
Journal of Interconnection Networks
Vol. 9, Nos. 1 & 2 (2008) 1-29 H g » v ^ w ^ ^ m " ^
© World Scientific Publishing Company

V f e World Scientific

A N O V E L S O F T W A R E - B U I L T P A R A L L E L M A C H I N E S
A N D T H E I R I N T E R C O N N E C T I O N S

MOHAMMAD MURSALIN AKON*'1, DHRUBAJYOTI GOSWAMI1"'5

HON FUNG LI1"'1, XUEMIN (SHERMAN) SHEN*'H and AJIT SINGH*'**

* University of Waterloo, Waterloo, Ontario, Canada
' Concordia University, Montreal, Quebec, Canada

*mmakon@ece.uwaterloo.ca
* goswamiQcs. concordia. ca

™ hfli@cs. concordia. ca
" xshenQbbcr.uwaterloo. ca
** asinghQece. uwaterloo. ca

Received 26 October 2007
Accepted 23 June 2008

In this paper, we introduce SPM (Software-built Parallel Machines), a model to create
software based virtual parallel machines. With SPM, an application developer simply se
lects all the required virtual parallel machines from the repository and implements the
intended parallel algorithms directly without any need of complex mappings, as if the
required processor interconnections are readily available. In addition, we present an im
plementation of the SPM model, which provides a systematic way to design new virtual
machines. Our experiments show that the applications developed using the SPM model
and tools give excellent performance, as compared to the applications developed using a
generic communication library, such as MPI.

Keywords: Interconnection networks; Architectures of parallel computers; Cluster com
puting; High Performance Computing (HPC); Parallel patterns.

1. I n t r o d u c t i o n

Starting from the early age of modern computers, scientists and engineers researched and

implemented a wide variety of parallel computer architectures. Due to the newly invented

VLSI technology, commercial parallel computers 3 became available in early 1980s. As in

dividual commodity processors became powerful, the majority of the commercial vendors

started to build multi-processor parallel computer systems with general purpose commer

cial processors. As multi-processor systems gained their popularity, researchers developed

a wide ranges of processor interconnections. Many of these interconnections have been

implemented in real life. For example, ring, 2-dimensional mesh, fat-tree and hypercube

interconnections were implemented in CDC Cyberplus, Paragon X P / S , CM-5 and Cosmic

Cube parallel machines, respectively [20]. The purpose of these interconnections was to

provide efficient execution platforms for different parallel algorithms, i.e., the interconnec

tions replicate the exact communication pat terns between different components/modules of

the parallel algorithms. However, to be able to execute different parallel algorithms on a

given hardware platform, often developers have to find out the mapping of the graph rep-

II Corresponding author.
aIn this paper, we use the terms parallel computers and parallel machines interchangeably.

1

mailto:mmakon@ece.uwaterloo.ca

2 M. M. Akon et al.

resenting the communication of different components of the algorithm to that ' s of
the given processor interconnection [26].

With the current powerful general purpose computers and fast networking tech
niques, computer clusters provide reasonable computing speed for different complex
problems with cheaper price. In practice, it can be found that the majority of the
top 500 super computing machines are simply large scale computer clusters built
from commercial off-the-shelf (or COTS) hardware sets [34]. Therefore, the mapping
of interconnections of multi-processors architectures or communication of modules
from parallel algorithms becomes difficult. The application developers have to logi
cally create the interconnections required by the underlying parallel algorithms and,
complex parallel applications mandate for complex combinations of such intercon
nections. As a result, application development becomes tedious and error prone.

The concept of design patterns has been used in diverse domains of engineering,
ranging from architectural designs in civil engineering [4] to the design of object
oriented softwares [18,28]. Irrespective of its domain, the term design pattern al
ways means the solution or a range of solutions to a frequently occurring problem.
Mostly, the solutions are provided at the design level and are in the written form [18].
However, the design-level solutions may also be pre-implemented as reusable frame
works [21,28]. In the area of parallel computing, (parallel) design patterns specify
recurring parallel computational problems with similar structural/architectural or
behavioral components, and their solution strategies. Examples of the structural
parallel pat terns are linear array, mesh, hypercube, systolic and wavefront computa
tions, singleton pat tern for single-process computation, pipeline and other processor
interconnections. Some of the behavioral patters are divide and conquer, composi
tional framework for control- and data-parallel computation, etc.

In this paper, we propose SPM (Software-built Parallel Machines), a pattern-
based model and tools, to construct and use parallel machines entirely in software.
Unlike the research on behavioral pat terns [12,14], which deals with behavioral as
pects of parallel computing, SPM focuses on the architectural or structural aspects
of parallel processor interconnections or message passing of parallel modules [3,19].
Each virtual parallel machine in SPM encapsulates the various structural attr ibutes
of a parallel pat tern in a generic (i.e., application-independent) fashion. A virtual
parallel machine can be considered as a specific parallel machine with its own com
munication, synchronization and structural primitives. Some of the structural at
tributes and the communication/synchronization primitives are parameterized. An
application developer, depending upon the specific needs of an application, chooses
the appropriate machines, supplies values for the the required parameters, and finally
fills in the application specific code. The virtual machines supply most of the code
that are necessary for the low-level parallelism-related issues, without burdening the
application developer. Consequently, there exists a clear separation between applica
tion dependent and application independent issues (i.e., separation of specifications

or concerns). The model of SPM is bundled with necessary tools to facilitate the

A Novel Software-Built Parallel Machines and Their Interconnections 3

design process of virtual parallel machines. A parallel machine description language
(PMDL) is designed and implemented to accelerate the parallel machine design pro
cess. A translator reads the declaration of parallel machines written in PMDL and
generates related C + + classes. Then an application developer provides necessary
application specific code. Combined with SPM library, the final application can be
deployed on a computer cluster. Thus, along with all the tools, SPM is a complete
parallel programming environment (PE) [13].

The remainder of the paper is organized as follows. In section 2, we present the
related preliminaries. A detailed description of the SPM model is given in section 3.
We implement the SPM model in section 4. Then, we present two case studies on
the usage of the SPM model and tools in section 5. Performance studies of deployed
applications are summarized in section 6. Related works are discussed in section 7.
Finally, we conclude our paper in section 8.

2. Pre l iminaries

In this section, we present the main terms and concepts used in the paper. At first
we give an introduction to virtual parallel machines and their components. Then,
we illustrate the concept of virtual parallel machines with a real life application.

2.1 . Overview of A Parallel Machine

A parallel machine of SPM generically encapsulates the structural/architectural
attr ibutes of a multi-processor parallel computer or a message-passing parallel com
puting pattern. Various phases of an application development using SPM can be
roughly illustrated from Fig. 1(a). Each parallel machine is parameterized where
each parameter is associated with some architectural at tr ibute of the associated
pattern. The value of a parameter is determined during the application develop
ment phase. A machine with unbound parameters is called an abstract (parallel)

machine or an abstract module . An abstract machine becomes a concrete (parallel)

machine or a concrete module, when the parameters of the machine are bounded to
actual values. A concrete machine is yet to be filled in with application specific code.
Filling in a concrete machine with application specific code results in a code-complete

parallel module or simply a module. In Fig. 1(a), different parameter bindings to the
same abstract machine can result in different concrete machines.

Each abstract machine (or abstract module) consists of the following set of at
tributes: (i) Representative of a machine represents the machine in its action and
interactions with other machines. The initial representative is empty and is subse
quently filled with application specific code during application development, (ii) The
back-end of an abstract machine Am can be formally represented as {Ami, Am2, . . . ,

bThe term module is used to emphasize that the parallel machines are implemented as software
modules.

4 M. M. Akon et al.

Abstract machine

v
r - - \ Abstract machine

(a) Abstract and concrete machine, and code (b) Different components of a
complete module machine

Fig. 1. S P M machines and their components

Amn}, where each Ami is itself an abstract machine. The type of each Ami is deter
mined after the abstract module Am is instantiated. Note that collection of concrete
modules inside another concrete module results in a (tree-structured or recursive)
hierarchy. Consequently, each Ami is called a child of Am, and Am is called the par

ent. The children of a machine are peers of one another. In this paper, the children
of a machine are also referred as computational nodes of the associated machine,
(iii) Topology is the logical connectivity between the children inside the back-end as
well as the connectivity between the children and the representative, (iv) Internal

primitives are the pat tern or machine specific communication, synchronization or
structural primitives. Interactions among the various modules are performed using
these primitives. The internal primitives, the inherent properties of a machine, cap
ture the parallel computing model of the associated parallel machine as well as its
connectivity among different processors. Figure 1(b) diagrammatically shows the
attr ibutes of an abstract and a concrete 2-D Mesh machine (or parallel modules).

As is already mentioned, there are pat tern specific parameters associated with
some of the previous attributes. For instance, if the pat tern is a Mesh, then the
number of dimensions of the mesh is one parameter, and the nature of the con
nectivity among the nodes at the edges (i.e., toroidal or non-toroidal) is another
parameter. Binding these parameters to actual values, based on the needs of an ap
plication, results in a concrete machine/module. A concrete module Cm becomes a
code-complete module when: (i) the representative of Cm is filled in with application
specific code, and (ii) each child of Cm is code-complete.

All of the attr ibutes of an abstract machine/module are inherited by the cor
responding concrete module as well as the code-complete module. In addition, we
define the term external primitives of a concrete or a code complete module as the
set of primitives using which the module (i.e., its representative) can interact with

A Novel Software-Built Parallel Machines and Their Interconnections 5

its parent (i.e., representative of the parent) and peers (i.e., representatives of the
peers). Unlike internal primitives, which are inherent properties of a module, exter
nal primitives are adaptable, i.e., a module adapts to the context of its parent by
using the internal primitives of its parent as its external primitives. While filling
in the representative of a concrete module with application specific code, the ap
plication developer uses the internal and external primitives to interact with other
modules in the hierarchy.

A parallel application developed using SPM is a hierarchical collection of (code-
complete) modules. Each concrete machine can be considered as an instance of
pat tern specific virtual machine with its own communication, synchronization and
structural primitives. A user fills in these virtual machines with the required code,
starting bottoms-up in the hierarchy, to create the complete parallel application.
The root of the hierarchy, i.e. a code-complete module with no parent, represents a
complete parallel application. Each non-root node of the hierarchy represents a par
tial parallel application. Each leaf of the hierarchy is called a singleton module (and
correspondingly, a singleton abstract machine or module for the abstract counter
part) . Evidently, a singleton module contains only the representative and an empty
back-end.

2.2. Parallel Virtual Machines in Action

We at first define a face recognition/verification problem and device an efficient
solution for parallel computers. Then, evolution of the the solution is described with
parallel virtual machines for a better under standing of the concepts described in
previous subsection.

2.2.1. Problem Description and Solution Approach

Consider a parallel face recognition/verification application. Given a succession of
still video images of scenes, the application needs to recognize or verify one or more
persons in the scenes using a stored database of faces. Available additional infor
mation such as race, age, gender and speech may be used for narrowing the search.
A solution to the problem involves the following standard steps: (1) segmentation
of faces (also known as face detection) which involves detecting all the faces from
an image; (2) feature extraction which involves extracting pre-defined features (e.g.,
eye, nose, color, etc.) from detected faces, and (3) finally recognizing or verifying a
face from the stored database based on the extracted features and the additional in
formation. There are several well known algorithms for each step. A comprehensive
survey of many of them can be found in [36].

Let us consider one specific parallel solution to the problem. The initial (i.e.,
level 0) decomposition of the problem is rather straightforward: the problem can be
easily decomposed into three concurrent modules, each involving a step mentioned
previously. This initial decomposition creates a pipeline, with each pipeline stage

6 M. M. Akon et al.

performing one of the steps. Since the problem involves a succession of images,
enhancement of performance is anticipated when the pipeline is full, i.e., all the
pipeline stages are busy, and the improvement in performance over the sequential
counterpart is governed by the slowest of the three pipeline stages. Assume that
the rate at which images are generated is much faster than the first stage of the
pipeline, that performs the face detection phase. Consequently, in this specific par
allel solution, the first stage of the pipeline is actually composed of replicated copies
of identical worker modules, each of which executes the specific (sequential) face
detection algorithm. The replicated workers work on different independent image
frames. Since the image frames are independent, the workers need not exchange any
information among themselves. The faces detected by the replicated workers are
streamlined (by a master/manager) and buffered for use by the next stage of the
pipeline, that performs feature extraction.

The particular feature extraction algorithm used in the second pipeline stage for
this specific solution uses the data-parallel paradigm. The algorithm divides each
face into a 2-D grid, and concurrent workers process individual elements of the
grid. Since the workers process different parts of the same face, they often need to
exchange information (unlike the first stage of the pipeline). The second stage of
the pipeline is actually a data-parallel grid/mesh with 2-D topology.

The third stage of the pipeline performs face detection or verification, based on
the features extracted in the previous stage. There are several well known classifi
cation algorithms that can be employed at this stage [36]. However, none of these
algorithms guarantees the outcome. In this specific solution, several classification
algorithms are employed simultaneously on the same data, and a voting is done
on the results. The majority vote wins. As a result, the third stage of the pipeline
is composed of a manager and non-identical workers, where each worker performs
one classification algorithm. This is unlike the first stage, which is composed of a
master/manager and replicated identical workers.

So far, we have abstractly discussed about the type of each stage of the pipeline,
without going into its details. Next we refine each stage of the pipeline (i.e., at
level I) by filling in its details. We refine stage I of the pipeline by specifying the
types of the manager and workers, the maximum number of workers, and their
interconnection topology. Similarly, we refine stage 2 of the pipeline by fixing the
dimensions of the grid, details like toroidal or non-toroidal, and the type of each
grid-element. Similarly, we can refine stage 3.

The previous discussion illustrates the hierarchy involved in application design
and development in traditional parallel programming. Application design and de
velopment using SPM also follows similar hierarchy and is discussed next.

2.2.2. An SPM Solution

Referring to the previous example, since the initial decomposition of the problem
leads to a pipeline, the pipeline machine is selected from the repository of available

A Novel Software-Built Parallel Machines and Their Interconnections 7

machines. Initially it is an abstract machine. Subsequently the abstract machine is
instantiated with the following parameter: number of stages to be 3. Instantiation
also involves labeling of each stage of the pipeline with a module type. In this
particular case, stage 1 is labeled as the replicated master worker, stage 2 as the data-
parallel mesh, and stage 3 as the non-replicated master-worker machine (Fig. 2). The
concrete pipeline module is also given an identity named Root for the simple reason
that it constitutes the root of the hierarchy.

• - • > • •

Representative

Communication Link

Abstract pipeline machine

(Define number of stages
"i Define type of each stage

Concrete pipeline machine

Legends:
RMW: Replicated Master-Worker
Mesh: Data Parallel Mesh
NMW: Non-replicated Master-Worker

Fig. 2. Instantiation of a pipeline machine

Legends:
SM: Singleton Module
W: Identical Worker
Wi: Distinct Worker

SM SM SM SM

SM SM SM SM

SM SM SM SM

Fig. 3. Instantiation of a pipeline stages

The label of each pipeline stage is merely an abstract entity, and it needs to
be instantiated recursively. Fig. 3 shows the subsequent instantiation of the pipeline
stages. Stage 1, which is labeled as the (abstract) replicated master worker machine,
is instantiated by binding its parameters and labeling accordingly, e.g., the number
of replicated workers, type of each worker, etc. Similarly, stage 2 which is an abstract

8 M. M. Akon et al.

mesh machine is concretized by specifying the dimensions of the mesh (2-D), size
of each dimension (a 4 x 3 mesh), and the type of each child. Same is the case for
stage 3 of the pipeline.

The previous methodology of top-down hierarchical instantiation continues until
the leaves of the hierarchy are reached. Each leaf is always an instance of singleton

machine/module. From the definition of code-complete modules, code-completion
is a bottoms-up procedure starting at the leaves of the hierarchy and proceeding
towards the root (see subsection 2.1). In this example, the developers start with
writing application code for the representative of the singleton modules at the leaves
of the hierarchy. The next step is to write application code for the representatives
of the stage 1 (i.e., the replicated master-worker machine), stage 2 and stage 3,
respectively. Finally, the representative of Root (i.e., the pipeline machine) is filled up
with proper code. The code-complete Root module represents the complete parallel
application.

3. T h e S P M M o d e l

SPM is targeted for two categories of users: parallel machine designers and appli
cation developers. Often a user falls into both the categories. A parallel machine
designer construct abstract parallel machines and store them in the machine repos
itory. It is the responsibility of the designer to ensure the correctness of all the
designed machines. The application developers simply choose the proper abstract
machines for the target application and go on with the development.

3 . 1 . Basic Elements of SPM

SPM provides a set of virtual /c-dimensional processor grids, where k 6 N, to em
bed the topologies of parallel patterns. Each node of the grid is a virtual processor.
Each multidimensional virtual processor grid (VPG) is equipped with its own com
munication and synchronization primitives. These primitives include operations for
synchronous and asynchronous peer-to-peer communication, collective communica
tion, and synchronization specific primitives. We chose to make the VPG primitives a
super-set of the basic communication-synchronization primitives supported in some
of the prominent parallel programming environments. Our choice is influenced by
the MPI standard [24], PVM documentations [25], our experiences different pattern-
based systems, and various research articles (e.g., [10]).

In the process of designing an abstract machine, the designer first chooses an
architectural parallel pattern. The chosen pat tern is implemented as an abstract
parallel machine in SPM. For that , the designer decides about the constituents of the
new machine (i.e., the back-end components, interconnection topology, primitives,
etc) from the description of the pattern. Then, the designer needs to embed the
topology of the chosen parallel pat tern or the intended parallel machine to the
existing grid topology provided by SPM, and maps each of its children (i.e., abstract
machines at the back-end) into a VPG node. The mapping of the representative is

A Novel Software-Built Parallel Machines and Their Interconnections 9

implicit. Finally, the designer needs to define the communication-synchronization
primitives of the new machine on top of the basic primitives provided by SPM. The
Parallel Machine Description Language (PMDL), at a level of abstraction much
higher than C or C + + , aids in the design and implementation phases.

There are several reasons for choosing a /c-dimensional grid for embedding the
topology of a parallel pattern: (i) any regular or irregular topology can be embedded
to a regular /c-dimensional grid topology. Sufficient amount of literature already
exists in this direction; (ii) From the designer's perspective, it is much easier to
mentally visualize a grid, with each node of the grid clearly identified by a /c-tuple.
This can facilitate in formulating the mapping function(s) from the topology of the
pat tern to the VPG.

3.2. Mapping a Pattern

Fig. 4 shows a mapping where the designer wants to design an abstract Wavefront

parallel machine, an implementation of the Wavefront pat tern. Fig. 4(a) is the
visualization of the Wavefront pat ten where the topology of its constituents is shown.
The visualization helps the designer to make several design decisions. At first, the
designer decides about the parameters of the machine. The structure of a Wavefront
machine becomes generic if the the number of rows (or the number of columns) is
considered to be a parameter rather than a constant. We name this parameter as
size.

Representative Communication
primi lives

. Implicit
VPG nodes l____J representative

(a) Wavefront pattern (b) A 2-D VPG (c) Embedding topology to
the VPG

Fig. 4. Mapping Wavefront p a t t e r n into a 2-D V P G

In the case of a Wavefront, the choice of a two dimensional VPG (Fig. 4(b)) is
obvious because it facilitates a one-to-one mapping of the children into the nodes
of the VPG. Fig. 4(c) shows such a mapping. Note that each VPG has an implicit
representative node, to which the representative of the machine is mapped onto.
From the figure, it can be seen that even after limiting the height and width of the
VPG (to the parameter size), there are virtual processors to which no child of the
machine are mapped onto. Those virtual processors are called null virtual processors

10 M. M. Akon et al.

or null nodes.

The embedding of a pat tern into a VPG is complete when the associated com
munication, synchronization and structural primitives of the machine are defined.
In Fig. 4(c), some of the channels for communication primitives are marked. Exam
ples of some communication primitives for a Wavefront machine are: (1) receiving
a message from the representative, (2) sending a message to the left neighbor, etc.
Examples of some structural primitives are the operations: (1) to check whether a
child is located at the last column, (2) to check whether a child is located on the
topmost diagonal, etc.

In the SPM model, the topology of a pat tern (as in Fig. 4(a)) is called the topo

logical space (TS). The topological space is constituted of zero or more computing
nodes along with their connectivity. Connectivity among the nodes of TS is repre
sented by a connectivity function T. The mapping function, M, maps nodes of TS

to the virtual processors of the VPG space (designated as WQ). The embedding
of a TS into a WQ results in an abstract mapped space, V', which is a subgraph of
the WQ and is constituted of only the non-null nodes of VPG. Provided that M.

and T are already defined, it is easy to express the connectivity among the non-null
virtual processors of the VPG as the composite function: M..T.M.~l. Once M., T,

and M..T.M~ are known, it is a rather straightforward procedure to define any
machine specific communication-synchronization and structural primitive in terms
of a sequence of SPM provided VPG primitives.

3.3 . Composition

SPM model supports the idea of composition of abstract machine. Composition is
the way to combine simple abstract machines into a complex one. In the following,
we describe the motivation of incorporating the idea of composition into SPM, then
present the model.

3.3.1. Motivation Behind Composition

A large-scale parallel application often requires a composition of multiple machines.
It is more desirable to have a single composite machine rather than a collection of
smaller machines. Another reason for having a composite machine is performance.
Consider the example in Fig. 5(a), where a Wavefront and a Pipeline machine are
shown. The output of the rightmost child of the Wavefront is sent back to the
representative, the representative routes it to the representative of the Pipeline,
which in-turn again routes to the first stage of the Pipeline. Composition of these
two machines is shown in Fig. 5(b). It is evident from the figure that composition,
in this case, reduces the number of routing requirement by 1 as compared to the
case in Fig. 5(a).

Notice that the composition is different from the construction of hierarchy during
instantiation. Composition is performed on abstract machines to create a composite

A Novel Software-Built Parallel Machines and Their Interconnections 11

Pipeline patlera
Pipeline skeleton

A composite skeleton

(a) Two separate machines (b) A composite machine

Fig. 5. Composing machines towards performance

structure. Composition is performed by the designers, whereas the machine hier
archy is constructed by the application developers. Composition may require an
in-depth knowledge of the abstract mapped spaces, whereas the creation of the ma
chine hierarchy does not require that . Composition of two or more machines during
instantiation increases the height of the machine hierarchy during application de
velopment. On the contrary, use of composite abstract machine during application
development reduces the height of the hierarchy.

3.3.2. Model of Composition

Composition of machines Mi and Mj into a machine M^ results in the union of the
parameters, primitives, and the abstract mapped spaces of Mi and Mj. Moreover,
newer primitives may be defined for a composite machine, for instance, constituents

of machine Mi are mapped onto abstract mapped spaces Vn, V-a, Vmi; and
those of Mj are mapped onto V\j, V23, • • •, "Pnj'i then constituents of Mk will be
mapped onto Vu, V21, • • •, Vmi, V\j, V2J, • • •, "Pnj- We define the extended mapped

space {£) of a machine as a space which is exactly big enough to hold all the abstract
mapped spaces of that machine. Formally, let us assume that a machine M consists
of the abstract mapped spaces V\, V2, • • •, "PNI a n d the abstract mapped space V% is
a ki dimensional space (i.e., result of mapping the topological space of the machine
into a ki dimensional VPQ). The extended mapped space, £, would be of dimension
K = max{/ci | 1 < i < N} + 1.

To create the extended mapped space £, an abstract mapped space Vi is extended
from ki dimension to K — 1 dimension. While extending the dimension, the higher
K — 1 — ki dimensions are made limited to length 1 to ensure consistency. The length
of the i^-th dimension of the extended mapped space, £, is N and the extended
abstract mapped space of Vi is placed on the z-th entry of the K-th dimension of £.

Fig. 5(b) is redrawn in Fig. 6(a) to reflect the idea of the extended mapped space.
The extended mapped space, as is shown in the figure, includes the abstract mapped
spaces of the Wavefront and the Pipeline machine. Among the two abstract mapped
spaces, the mapped space for the Wavefront is of the highest dimension, which is
two. As a result, the extended mapped space is 3-D. The first plane of the extended

12 M. M. Akon et al.

mapped space includes the mapped space of the Wavefront, and the second plane
includes the mapped space of the Pipeline machine.

Plane 2: extended
abstract mapped space of
Pipeline pattern

(a) The 3-D extended mapped space

A composite skeleton

(b) Aliasing in a machine

Fig. 6. Ex tended m a p p e d space and aliasing

In order to achieve more flexibility, SPM provides an aliasing facility. Aliasing
is the way to combine two nodes from two different abstract mapped spaces of a
particular machine. The idea is shown in Fig. 6(b). Aliases in SPM are expressed
using an aliasing function (designated as .4). SPM provides two types of aliasing:
(1) fusion paradigm, and (2) linkage paradigm. In the linkage paradigm, two aliased
nodes are connected via a unicast communication channel and both the nodes remain
as separate entities. On the other hand, in the fusion paradigm, two aliased nodes
are unified into one node. As a result, that unified node becomes members of both of
the abstract mapped spaces, where the original nodes belonged to. Assume that S
is the extended mapped space of machine M, and Vi, Vj and Vk are three abstract
mapped spaces of M. Lets Pi C V\ where I £ {i,j,k}. The aliasing function is
defined as, A : Pm —» Pn where m,n £ {i,j,k} A m ^ n. Say, A(pi) = Pj and

A Novel Software-Built Parallel Machines and Their Interconnections 13

A(pj) = Pk, where pi 6 Pi A I 6 {i, j , k}. In the fusion paradigm of the model, those
two aliases imply that A(pi) = Pk- However, this implication is not true for the
linkage paradigm.

3.4. Instantiation

In SPM, during the instantiation phase, a labeling function C labels each child of a
concrete machine, CM, with an abstract machine type (refer to section 2). In other
words, labeling can be considered as specifying the types of the children inside the
back-end. These children are subsequently instantiated. Hence, instantiation can be
considered as a top-down process in the machine hierarchy. Suppose, in the presence
of aliasing, A(pi) = pj and £{pi) = AMS where AMS is an an abstract machine type.
If the aliasing follows the fusion paradigm, then C(pj) must also be AMS. However,
if linkage paradigm is used then pj can be labeled without considering the labeling
of pi, as pi and pj are considered to be two separate entities.

4. I m p l e m e n t a t i o n

In this section, we discuss our implementation of the SPM model. We also discuss the
Parallel Machine Description Language (PMDL), which is mainly targeted towards
a machine designer for facilitating design and implementation of new and composite
machines. An application developer also may use a small part of the PMDL, during
the instantiation phase, as is discussed in the following. A formal description of
PMDL is out of the scope of this paper and can be found in [2].

4 .1 . Describing A Virtual Parallel Computer

In this subsection, we illustrate the different features of SPM and the PMDL by de
scribing the design procedure of an abstract Wavefront machine discussed previously
(section 2), which implements the Wavefront pat tern.

00 integer size; // The parameter for the machine
01 // Design of the the Wavefront machine follows:
02 machine Wavefront(2) { // Embedded into a 2-dimensional VPG
03 LOCAL = { // local functions
04 void init(void) { // The initialization function
05 // Set the dimensions of the machine topology
06 for Cint i = 0; i < GetDimensionC); i++)
07 SetDimensionLimit(i, size);
08 }
09 bool non_null(const Location & loc) { // Define non-null nodes
10 // loc[0], loc[l], .. indicate position of a VPG node in a
11 // specific dimension, i.e. loc[0] is for the lowest
12 // dimension, loc[l] is for next dimension, etc.
13 if (loc[0] <= loc[l]) // if column number <= row number
14 return true; // then non-null node
15 return false; // otherwise, null node
16 }
17 };
18 INITIALIZE = init; // Set the name of the initialization function
19 MAPPING = non_null; // Set the name of the mapping function
20 PRIVATE = { . . . } ; // Private primitives
21 PUBLIC ={...}; // Public primitives
22 }

14 M. M. Akon et al.

As shown in the previous PMDL code, the machine description starts with the
declaration of the parameters, and subsequently the definitions of the constituents
of the machine and their mapping to the 2-D VPG. The initialization function init

(line 18) limits the length of both of the dimensions of the VPG to the parameter
size. The function nori-null (line 19) defines non-null VPG nodes by returning true

values for all the nodes located on or below the upper diagonal of the VPG. The
function defines the embedding of the Wavefront pat tern into the VPG. It should be
noted that GetDimension and SetDimensionLimit are two of the built-in structural
primitives provided by SPM.

The definition of the machine is not complete unless the topology (i.e., connectiv
ity) of the machine components is defined. In practice, the connectivity is established
via defining the internal communication primitives of the machine. SPM divides the
internal primitives into two categories: private primitives are to be used exclusively
by the representative of the machine, whereas public primitives are inherited by
the children as external primitives. In the case of the Wavefront machine, a receive

message from the child, located at the last column is a private primitive whereas a
send message to the left peer is a public primitive. The PMDL code for defining the
private and public primitives is shown next:

machine Wavefront (2) -[// Embedded into a 2-dimensional VPG
LOCAL = { ... };
INITIALIZE = ...;
MAPPING = ...;
// private primitives
PRIVATE = {

// Send a message to a child located at <nRow, 0>
bool SendToNodeAt(int nRow, Msg & m) {

Location loc;
loc[0] = 0, loc[l] = nRow;
return SendChildCloc, m); // VPG primitive provided by SPM

}
// Receive a message from the child located at <size - 1, size - 1>
bool RecvFromLastNode(Msg & m) {

Location loc;
loc [0] = loc [1] = size - 1;
return RecvChildCloc, m); // VPG primitive provided by SPM

}
};
// Public primitives
PUBLIC = {

// COMMUNICATION PRIMITIVES
// Send message from node <i, j> to <i, j+l>
void SendRight(Msg &m) {

Location loc = GetLocationO ;
loc[0] = loc[0] + l;
SendPeer(loc, m); // VPG primitive provided by SPM

}
// Node <i, j> receive message from node <i, j+l>
void RecvRight(Msg &m) { ... }
// Receive message from the representative
void RecvRepresentativeCMsg &m) {

RecvParent(m); // VPG primitive provided by SPM
}
//' STRUCTURAL PRIMITIVES
// Check if node is located at the first column
bool IsAtFirstColumnO {

Location loc = GetLocationO;
return loc[0] = = 0 ; // is column number == 0?

}
// Check if node is located at the diagonal
bool IsAtDiagonalO {

A Novel Software-Built Parallel Machines and Their Interconnections 15

Location loc = GetLocationO ;
return loc[0] == l o c [1] ; / / i s column number == row number?

>;

In the previous code, the machine specific private primitives (e.g., SendToN-

odeAt, RecvFromLastNode, etc.) and the public primitives (e.g., SendRight, IsAt-

Diagonal, etc.) are defined inside the language constructs PUBLIC and PRIVATE

respectively. These primitives are built on top of the basic SPM provided primitives
for the VPG, i.e., SendChild, RecvPeer, GetLocation, etc.

4.2 . Describing a Instantiation

The PMDL also provides supports to an application developer during the instanti
ation phase. However, it should be noted that the application developer has to do
majority of the development work using pure C + + c . Let us consider the machine
hierarchy of Fig. 7(a), decided by an application developer for the face recognition
application described earlier. The root of the hierarchy is constituted by a Pipeline

machine. The different types of machines that are available for the back-end of the
Pipeline are abstract RMW (Replicated Master and Worker), Mesh (Data Paral

lel Mesh) and NMW (Non-replicated Master Worker) machines. The corresponding
PMDL code is given in Fig. 7(b). In this code, RMW, Mesh and NMW are made
available as first, second and third available machine types (numerically type 0, 1
and 2), respectively. A separate mapping function binds the first available type to
the first stage, second type to second stage and so on. Later on, the labeled children
are instantiated and thus instantiation proceeds top-down in the hierarchy.

Pipeline {
RMW { ... },•*-
Mesh { ... },-«-
NMW { ... } -

• Child Type 0
Child Type 1

• Child Type 2
RMW machine

Mesh machine

(a) Pictorial view of hierarchy (b) Expressing hierarchy in
PMDL

Fig. 7. Two levels of machine hierarchy

// File name: Root.mc

cAt this moment, the SPM implementation only supports CH—h Other languages can be used with
proper wrapper and tools, such as SWIG [33].

16 M. M. Akon et al.

machine Pipeline (1) {
LOCAL = {

void label(void) {
Location loc;
// for all children
for (loc[0] = 0; loc [0] < GetDimensionLimit(O); loc[0]++) {

// label i-th child with i-th available type (abstract machine)
AddLabel(&PipelineRoot, loc, i);

}
}

INITIALIZE = .. . ;
MAPPING = ...;
PRIVATE = ...;
PUBLIC = . . . ;
RULE = label; // the rule for labeling

>

The above PMDL code shows the second step of the labeling process where stages
are labeled with the available machines. Breaking the labeling process into two parts
make the instantiation process more flexible. For example, the replicated and non-
replicated master and worker machines could be designed as a single master and
worker (MW) abstract machine in the first place. Then, if all the workers are labeled
with a single machine type, the MW machine could be treated as replicated master
and worker, otherwise, it would turn to a non-replicated master worker machine. In
our current implementation, an instance of a machine is created by simply copying
the machine description file to the project directory. If the designer prefers a different
name for the instance, the new name is reflected through the name of the file.

5. Case S tud ies

For the sake of brevity, we choose to describe a simple but elegant parallel ap
plication. The detail development process is presented in subsection 5.1. Then in
subsection 5.2, composition of X-Tree parallel machine from two simpler parallel
machine is addressed.

5.1 . An Image Convolution Application

Image convolution is an important application in the domain of image processing.
Here we describe a step by step procedure to develop a parallel image convolution
application using SPM and related tools.

5.1.1. Problem Description

Image convolution is performed by applying a mask to each of the image pixels.
The simplest way to make the operations parallel is to divide the whole image into
columns and/or rows. Different parts of the image are distributed to different pro
cesses and each process computes the convolution of its assigned part . Unfortunately,
there are dependencies among these computing processes, i.e., each process needs
to exchange data with its logically neighboring processes.

A Novel Software-Built Parallel Machines and Their Interconnections 17

5.1.2. Instantiating Abstract Machines

As the problem description suggests, the application demands a 2-D Mesh machine
with identical children. The representative of the machine is mainly responsible for
da ta partitioning (and all the file system I /O , depending on the underlying hardware
constraints). The identical children of the mesh machine perform the actual convo
lution. In this case, each child of the mesh is a Singleton machine. The two-level
hierarchy for this application is shown in Fig. 8. In the figure, icmesh is an instance
of an abstract mesh machine, and icsingleton is an instance of an abstract singleton
machine. It should be noted that icsingleton represents each identical child of the
mesh machine.

// File name: ImageConv.htree
icmesh { // icmesh is an isntance of Mesh

icsingleton { // icsingleton is an instance of Singleton

0~th Child Type for icmesh

Fig. 8. The two-level machine hierarchy for an image convolution application

Due to the number of available computing nodes and processors at a given the
cluster, 20 sequential processes performing the convolution would yield the best
performance. For an input image of size 2048 x 1536, we chose to divide the image
among 5 x 4 children, each of which is a singleton module and hence performs
sequential computation. Hence, we instantiate the icmesh machine as follows:

// File name: icmesh.mc
// The icmesh machine: an instance of Mesh machine
integer k = 2; //A k-D VPG to which mesh is embedded into
// Bind the different parameters for the mesh as follows:
bool fWrapping = false; // A non-toroidal mesh
machine Mesh (k) -[

// this is another way to set the size of each dimension
LIMITS = {5, 4}; // Binding: row = 5 and columns = 4

>

We also specify a labeling function that labels each of the identical children of
the icmesh machine as icsingleton, an instance of the abstract singleton machine.
The corresponding PMDL code is shown in the following :

// File name: icmesh.mc

machine Mesh (k) -[

LOCAL = {

void label(void) {
Location loc;
// for all children
for (loc[l] = 0; loc [1] < GetDimensionLimit (1) ; loc[l]++) {

for (loc[0] = 0; loc [0] < GetDimensionLimit (0); loc[0]++) {
// Label each child as icsingleton (i.e., 0-th child type
// as mentioned in the hierarchy file ImageConv.htree
AddLabeK&Mesh, loc, 0);

}
}

}

18 M. M. Akon et al.

>;
RULE = label; // the rule for labeling

>

At the second level of the hierarchy, the icsingleton machine has no parameter
to bind. Moreover, a singleton machine has an empty back-end and hence it has
no children to be labeled. So, instantiation of the icsingleton machine is a void
procedure.

5.1.3. Code-Complete Modules

Filling in the representatives of each of the icmesh and icsingleton results in the
respective code complete modules and hence the complete parallel application (refer
to section 2). Before implementing the code complete modules, first we need to gen
erate the C + + code for the machine hierarchy. The SPM-provided translator takes
the hierarchy as input and generates one C + + object per machine. The developer
needs to fill in the representative code for each of the objects. The Rep method
of an object is interpreted as the representative of the corresponding machine. In
the case of the image convolution application, the icsingleton and icmesh objects
are generated, and subsequently they are filled in with application specific code as
follows:
class icmesh : ... {

public:
icmeshC...) : ... { ... }
void Rep(void) { // Representative of mesh module

// Fill in application specific code as follows:
Msglmage imgMain, mask;
// Read the image and the mask from file into imgMain
// and mask objects

// Now partition the image
int nParts = GetDimensionLimits(O) * GetDimensionLimits(l);
Msglmage * imgParts = new Msglmage[nParts];
// Now, Divide imgMain among imgParts

// Now send the partitions to the children
ScatterToChildren(imgParts); // An internal primitive (section 2)
BroadcastToChildren(mask); // An internal primitive (section 2)

// Now gather the convoluted image partitions from children
GatherFromChildren(imgParts);

// Combine the convoluted image partitions into the imgMain object

// Write the result back to a file

}

} "

class icsingleton : ... {

public:
icsingleton(...) : ... { ... }
// NEWLY ADDED METHODS (BY DEVELOPER) BEGINS
void RecvRight(Msg &m) {

static int * p = {+1, 0}; // Right node in a 2-d mesh
External.RecvNeighbor(p, m); // ''External1' stands for an external

// primitive. Refer to section 2.
}
void SendLeft(Msg &m) {

static int * p = {-1, 0}; // Left node in a 2-d mesh
External.SendNeighbor(p, m) ;

>

A Novel Software-Built Parallel Machines and Their Interconnections 19

bool IsAtFirstColLunn(void) {_
return External.IsAtBeginning(O);

>
//'ADDED METHODS ENDS
void Rep(void) { // Representative of singleton module

// Fill in with your code
Msglmage imageln, imgi, mask; // The image partition and the mask

// receive the image partition from parent
External.RecvRepresentative(imageln);
// Receive the mask
External.RecvRepresentative(mask);
// Exchange information with neighbors

// Now convolute

// imageOut contains only the part of the image to be sent back
Msglmage imageOut (imageln. dxO , imageln.dy ());

// Send the result back to parent
External.SendRepresentative(imageOut);

>
>;

The previous code uses the Msglmage class. This class is inherited from SPM
library provided Msg class. The Msg class is a generic message container used by
all SPM provided built-in communication primitives. It has two abstract methods:
Marshall) a n d Unmarshal(), which specify how the corresponding message object
should be packed and unpacked at the sender and receiver, respectively. These two
abstract methods need to be overwritten by an application developer, as is shown
below for the Msglmage class:

class Msglmage : public Msg {
int width, height;
int * data;

public:
Msglmage (void) : MsgO, width(O), height(O), data(NULL) { >
Msglmagednt _height, int _width) : MsgO, height (_height),

width(_width) {
data = ... ;

>
void Setlmage(const gdlmagePtr im) { ... }
int GetWidth(void) -[return width; }
// other methods

//'FOLLOWING METHODS MUST BE OVER WRITTEN
// How to marshal this object
void Marshal (void) -[

// marshal width
MarshalData(width);
// marshal height
MarshalData(height);
// marshal image data
MarshalData(data, width * height);

>
// How to unmarshal this object
void Unmarshal(void) {

// unmarshalling must be in same order of marshalling
// unmarshal width
UnmarshalData(width);
// and height
UnmarshalData(height);
if (data) delete []data;
data = new int[width * height];
// we have proper memory, now unmarshal image data
UnmarshalData(data, height * width);

}
};

20 M. M. Akon et a!

5.2. A Virtual X-Tree Parallel Machine

We design an abstract partial X-Tree [7,16] machine by composing a Binary Tree
and a Linear List machine. The partial X-Tree pattern is shown in Figure 9(a). In
the pattern, each leaf of a binary tree is connected to the neighboring leaves. Assume
we already have a Binary Tree and a Linear List machine, as implementations of
the Binary Tree and Linear List pattern, respectively. The abstract mapped space
of both of the machines are built on-top of two separate one dimensional VPGs.
In Fig. 9(b), the number shown beside each of the parallel computational nodes
indicates the address of the VPG node where it is mapped onto. As shown in the
figure, the height of the tree in the Binary Tree pattern is a design choice, i.e., a
parameter for the Binary Tree machine. Similarly, the length of the list is a parameter
for the Linear List machine. In PMDL code, those two parameters are represented
as height and length, respectively.

Level 0

Level 1

(a) The X-Tree pattern

of

2*-i - l|

\C :D*0*

Level k—1

Level k

Level I

Level k

length

(b) Composing Binary Tree and Linear List machines

Fig. 9. Designing X-Tree machine th rough composit ion

Fig. 9(b) also shows the aliases required to compose those two machines to design
the targeted X-Tree machine. If the height of the tree is k + 1, i.e., the highest level is
k, the leaves would have addresses from 2k — 1 to 2k+1 — 2. To compose a Linear List

A Novel Software-Built Parallel Machines and Their Interconnections 21

with a Binary Tree, a Linear List must be of length 2fc(= (2fc+1 — 2) — (2fc — 1) + 1).
Node i of the abstract mapped space of Binary Tree should be aliased with node j
of the abstract mapped space of Linear List, where i = 2 — 1 + j and 0 < j < 2 .
Following PMDL code reflects this idea.
integer height; // from Binary Tree machine
integer length = integer(pow(2, height - 1)); // if height=k+l, length=2"k
machine BinaryTree(l) { // Binary Tree

}
machine LinearList(l) { // Linear List

}
alias {

LOCAL =
void doAlias(void) {

for (int j = 0; j < length; j++) { // 0 <= j < 2"k
Location 1BT, ILL;

// for node from binary tree: 2~k - 1 + j = length - 1 + j
1BT[0] = length - 1 + j;
// for node from linear list: j
1LL[0] = j;
AddAliasC&BinaryTree, 1BT, feLinearList, ILL);

}
}

>
RULE = doAlias; // rule for aliasing

}

6. Discussion on Deployment Efficiencies

In this section, we describe different performance related studies of applications
deployed using SPM. We also discuss our findings from our small scale usability
studies.

6.1. Performance Studies

We developed several applications using SPM. Here, we present one of the represen
tative case. We divide the discussion into two subsubsections. At first, we describe
the problem in hand and the solution approach. Then, we describe our findings.

6.1.1. Problem Description

The decision support system (DSS) needs analytical data to have a comprehensive
view about the performance of the enterprise. Often queries on such analytical data
are complex and require multi-dimensional view of the enterprise data. Codd et al.
coined the term On-Line Analytical Processing (OLAP) which creates, manipulates,
animates and synthesizes information from Enterprise Data Models (EDM) [11]. An
OLAP application usually analyzes a huge amount of data. On the contrary, a user
would expect to have a real-time performance from the system. As a result, speed
is a primary goal in this class of applications [11]. To make interactive analysis,
OLAP databases usually pre-compute various aggregates on various combinations
of attributes, often in the form of data cubes. However, speed is still a critical
factor for this pre-computation as it affects how often the aggregates are revised.

22 M. M. Akon et al.

Several techniques have been proposed to speed up the data cube computational
procedure [1]. Recent research efforts demonstrate that parallel computation of the
data cube is the most effective solution [15].

A data cube of raw data set R with d at tr ibutes (denoted as D\,D2,...D^)

is composed of 2d different views. Fig. 10(a) shows a lattice of a da ta cube with
at tr ibute A, B, C and D. Both control and data parallel [15] paradigm can be used
to compute a da ta cube. In this paper, we consider a data parallel approach where
R is partitioned among p parallel computing entities. Each entity computes all 2
views considering only locally available data. A merge (reduction or gather) on the
locally computed data cubes results in the final data cube, DC on entire R [15].
Here, we assume that \D\\ > Z>2 > • • • > |Ai|> where \Di\ is the cardinality of Di.

Denote Di-partition as the set of views starting with Di (refer to Fig. 10(b)). The
computation of da ta cube can be expressed as,

for i = 1 to d do
1. P a r t i t i o n the data on a t t r i b u t e Di using Sample Sort
2. Compute loca l D j - p a r t i t i o n
3 . Marge loca l D j - p a r t i t i o n s t o compute global Di - p a r t i t i o n

ALL

(a) Data cube lattice

B-partition

C-parlition

(b) Data cube partitions

Fig. 10. Comput ing d a t a cube

Chen, et al., has proposed an Adaptive Sample Sort algorithm that partitions
a data set, keeping load balancing in mind [15]. The algorithm sorts the initial
da ta set X\, X2, • • • Xp, distributed over processes P\, P2, • • • Pp to X[, X'2, . . . X'p

which is globally sorted over the dimensions Di, -Di+i, . . . Dj for ^ - p a r t i t i o n . The
algorithm chooses pivot points (for partitioning) through a collaborative regular
(over) sampling procedure [22]. Computation of local .Dj-partition by a process is
a sequential operation without any collaboration. Finally, the merge operation is
assigned to a dedicated process (Po) s o tha t other processes can go on with remaining
computations.

6.1.2. Performance Related Issues

We have developed the data cube computing applications with the assumption that
a parallel process can hold all its local da ta (consisting of 4 attributes) within the
volatile memory. Chen, et al., addressed the issue on performance where this as
sumption is not valid [15]. To run the application, we use a dedicated cluster with

A Novel Software-Built Parallel Machines and Their Interconnections 23

seven nodes. Each node is equipped with dual Pentium III 1 GHz processors, 512
MB memory, local SCSI hard drive and a connection to other nodes through a Giga
bit switch. We develop two sets of test cases: (1) variable number of parallel entities,
keeping the input size fixed and (2) variable input size, keeping the number of par
allel entities fixed. We develop the application using both MPI and SPM to have
a better understanding. For all the readings, we consider the average of 25 runs. It
should be noted that our SPM library is built as a thin layer on top of MPI-2 [24].

(a) T E T (constant problem size) (b) T E T (constant parallel entities)

(c) EST (constant problem size) (d) EST (constant parallel entities)

Fig. 11. Effects on performance

Fig. 11(a) and Fig. 11(b) show the total execution time (TET) of the applica
tions developed for both the test cases. It can be seen that SPM applications are
doing slightly poorer than the MPI applications. As the SPM run-time system is
developed on top of MPI-2, this slowdown is very much expected. To have a better
understanding, we divide TET into two segments: (1) environment setup time (EST)
is the time to setup the parallel environment (for example, creating the processes,
etc) and (2) actual computing time (ACT) is the time to compute the data cube.
From Fig. 11(c), it can be seen that EST increments with the increasing number
of parallel modules (as well as with more complex architecture of the application).
This increment is faster in case of SPM applications. Fig. 11(d) shows that with con
stant architecture of the parallel application, EST remains fairly constant (except,
the effect of the non-determinism). Note that EST takes place only once during the
life-time of the application and hence, for an application with long life-time, EST
has negligible effect.

The ACT of an SPM application also faces a slowdown. This is mainly due

24 M. M. Akon et a!

0.05

0.0495

~i 0.049

g> 0.0485

I 0.048
o

- ; 0.0475

§ 0.047

0.0465

0.046

2/24 3/36 4/48 5/60 6/72
Number of Parallel Entities / Records (in million)

Fig. 12. Increment in comput ing t ime

to the generalized communication functions. Though SPM tries to optimize the
performance on each Msg object by using some rules, it may not produce result
that is as optimal as an application, developed using MPI directly. Fig. 12 shows
the increment of ACT of SPM applications with respect to MPI applications for
both the test cases. For this problem, both curves have very small slope and first
test case produces steeper curve than the second (still all readings are less than
0.05%). Note that , increment of ACT depends on the behavior of the application as
well as the way Msg objects are created. As parallel systems usually are built with
an implementation of MPI, our SPM library is readily usable. An implementation
directly on top of Sockets [32] is expected to give better performance, but may
mandate for a few changes in (firewall) configurations.

6.2. Usability Studies

We acknowledge that due to constraints on available resources, our usability test is
very limited. However, the finding may put some light on the greater picture. To
conduct our usability tests, we chose a group of twelve students at Concordia Uni
versity, enrolled in an introductory graduate-level course on parallel and distributed
computing (COMP6281). Students were asked to compare their experiences with
MPI and SPM. The study pointed out five important points:

(1) The learning curve for the SPM model is higher than the MPI model. On the
average, the time to learn the SPM model and the PMDL is approximately 30%
more than that of the MPI model and its APIs.

(2) Developing parallel applications is significantly easier and less time consuming,
if the required abstract machines already exist in the repository. In the case of
SPM, it took approximately 50% less time and coding effort as compared to
MPI.

(3) Approximately 70% of the saving in development effort was due to lower de
bugging effort which follows from the correctness of the machines designed with
SPM.

Constant Problem Size -
Constant Parallel Entities •

A Novel Software-Built Parallel Machines and Their Interconnections 25

(4) The SPM system becomes more beneficial with increased complexity of the
given problem, i.e., if the problem structure is simple and the required abstract
machines are not available in the repository, it is better to use MPI. Otherwise,
using SPM gives better development throughput.

(5) The object-oriented interface and machine specific primitives for communication
and synchronization with eloquent names are easier to use as compared to the
generic primitives provided by MPI.

7. R e l a t e d Works

In absence of more competitive works, we present a comparison of SPM with other
pattern-based systems. However, all the previous works were developed based on
the behavioral aspect of parallel computation. On the other hand, concentration
of our work is on the architectural aspect of parallel computation. Some of the
earlier systems include Frameworks [29], Enterprise [27], Code.2 [8], and HeNCE [8].
Some of the recent systems are Tracs [5], DPnDP [31], COPS [23], ASSIST [35]
and eSkel [6]. Another stream of research works explored the use of parallel design
patterns for substituting explicit parallel programming by a variety of pre-packaged
parallel algorithmic forms, popularly known as algorithmic skeletons. Algorithmic
skeletons are described as higher order polymorphic functions and are, in practice,
realized using various functional and logic programming languages [9,12,14,17]. A
comprehensive survey of some these approaches can be found in [9,29,30].

In this paper, we point out several important differences between the MPI model
for application development and SPM model for designing machines. By now, it may
be clear that the VPG (with the support of null nodes and composition) of SPM
is more flexible than the linear rank or solid recti-linear cartesian topology of MPI.
Besides, while designing the primitives for the VPG, we kept the multi-processor
architecture and commonality in parallel algorithms in our mind. As a result, from a
machine designer's perspective, the basic SPM primitives (for example, SendChild,

SendRepresentative, etc.) are more meaning full than the primitives of MPI (for
example, generic sends of MPI).

The significance of extending a given library of parallel pat terns has been rec
ognized for about two decades now. Early systems such as Frameworks [29], Enter

prise [27], and HeNCE [8] do not have any support for extensibility. The next line
of parallel design pattern-based systems like Tracs [5], DPnDP [31], COPS [23] and
ASSIST [35] have some support for extensibility. However, the support is often quite
limited in several ways. For example, in Tracs [5], an application is developed in two
phases. In the first phase, application specific messages are modeled and then tasks
are designed using ports and modeled messages. In the second phase, the logical
structure among tasks is mentioned through a graphical interface. Besides, Tracs

supports design of parallel logical structures, i.e. patterns, where message models
just have names without any specification of the message structure. However, those
logical structures are static in nature with fixed number of nodes, topology and mes-

26 M. M. Akon et al.

sage identifiers. On contrary, SPM allows design of parametric machines and use of
machine specific communication primitives with any kind of messages.

Support for extensibility in DPnDP [31] is also limited. It provides a platform
independent class library, called NodeLayer. This library essentially hides the pecu
liarities of different message passing libraries. It provides the programmer a common
interface for message passing between ports of different parallel computing nodes.

Except the abstraction of nodes and ports, DPnDP does not facilitate the pat tern
design procedure in any other way. On the other hand, the SPM model does not only
provide a higher level abstraction of parallel entities of a pat tern but also provides
primitives to create the interconnections. Moreover, while using a DPnDP pat tern,
an application developer needs to be aware of the ports and nodes associated with
that pattern. On contrary, in case of SPM, an application developer can only per
ceive the machine specific components (representative, back-end, primitives, etc.)
designed into the machine and every other details are kept hidden.

The COPS [23] system is more flexible in the way that it allows the design of
new patterns. A designer can design a pat tern template, possibly with several pa
rameters. A parameter in COPS can take one of several values, listed by the pat tern
designer. The designer needs to write code for all possible combinations of values
that the parameters can have. This, in tern, helps the COPS system to generate
optimized code for a particular set of parameter values. However, it requires greater
effort to write pat terns with increasing number of parameters as well as parame
ter values. Moreover, COPS does not have a formal model, facilitating the pat tern
design procedure. It should be noted that COPS supports composition neither at
pat tern design phase nor at application development phase. As a result, if a devel
oper needs a composite pattern, it has be designed from scratch, even though the
required smaller pat terns are available in the pat tern repository.

The ASSIST [35] model allows three kinds of topology among parallel modules
(parmods) i.e., multi-dimensional array, none (they work independently of each
other) and one (sequential component with features like non-determinism, etc.).
The multi-dimensional array topology can easily express data parallelism whereas
the none topology can easily express independent task parallelism. But, in real life,
a parallel application is a complex composition of both of them. In ASSIST, it is
difficult to describe such complex compositional structures. Although ASSIST model
allows a composed module to be a part of another bigger module, it does not allow
nesting of parmods. Consequently, if a problem requires a parmod to be parallelized
further, a re-design of the whole parmod is mandatory. Moreover, this model also
lacks the support of parametric patterns. So, the application developer either needs
to design her solution space conforming to the restricted structure of the available
patterns (in the repository) or needs to design new patterns according to the needs
of her application.

The eSkel [6] model uses the parallel programming model of MPI [24], and re
lies on services from MPI. In the eSkel project, each parallel pat tern is realized as

A Novel Software-Built Parallel Machines and Their Interconnections 27

a skeleton. A skeleton, along with the attr ibutes and functionalities, is presented
through a library of a set of C functions. An MPI programmer may simply learn
a new skeleton library and start using it. The dependency of eSkel to MPI makes
it limited to the MPI users and systems. Moreover, the skeleton library does not
provide encapsulations between different skeletons and other skeleton related func
tions. Besides, the eSkel model has no notion of extensibility where the last reported
eSkel library includes only a few skeletons. In contrary, the SPM model does not
rely on any other programming model and can be implemented on different parallel
environments, ranging from sockets to MPI. Though the SPM repository includes a
large number of parallel machines, addition of new machines is trivial. The modular
organization of the machines provides encapsulation which also hides the complex
details of the underlying platform.

The regular topologies found in the domain of parallel computing covers so many
number of problems that researchers started to think about specific architectures
that support those regularities. This resulted in architectures with specific processor
topologies, for example processors connected in mesh or hypercube topology. But
a computation of one pat tern runs inefficiently on an architecture that follows a
different pattern. Moreover, most of the parallel applications are compositions of
more than one patterns. As a result, researchers found a way around to embed the
patterns in software components. The SPM model is partial in favoring the designers
to describe such a regular structures, without compromising the generality to express
an arbitrary structure / topology. As a pat tern / machine design tools none of the
previous systems favors the designer to design those regularities, found in the parallel
patterns.

8. Conclus ion

In this paper, we have introduced SPM model with our implementation (i.e.,
PMDL). With SPM, a parallel application developer simply chooses proper vir
tual parallel machines from the repository, and implements the parallel algorithms
directly on the the chosen virtual machines. Though our repository of virtual parallel
machine is rich, an architecture designer can easily add a new or a composite virtual
machine using PMDL by following some systematic steps. Our implementation is
platform independent, and provides modular (i.e., object-oriented) interface to the
application developer. We have found that applications deployed using SPM give
easier development experiences, and excellent execution performances, even though
the run-time library is built on top of MPI.

Currently we are investigating the issues of performance modelling and profiling

for SPM machines. Synchronous slicing, a method to extract the communication
synchronization behavior of a given application, is of particular interest. We are
working on the issues of static and dynamic optimizations and fault tolerance aspects
of applications developed using SPM. We are also in the process of developing a
graphical user interface (GUI) to make the parallel application development process

28 M. M. Akon et al.

easier. Our current research will be reported in our future works.

A c k n o w l e d g m e n t

This research has been financially supported by the Natural Sciences and Engineer
ing Research Council (NSERC) of Canada.

References

1. Sameet Agarwal, Rakesh Agrawal, Prasad M. Deshpande, Ashish Gupta, Jeffrey F.
Naughton, Raghu Ramakrishnan, and Sunita Sarawagi. On the computation of mul
tidimensional aggregates. In In 22nd Int. Conf. Very Large Databases, VLDB, pages
506-521, 1996.

2. Mohammad Mursalin Akon. A model for composible and extensible parallel architec
tural skeletons. Master's thesis, Concordia University, Canada, 2004.

3. Mohammad Mursalin Akon, Dhrubajyoti Goswami, and Hon Fung Li. A model for de
signing and implementing parallel applications using extensible architectural skeletons.
In The Eighth International Conference on Parallel Computing Technologies, pages 367-
380, Russia, 2005.

4. Christopher Alexander, Sara Ishikawa, and Murray Silverstein. A Pattern Language:
Towns, Buildings, Construction. Oxford University Press, New York, USA, 1977.

5. Alberto Bartoli, Paolo Corsini, Gianluca Dini, and Cosimo Antonio Prete. Graphical
design of distributed applications through reusable components. IEEE Parallel and
Distributed Technology, 3(l):37-50, 1995.

6. Anne Benoit, Murray Cole, J. Hillston, and S. Gilmore. Flexible skeletal programming
with eSkel. In EuroPar 2005, Lisbon, Portugal, 2005.

7. Stefan Berchtold, Daniel A. Keim, and Hans-Peter Kriegel. The X-Tree: An index struc
ture for high-dimensional data. In In 22nd International Conference on Very Large
Databases, pages 28-39, San Francisco, U.S.A., 1996. Morgan Kaufmann Publishers.

8. J. C. Browne, S. I. Hyder, J. Dongarra, K. Moore, and P. Newton. Visual programming
and debugging for parallel computing. IEEE Parallel and Distributed Technology, 3(1),
1995.

9. D. K. G. Campbell. Towards the classification of algorithmic skeletons. Technical Report
YCS 276, Department of Computer Science, University of York, 1996.

10. Fan Chan, Jiannong Cao, and Yudong Sun. High-level abstractions for message passing
parallel programming. Parallel Computing, 29:1589-1621, 2003.

11. E. F. Codd, S. B. Codd, and C. T. Smalley. Providing OLAP to user-analysts: An IT
mandate. Technical report, E. F. Codd and Associates, CA, 1993.

12. Mure Cole. Algorithmic Skeletons: Structured Management of Parallel Computation.
MIT Press, Cambridge, Massachusetts, 1989.

13. Pasqua D'Ambra, Marco Danelutto, Daniela di Serafino, and Marco Lapegna. Advanced
environments for parallel and distributed applications: a view of current status. Journal
of Parallel Computing, 28:1637-1662, December 2002.

14. J. Darlington, A. J. Field, and P. G. Harrison. Parallel programming using skeleton
functions. In Lecture Notes in Computer Science, volume 694, pages 146-160, Munich,
Germany, June 1993.

A Novel Software-Built Parallel Machines and Their Interconnections 29

15. F. Dehne, T. Eavis, S. Hambrusch, and A. Rau-Chaplin. Parallelizing the data cube.
Parallel and Distributed Databases, 15(3):219-236, May 2004.

16. Alvin M. Despain and David A. Patterson. X-Tree: A tree structured multi-processor
computer architecture. In In 5th annual symposium on Computer architecture, pages
144-151, 1978.

17. I. Foster and R. Stevens. Parallel programming with skeletons. In ICPP'90, 1990.
18. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. Addision-Wesley Publishing Company,
New York, USA, 1994.

19. D. Goswami, A. Singh, and B. R. Preiss. From design patterns to parallel architectural
skeletons. Journal of Parallel and Distributed Computing, 62(4):669-695, 2002.

20. Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar. Introduction to
Parallel Computing. Addison Wesley, 2003.

21. Ralph E. Johnson and Brian Foote. Designing reusable classes. Journal of Object-
Oriented Programming, l(2):22-35, 1988.

22. Xiaobo Li, Paul Lu, Jonathan Schaeffer, John Shillington, Pok Sze Wong, and Hanmao
Shi. On the versatility of parallel sorting by regular sampling. Parallel Computing,
19(10):1079-1103, 1993.

23. Steve MacDonald, Duane Szafron, Jonathan Schaffer, and Steven Bromling. From pat
terns to frameworks to parallel programs. Parallel Computing, 28(12):1663-1683, 2002.

24. MPI Forum. Message passing interface forum, 2007.
25. PVM. Parallel virtual machine, 2007.
26. Michael J. Quinn. Parallel computing: Theory and Practice. McGraw-Hill, Inc, New

York, NY, USA, 1993.
27. Jonathan Schaeffer, Duane Szafron, Greg Lobe, and Ian Parsons. The enterprise model

for developing distributed applications. IEEE Parallel and Distributed Technology: Sys
tems and Applications, l(3):85-96, 1993.

28. D. C. Schmidt. ACE: an object-oriented framework for developing distributed applica
tions. In In 6th USENIX C++ Technical Conference, Cambridge, Massachusetts, 1994.

29. A. Singh, J. Schaeffer, and M. Green. A template-based tool for building applications in
a multicomputer network environment. In Parallel Computing 89, pages 461-466, 1989.

30. A. Singh, J. Schaeffer, and M. Green. A template based approach to generation of
distributed application using a network of workstations. IEEE Transaction of Parallel
and Distributed Systems, 2(l):52-67, 1991.

31. Stephen Siu and Ajit Singh. Design patterns for parallel computing using a network of
processors. In 6th International Symposium on High Performance Distributed Comput
ing (HPDC '97), pages 293-304, Portland, OR, August 1997.

32. W. Richard Stevens. Advanced Programming in the UNIX(R) Environment. Addison-
Wesley Professional, Boston, MA, second edition, 2005.

33. SWIG. Simplified wrapper and interface generator, 2007.
34. Top500. Top 500 supercomputer site, 2007.
35. Marco Vanneschi. The programming model of ASSIST, an environment for parallel and

distributed portable applications. Parallel Computing, 28(12):1709-1732, 2002.
36. W. Y. Zhao, R. Chellappa, A. Rosenfeld, and P. J. Phillips. Face recognition: A literature

survey. Technical Report CAR-TR-948, University of Maryland, MD, USA, October
2000.

