
system to evaluate the proposed approach in a practical
network environment with a real data set.

6.1 Experiment Setup
The experimental environment consists of a mobile device,
three edge servers, and a cloud server.

• Mobile Device: A Huawei honor 8 smartphone is used
as a mobile device. This smartphone is equipped with
4 Cortex A72 2.3 GHz and Android 7.0. It also has a
32 GB internal storage and 4 GB RAM. We develop an
APP called “ImagCat” to capture images and upload
them to the edge server and cloud server.

• Edge Servers: One of the edge servers is a computer
equipped with Intel i5-4590@3.3 GHz CPU and 12 G-
B RAM. On the edge server, we use Java to invoke
OpenCV libraries to pre-process images. In addition,
we build a base station that is responsible for commu-
nicating with the mobile device and cloud server. Note
that, the base station is next to the edge server. The base
station is based on the Open Air Interface (OAI) [42]–
[44], and consists of three components: radio-frequency
signal generator, edge server A, and edge server B.
The radio-frequency signal generator is equipped with
USRP-B210. The edge server A is equipped with an
Intel i7-6700@3.4 GHz CPU and 16 GB RAM for run-
ning the eNodeB. The radio-frequency signal generator
and edge server A are connected via USB 3.0. The
edge server B is equipped with Intel i5-6500@3.2 GHz
CPU and 4 GB RAM for running Home Subscriber

Fig. 5. The images cropped from Lab face data set.

TABLE 2
Description of Benchmark Data Sets

Data set #Images #Features #Classes
YaleB 2414 1024 38

UMIST 574 1024 20
USPS 9298 256 10

Lab face 420 1024 21

Service (HSS), Mobility Management (MME), Serving
Gateway (SGW), and Packet data network Gateway
(PGW) [44]–[46]. Edge servers A and B are next to
each other and connected via the Local Area Network
(LAN). The base station works on Band7 (uplink 2500
MHz-2570 MHz, downlink 2620 MHz-2690 MHz). The
mobile device can connect to edge servers via LTE or
WiFi. In the LTE situation, the upload link rate is 1000
KB/s and the download link rate is 1.36 MB/s. In the
WiFi situation, we use a wireless router that connects
to the campus network. The upload link rate and the
download link rate are set to 9 MB/s. In this paper,
we do not consider the coexistence of WiFi and LTE
in the unlicensed band [47]–[49]. As the licensed band
is very limited, making use of the unlicensed band
will indeed significantly improve the wireless com-
munication throughput. However, the coexistence of
multiple wireless technologies that simultaneously use
the unlicensed band will inevitably cause interference.
We will leave the study on the coexistence of WiFi and
LTE in the unlicensed band as our future work. The
distance between the mobile device and the eNodeB
and the distance between the mobile device and the AP
are 0-10 meters.

• Cloud Server: Alibaba cloud server is equipped with 4
quad-core 2.5 GHz Intel Xeon E5-2682 v4 and 16 GB
RAM as the cloud server. The cloud server runs Ubun-
tu 14.04.3 and implements the WAPL algorithm and
feature matching algorithm by Python. Edge servers
and cloud server are connected through the Internet
backbone.

6.2 Data Sets

We first evaluate the WAPL algorithm on extended Yale face
database B (YaleB) [50], UMIST [51] and USPS handwritten
digits (USPS) data sets [52]. Then, we collect a new data
set Lab face [53] and implement a prototype system to
evaluate the proposed approach by using a real network
environment. Table 2 lists the details of the benchmark data
sets used in the experiment. In addition, Fig. 5 shows some
examples of the Lab face data set.

6.3 Comparison Algorithms and Approaches

6.3.1 Projection Matrix Learning Algorithms

We compare the WAPL algorithm with four state-of-the-
art projection matrix learning algorithms: marginal Fisher
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TABLE 3
Comparison of Image Retrieval Approaches

Approach Edge server WAPL Edge server with P

MCCsimple No No No
MCCWAPL No Yes No
MECsimple Yes No No
MECWAPL Yes Yes No
Our approach Yes Yes Yes

analysis (MFA) [21], joint global and local-structure discrim-
inant analysis (JGLDA) [22], double adjacency graphs-based
discriminant neighborhood embedding (DAG-DNE) [40]
and locality adaptive discriminant analysis (LADA) [23].
Algorithms are described in detail as follows.

• MFA [21] was introduced by Yan et al. in 2007, which
learns the projection matrix by characterizing the intra-
class compactness and inter-class separability.

• JGLDA [22] was introduced by Gao et al. in 2013, which
learns the projection matrix by characterizing both the
similarity and diversity of the image data.

• DAG-DNE [40] was introduced by Ding and Zhang in
2015, which learns the projection matrix by preserving
the local pairwise relationship between images.

• LADA [23] was introduced by Li et al. in 2017, which
learns the projection matrix by preserving the local
pairwise relationship between images. In addition, it
solves the problem of making assumptions about data
distribution by linear discriminant analysis [20].

6.3.2 Related Image Retrieval Approaches
To evaluate the performance of the proposed approach, we
compared it with other four image retrieval approaches.
Approaches are described in detail as follows, and the main
differences of them are given in Table 3.

• MCCsimple: in MCCsimple approach, a user first uses
“ImagCat” to capture an image. Then, the user uploads
the image data to the cloud server. When receiving
the image data, the cloud server first pre-processes it.
Then, the cloud server runs the LBP algorithm to extract
features from the pre-processed image data and uses
the matching algorithm to achieve results. Finally, the
cloud server sends back the results to the user.

• MCCWAPL: Different from MCCsimple, MCCWAPL ap-
proach first uses the WAPL algorithm to learn the
matrix P. Then, it uses matrix P to extract features
from the image data set. When receiving the image
data, the cloud server first pre-processes it. Follow
that, the cloud server uses the matrix P to extract
discriminative features from the pre-processed image
data. Finally, the matching algorithm is performed in
the low-dimensional feature data set space.

• MECsimple: Different from MCCsimple, in MECsimple ap-
proach, the user first uploads the image data to the
edge server. When receiving the image data, the edge
server first pre-processes it. Then, the edge server uses
the LBP algorithm to extract features from the pre-
processed image data. Finally, the edge server uploads
the extracted feature data to the cloud server.

• MECWAPL: Different from MECsimple, MECWAPL ap-
proach first uses the WAPL algorithm to learn the
matrix P. Then, the matrix P is used to extract discrim-

TABLE 4
Image Retrieval Accuracy (% ± std)

Data Set Algorithms Results
k = 1 k = 3 k = 5

YaleB

MFA 87.04±0.33 86.96±0.41 86.94±0.83
JGLDA 87.08±0.58 86.56±0.83 86.96±0.58

DAG-DNE 87.54±0.21 87.68±0.66 88.00±0.75
LADA 88.52±0.25 88.52±0.25 88.52±0.25
WAPL 92.36±0.23 93.47±0.78 91.55±0.37

UMIST

MFA 97.77±0.82 97.12±0.35 97.30±0.70
JGLDA 97.65±0.67 97.89±0.32 97.12±0.66

DAG-DNE 97.89±0.70 97.00±0.21 97.42±0.76
LADA 97.31±0.43 97.31±0.43 97.31±0.43
WAPL 98.99±0.18 98.17±0.21 98.48±0.24

USPS

MFA 85.84±0.43 88.41±0.44 89.77±0.97
JGLDA 85.95±0.65 89.30±0.23 90.92±0.30

DAG-DNE 92.38±0.64 92.23±0.86 92.51±0.14
LADA 90.49±0.36 90.49±0.36 90.49±0.36
WAPL 95.89±0.46 95.24±0.15 96.68±0.31

inative features from the image data set on the cloud
server. When receiving the pre-processed image data,
the cloud server uses the matrix P to further extract
discriminative features from the pre-processed image
data. Finally, the matching algorithm is performed in
the low-dimensional feature data set space.

• Our approach: Different from MECWAPL, our approach
uses the matrix P to extract discriminative features
from the image data set on the cloud server. In addi-
tion, the cloud server sends the matrix P to the edge
server to extract discriminative features from the image
data. Thus, the edge server only uploads the extracted
discriminative feature data to the cloud server.

In this experiment, we compare the proposed approach
with MCCsimple, MCCWAPL, MECsimple and MECWAPL ap-
proaches on Lab face data set by using a real network
environment. We choose five different sizes of images,
which are related to the Lab face data set, to evaluate the
network traffic and response time. The image size order is
Image1<Image2<Image3<Image4<Image5. For a fair com-
parison, we set the same value of the nearest-neighbor
parameter k1 and k2 to construct adjacency graphs for all
algorithms. Without prior knowledge, we set k1 = k2. For
an easy display, we use k for k1 and k2. Finally, we use the
nearest neighbor classifier to verify the extracted features.

6.4 Results of WAPL Algorithm
6.4.1 Retrieval Accuracy
In this section, we compare the WAPL algorithm with other
state-of-the-art projection matrix learning algorithms. In the
YaleB, UMIST and USPS data sets, 50% of images are ran-
domly selected to form the training set, and the remaining
images are used for testing.

Table 4 shows the experimental results. The WAPL al-
gorithm achieves the highest retrieval accuracy in all image
data sets. For example, on the YaleB data set, when k = 3,
the accuracy of WAPL is 6.51% higher than the accuracy
of MFA, 5.79% higher than the accuracy of DAG-DNE, and
4.95% higher than the accuracy of LADA. The reason is that
WAPL incorporates all types of dissimilarities. However,
MFA, DAG-DNE and LADA only contain partial types of
dissimilarities. Losing partial types of dissimilarities impairs
the ability of the projection matrix to extract discriminative
features. Thus, they result in lower retrieval accuracy.

In addition, the accuracy of WAPL is 6.91% higher than
the accuracy of JGLDA. The reason is that although JGLDA
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Fig. 6. Relationship between retrieval accuracy, eigenvalue, and the
number of eigenvalues on the YaleB data set.
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Fig. 7. Relationship between retrieval accuracy, eigenvalue, and the
number of eigenvalues on the UMIST data set.

incorporates all types of dissimilarities, it treats them equal-
ly. In practice, different dissimilarities contribute differently
to learning the projection matrix. The equal treatment of
each dissimilarity weakens the ability of the projection
matrix to extract discriminative features.
6.4.2 Relationship between Retrieval Accuracy and the
Number of Eigenvalues
Figs. 6, 7, and 8 show that the retrieval accuracy of the
WAPL algorithm increases rapidly as the number of pos-
itive eigenvalues increases. Then, the retrieval accuracy of
the WAPL algorithm tends to stabilize as the number of
zero eigenvalues increases. Finally, the retrieval accuracy of
the WAPL algorithm decreases as the number of negative
eigenvalues increases. It manifests that only eigenvectors
corresponding to the positive eigenvalues contribute to
extracting discriminative features. Moreover, the optimal
dimension of the feature data set can be estimated in terms
of the number of positive eigenvalues, which can save a lot
of manpower costs in determining the optimal dimension of
the feature data set. In addition, this discovery also helps us
design different interaction strategies between edge servers
and cloud servers to meet different requirements of users
in terms of retrieval accuracy and response time. We will
discuss it in detail in Section 6.5.4.
6.4.3 Parameters Analysis
The trade-off parameters α, β and γ can be tuned as follows.
Each data set is randomly divided into a training set XTr

and a test set XTe. The training set XTr is also randomly
divided into a training set XTr1 and a validation set XV a1.
The training set XTr1 is used to choose parameters, and
the validation set XV a1 is used to validate parameters. α is
evaluated by fixing β and γ, and varies from 0 to 1. β and
γ are validated in the same way as α. Table 5 shows the
corresponding parameter values when the WAPL algorithm
achieves the highest retrieval accuracy on three data sets.

Table 5 shows that on different data sets, the corre-
sponding parameter values are different when the WAPL

Number of Eigenvalues
0 50 100 150 200 250

R
et

rie
va

l A
cc

ur
ac

y

0.2

0.4

0.6

0.8

1

(a)

Number of Eigenvalues
0 50 100 150 200 250

E
ig

en
va

lu
e

-50

0

50

100

150

200

(b)
Fig. 8. Relationship between retrieval accuracy, eigenvalue, and the
number of eigenvalues on the USPS data set.

TABLE 5
Highest Accuracy and Corresponding Parameters

Data set Retrieval Accuracy (%) α β γ

YaleB 95.76 0.9 0.4 0
UMIST 99.69 1 0.5 0
USPS 96.54 0.5 0.5 0.1

algorithm achieves the highest retrieval accuracy. For ex-
ample, on the YaleB data set, when α = 0.9, β = 0.4 and
γ = 0, the WAPL algorithm achieves the highest retrieval
accuracy. Combined with Eq. (7), when α = 0.9, β = 0.4
and γ = 0, Eq. (7) aims to minimize 0.9fgw + 0.1flw. This
indicates that on the YaleB data set, effective discriminative
features can be obtained by minimizing 0.9fgw + 0.1flw.
In addition, fgw is more important than flw. On the USPS
data set, when α = 0.5, β = 0.5 and γ = 0.1, the WAPL
algorithm achieves the highest retrieval accuracy. When
α= 0.5, β = 0.5 and γ = 0.1, Eq. (7) aims to maximize 0.05
(fgb+flb)−0.45 (fgw+flw). This indicates that on the USPS
data set, effective discriminative features can be obtained
by maximizing 0.05(fgb + flb) − 0.45(fgw + flw). This also
indicates that when extracting discriminative features, the
importance of fgb and flb is the same, and the importance
of fgw and flw is the same. However, the importance of
fgb and fgw is different, and the importance of flb and
flw is different. This demonstrates that different types of
dissimilarities have different importance in learning the
projection matrix when the WAPL algorithm deals with
different data sets. Ignoring the weights of any type of
dissimilarities may undermine the ability of the projection
matrix to extract discriminative features. Therefore, it is
essential to control the weights of these dissimilarities based
on the characteristics of data sets.

6.5 Results of the Approaches
6.5.1 Network Traffic
Fig. 9 presents that the proposed approach can reduce
network traffic by nearly 93% compared with MECsimple
and MECWAPL approaches. The major reason is that, with
the cloud-guided feature extraction approach, the edge
server only needs to upload a small amount of effective
discriminative feature data to the cloud server. However,
in MECsimple and MECWAPL approaches, the edge server
uploads a large amount of feature data to the cloud server.
This is because MECsimple and MECWAPL approaches extract
numerous features to preserve the intrinsic information of
images.

In addition, Fig. 9 presents that the proposed approach
can reduce network traffic by nearly 1000 times compared
with MCCsimple and MCCWAPL approaches. This is because
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Fig. 9. Network traffic for different approaches.
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the mobile device uploads the raw image data to the cloud
server in MCCsimple and MCCWAPL approaches. However, in
the proposed approach, the edge server uploads discrimi-
native feature data to the cloud server. Compared with the
raw image data, the size of the discriminative feature data is
much smaller. Therefore, the proposed approach can signifi-
cantly reduce network traffic on the core network. Moreover,
MCCsimple and MCCWAPL approaches have the same network
traffic because they upload the raw image data. MECsimple
and MECWAPL approaches have the same network traffic
because they upload the feature data extracted by the LBP
algorithm. Furthermore, we also observe that MECsimple and
MECWAPL approaches can reduce network traffic by 17 times
compared with MCCsimple and MCCWAPL approaches.

6.5.2 Response Time

Fig. 10 depicts the response time of five approaches when
the mobile device connects to the edge server through LTE.
We observe that the proposed approach can reduce the
average response time by 35% compared with the MCCsimple
approach. The reason is that the network transmission time
is reduced because the edge server only uploads little fea-
ture data to the cloud server. In addition, feature matching
time is reduced since the feature matching algorithm is
performed in the low-dimensional feature data set space.
Therefore, the average response time can be reduced.

Fig. 10 also depicts that the response time of MCCsimple
approach is longer than the response time of MECsimple
approach. The reason is that MCCsimple approach uploads
the raw image data to the cloud server, and MECsimple
approach uploads the extracted feature data by using the
LBP algorithm to the cloud server. Also, the feature data is
smaller than the raw image data. Therefore, the response
time of MCCsimple approach is longer. The response time of
the MCCWAPL approach is longer than our approach because
the network traffic of the MCCWAPL approach is larger.
Under the same bandwidth, the greater the network traffic
is, the longer the network transmission delay is. Moreover,
since MECWAPL approach performs the feature matching in
the low-dimensional feature data set space, the response
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time of MECsimple approach is longer than the response time
of MECWAPL approach.

Fig. 11 reveals that using the WAPL algorithm signifi-
cantly reduces the feature matching time since it can cut
down the number of matching features. We also observe
that the feature matching time can be reduced by 100 times
compared with the case where the WAPL algorithm is not
used. The major reason is that numerous features incur long
matching time when the number of images is the same.

Our approach can get a minimum response time. The
major reason is that our approach can extract a small
number of effective discriminative features with the cloud-
guided feature extraction. Hence, the network transmission
time can be reduced since the discriminative features are
small. In addition, the feature matching time can be reduced
since the dimension of the feature data set space is low.

In addition, we also evaluate the response time of five
approaches when the mobile device connects to the edge
server through WiFi. Fig. 12 displays that the proposed
approach can reduce the average response time by 47%
compared with MCCsimple approach. Specifically, when our
approach and MCCsimple approach recognize the Image5, the
response time is 393 ms and 742 ms. This indicates that
with the development of 5G technology, our approach can
significantly reduce response time because the transmission
rate between mobile devices and edge servers becomes
faster.

6.5.3 Retrieval Accuracy

In this experiment, we randomly select 90% images from
the Lab face data set for training and the rest of images are
used for testing.

Table 6 shows that the approaches using the WAPL algo-
rithm achieve the accuracy of 88.33%, which is 6.9% higher
than the approaches using the LBP algorithm. The reason is
that the projection matrix learned by the WAPL algorithm
can remove redundant features. In addition, the projection
matrix can extract effective discriminative features from the
image data set on the cloud server and the image on the
edge server. However, the LBP algorithm aims to extract
features to preserve the intrinsic structure of the image data,
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Fig. 13. Relationship between eigenvalue, retrieval accuracy, network traffic and the number of positive eigenvalues

TABLE 6
Comparison of Retrieval Accuracy on Lab face Data Set

Approach Retrieval Accuracy (%)
MCCsimple 81.43%
MCCWAPL 88.33%
MECsimple 81.43%
MECWAPL 88.33%
Our approach 88.33%

rather than extracting discriminative features for retrieval.
Therefore, using the WAPL algorithm can achieve higher
retrieval accuracy.

6.5.4 Interaction Strategy
Theorem 1 demonstrates that the projection matrix can
extract effective discriminative features when it consists of
eigenvectors corresponding to the positive eigenvalues. In
this section, we investigate the relationship between eigen-
value, retrieval accuracy, network traffic and the number of
positive eigenvalues. Fig. 13 exhibits that retrieval accuracy
and network traffic increase as the number of positive eigen-
values increases. This indicates that the higher the accuracy
is, the more network traffic is required.

For Scenario I, we can choose the number of positive
eigenvalues as the dimension of the feature data set. The
corresponding retrieval accuracy is 88.33% and the network
traffic is 427 B. For Scenario II, we can choose 1/3 the num-
ber of positive eigenvalues as the dimension of the feature
data set. The corresponding retrieval accuracy is 76.19% and
the network traffic is 261 B. For scenario III, 1/2 the number
of positive eigenvalues can be chosen as the dimension of
the feature data set. The corresponding retrieval accuracy is
80.95% and network traffic is 302 B. The higher the retrieval
accuracy is, the higher the dimension of the feature data set
is required. However, higher dimensions of the feature data
set result in larger network traffic and longer response time.
Therefore, users can choose different interaction strategies
in terms of retrieval accuracy and response time.

7 DISCUSSION

The proposed approach uses the matrix P to extract dis-
criminative features from image data sets on cloud servers
and images on edge servers. Thus, the proposed approach
can reduce the network traffic since the edge servers only u-
pload the extracted discriminative features to cloud servers.
Although the size of the matrix P is large, the proposed
approach can save network traffic. The reason is that nu-
merous users can use the matrix P to extract discriminative

features. However, cloud servers only send the matrix P
to edge servers once. For example, assume that the raw
image data is 2 MB; the pre-processed image data is 100
KB; the feature data extracted by using the matrix P is 2 KB;
the projection matrix is 5 MB. When there are 10,000 users
requesting the image retrieval, edge servers upload the pre-
processed image data to cloud servers with the network
traffic of 1,000,000 KB. Edge servers upload the extracted
discriminative feature data to cloud servers with the net-
work traffic of 25,120 KB. The results show that uploading
the extracted feature data can reduce network traffic. As the
number of users requesting image retrieval increases, the
proposed approach saves more network traffic. Moreover,
network transmission delay can also be reduced since the
network traffic is reduced. In addition, the dimension of
the feature data set is equal to the dimension of PTx.
Performing the feature matching on the low-dimensional
feature data set takes less time since the dimension of PTx
is low. Therefore, the proposed approach consumes less
network traffic and response time. In addition, the proposed
approach can be applied to applications that generate image
data or video data, such as virtual reality, augmented reality,
and computer vision.

8 CONCLUSION

In this paper, we propose a cloud-guided feature extraction
approach for image retrieval in the mobile edge computing
environment. Our goal is to improve retrieval accuracy,
reduce network traffic and response time, and meet the
requirements of users. In the proposed approach, we pro-
pose a projection matrix learning algorithm to generate a
projection matrix that guides the feature extraction from
the image data set and the image to be retrieved. Hence,
the network traffic and network transmission time can be
reduced because the projection matrix can extract a small
amount of effective discriminative features from images
and edge servers only upload a small amount of feature
data to cloud servers. In addition, the dimension of the
feature data set is low. The response time can also be
reduced since the feature matching algorithm is performed
in the low-dimensional feature data set space. Therefore,
the proposed approach can reduce the network traffic and
response time. The advantages of the proposed approach
have been demonstrated by a prototype system using a real
MEC environment. However, the learned projection matrix
in the current form is static. In order to make the projection
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matrix extract effective discriminative features when a large
number of new images appear, and automatically meet
the user’s requirements for accuracy and response time in
different scenarios, we intend to extend this work in two
directions in the future. The first is to model the retrieval
accuracy, the number of eigenvalues and the response time
to dynamically update the projection matrix. The second
is to evaluate the scenarios and automatically select the
appropriate accuracy and response time based on the re-
quirements of these scenarios.
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