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Abstract— This paper studies stability problems of a class of analysis of impulsive delay differential equations by Guan
impulsive systems with time delay whose linear parts contai [14].
unstable system matrices. By using the method of variation fo . i . .
parameters, Lyapunov functions and inequalities, severastability Stability is one of the most important issues in the study
criteria are established for both linear and nonlinear impulsive  of impulsive delay differential equations [10]-[18]. Howves,

systems with time delay. It is shown that the time delay systes most of the research results on the stability are based on
can be stabilized by impulses even if the system matrices are o assumption that the system matrix is stable. Recently,
unstable. Several numerical examples are given to illustta the . . .
results. using Lyapunov functional, Lyapunov function method and
Razumikhin technique, the stability issue has been studied
[18] for some linear time-invariant impulsive control syt
with time delay where the system matrix is unstable. Several
criteria on asymptotic stability are established, and é¢hos
|. INTRODUCTION results show that a system can be stabilized by impulses even
Impulsive dynamical systems have attracted consideralfidt contains an unstable system matrix. In this paper, we
interest in science and engineering in recent years betaege investigate the stability problems of impulsive time-viagy
provide a natural framework for mathematical modelling dinear and nonlinear delay systems which contain unstajisie s
many real world problems where the reactions undergo abrd@m matrix and/or there are time delays at impulsive moments
changes [1]-[7]. However, most research results on imyailsiby using the method of variation of parameters, Lyapunov
systems do not consider time delay in their system modefgnctions and differential inequalities. For the lineapifsive
This is mainly due to some theoretical difficulties in thedstu delay differential system, our results are more applicétide
of impulsive delay systems which have been unsolved urffiiose in [18] in the sense that we consider the equations with
recently. It is well known that time delay is inevitable in nya system matrix having eigenvalues with both positive or zero
practical problems. Hence it is important to study impudsivor negative real parts (see Example 3.1), while in [18] only
systems with time delay. Generally speaking, the study &ystem matrix having all eigenvalues with either positiealr
impulsive delay systems is more difficult than that of imjugs parts or negative real parts is studied.

systems without time delay. It is even more challenging whenThe remainder of this paper is organized as follows. In
there are delayed impulses. Section 2, we introduce notation and definitions. We develop
There are several research works appeared in the literatifulsive delay inequalities in Section 3 and then esthblis
on impulsive delay differential equations. In [8], Ballexgand  several stability criteria for linear and nonlinear impuds
Liu have proved some existence and uniqueness results §9&tems with time delay. Numerical examples are given to

general impulsive delay differential equations, and treilts jllustrate our results. Finally, conclusions are given #con
for some special classes of impulsive differential equetiog.

have been obtained in [9]-[11]. In [12], Liu and Shen have

obtained two criteria on asymptotic behavior for a class

of nonlinear impulsive neutral differential equations.irds

fundamental matrices, exponential stability has beenstive

gated for some linear impulsive delay differential equasio Il. PRELIMINARIES

by Berezansky and Idels [10] and Anokhin, Berezansky, and

Braverman [11]. Impulsive integro-differential equatoim

a Banach space have been studied by Guo and Liu [13]Let N* be the set of positive integer® the set of real
Lyapunov function method has been applied to the stabilijgmbersR, the set of nonnegative real numbers, &idthe
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following classes of functions:
PC[a,b], 8] = {4 [a,b] — S|u(t) = »(tF),Vt € [a,b);
Y(t™) exists in S, Vt € (a,b], andy(t™) = 1 (t) for all but
at most a finite number of points€ (a, b]},

PClla,),S] = {¢: [a,00) — S’Vb > a, € PC[[a,b], S]}.

Let J, = [a,0), C. = PC[[-r,0],R"], and ||¢:| =

sup ||¢(9)|| denote the norm of functiop € C,., where
t—r<6<t
r > 0 is a constant.

Consider the impulsive delay system

() = A@)x+ f(t,xe), t >to, t £ty
z(t) = I{t ,m-), t=tg, ke N (1)
T, = ¢a

wherety € Ry, z € R", A € C[J,,,R"™"], f,I €
PClJ, x Cp,R"], ¢ € Cp, and f(t,0) = I(t,0) = 0.
Assume thatr < ¢4 — tp < T = constant. Let ®(t, s)
be the fundamental matrix of the systeth = A(t)z, i.e.,

99(Ls) — A(t)d(t, s). For

®(s,s) = E (identity matrix) and—;;~

conditions on the existence and unigueness of the solufion o

system(1), see [8].
Denote with (¢, o, 2+,) the solution of syster{1) with
initial function z;,, = ¢. We define the stability of trivial
solution of systen(1) as:
Definition 2.1: The trivial solutionz = 0 of system(1) is
i) stable, if for any giverty € R, ande > 0, there exists a
0 > 0 such that||x¢, || < § implies that||z(t, to, 2, )| <
€, 1 > to;

i) asymptotically stable, if it is stable and there exists
o > 0 such that|z,, || < o implies

lim x(t,to, x¢,) = 0;
t—o0

iil) exponentially stable, if there exist > 0, & > 0 and
M > 0 such that||z, || < o implies

”‘T(tvtOv‘rto)H < Me_a(t_to)a t > to.

Then

k
t5(s)ds
Ml (to)| + Iz, liole o " TT M,
Jj=1
t € [tk,tk+1), k € {0} UN",

(@)l

wherez(t) £ x(t,to, z4,) is the solution of syster(2), 6(t) =

M| B(t +r)|| + a(t), My = M[||Dgl| + I max{|| Dy, 1}],
ST B(s) e o s,

Proof. By the method of variation of parameters, the solution

of (2) for ¢ € [to,t1) is given by

I =

x(t) = (L, to)x(to) + / O(t,s)B(s)x(s — r)ds.

to

Then, we obtain that

¢
lz@®)I < ||‘1>(t7to)||||17(to)|\+/ @, s)[[I1B(s)]l
to
x||x(s —r)||ds
t t t
< Me too‘(”)don(to)H—i-/t Me L atdn) p(s)|
0
x||z(s —r)||ds
Me ‘o a(n)d"Hw(to)H + ft‘; Me < alndn
x| B(s)|[|lz(s —r)|lds, if t € [to,to +7),
<

Me tto a(n)don(to)H + ftio-l-r Me & oln)dn
B8 s — ) ds + I, Me £ o

a
x||B(s)|[|lx(s —r)||ds, ifte€ [to+rt1).

Fort € [to,to + 1),

ta(n)d
le@)ll < Me P a(to)]| + |1, | M

+r ta
X Jy, e s ADU||B(s) | ds,

For simplicity, we call the system stable (or exponentiallghus'

stable) if its trivial solutionz = 0 is stable (or exponentially

stable).

M.
A. Linear impulsive delay systems
Consider the time-varying impulsive delay system

M AIN RESULTS

o(t) = A@t)x(t)+Bt)x(t —r), t#t
w(te) = ka(tﬂ )

where A, B € C[J;,, R"*"], Dy, € R™*", and¢ € C,.
Theorem 3.1:Assume that
i) there exist constand/ > 0 and functiona: € C[J,,, R]
such that||®(t,s)|| < Me « @@ A||B(t + r)|| +
Oé(t) >0,t¢e [tkfl,tk), ke N*;
ii)

1<e £ a(m)dn < o0, t>ty.

e o DMz @)|| < M|l (to)l| + [l llo].

Fort € [to +r,t1),

! a(n)d to+r tg
(@)l < Me to P jato) ]| + |, | M [ e < xwdn

t ta
|| B(s)llds + [y, Me < “DW|B(s)|[la(s — )|lds

< Me tto a(n)dﬁ||x(t0)” + ”ItO”MfttoJrTe :a(n)dn

0

x| B(s)llds + [ " Me S @D B(s 4 p)[||2(s)]|ds.
Multiply e~ w0 M o1 hoth sides, we obtain that

ot aimd to+r
™ w0 "Mz (b)) < Mllato)]l + e, | M [0

1B(s)l

s+r
to @

xe < amdngg 4 j;trrr Me™ (")dnHB(s + )|z (s)|ds.



Lety(t) = e~ o “||5(1)|, then
s+r

y(t) < M|la(to)]| + llaallo] + [y, " Me= < etmdn
x[|B(s +r)lly(s)ds

< M{||x(to)ll + [l llo] + [, MI[B(s +7)|ly(s)ds,
te [to “+ T,tl).

It is obvious that the inequality holds over the interftgl ¢;),

ie.,

y(t) < M(llz(to)ll + s llo] + [, MIIB(s +7)l[y(s)ds
te [to,tl).

Then, the Gronwall inequality implies
y(t) < M{||a(to)]| + |lzs|llo)e w0 MIBC+Id,
Thus, fort € [tg, t1)
lz@®)]| < M[||lz(to)|] + ||z, |llo]e £y 0(s)ds

Similarly, for t € [tx, tx+1), we obtain that

d(s)ds
()| < M|zt + |24, [Te o *P%.
Since
|zl = sup [|z(s)]
tr—r<s<tg
— max{[z(ty)], sup [a(s)]}

te—r<s<tp

= max{[| Dg[l[Jx(t; )|, sup

te—r<s<tp

ll(s)lI}

< max{|| Dy[|, M|z (tr—)ll + |1, [1s-1]

t
we tkk—l 6(s)ds

for t € [tk, tht1),

d(s)ds
()| < M| (ti)]l + 1z, | l]e o °¢

< M| Dy ||||(t ! 8(s)ds

L+ e [l]e
< M{|Dyll + b max{ || Dill, 1Y]1E(t) fle o

v §(s)ds |~
< Mye O F (1),

~ 'k §(s)ds
where|[#(t,)|| = Me =+ " la(ty )| + [l _, [lix—1)-

By induction,

- Tk s
17t < Mi—re -1 %50, ))|

IN

and hence

t k—1 tit1
5(s)ds ] 5(s)ds )~
le®ll < Mye O I Mye ()|
-

t k
5(s)ds
= M{a(t)] + 1 ole " T1 ;.
L

te [tk7tk+1)'
|

Corollary 3.1: Assume that the conditions of Theoreni
hold. Then systen{2) is

i) stable if there exists anM >

ti+1 s)ds
HMetj 5()(1

0 such that
< ]Tj < 00;

i) asymptotrcally stable, if

k
Lt 5(s)d
lim Mje ‘i (s)ds
k—oo
Jj=1

iii) exponentially stable, if there exist constants > 0 and
£ > 0 such that

k .
HMje t]?+1 5(s)ds < Me_ﬁ(tk+1_t°),
j=1

wherek € {0} UN*.

The proof is straightforward from Theorem1, and thus
omitted.

Corollary 3.2: Assume that the conditions of Theoreni
hold. Furthermore, there exist, such that|n,| < 1 and

Me s 2% <1 4y forall k e {0} UN".
Then systen(2) is
i) stable, if Y |ng| < oo;
k=1

k
ii) asymptotically stable, iflim H (1+4+mn;)=0;

iii) exponentially stable, if there eX|St ap> 0 and N € N*
such thatl 4 7, < e "(ts+1=t%) for k > N.
Proof. Fort € [tk, tx+1), we have

k
s H (1 + m])-

J+1

HMeJ

System(2) is stable since}’ |[n:| < oo implies ] (1 +
k=1 k=1
Ink|) < co. This proves).

11) follows from the fact that

i1
0 < limsup [] Mje oo
k—oo 1<j<k
k
< lim [[(1+4n;) =0;
k—o0 ;

j=1



To proveiii), let N = 1. Note that

H M et T 5(s)d < H (1 —i-?]]) < H e~ n(tj+1—t;)
1<j<k j= =1

— e Mtht1—t1) — (tl to) g=n(tr+1~to)

S e(t1 to)e n(t— tU)’ t e [tlmtk-i—l)a

which implies that systeni2) is exponentially stable. B

For the special casd(t) = A and B(t) = B, system(2)
becomes
2'(t) = Ax+ Bx(t—r), t#£t
w(tr) = Dra(ty) ®)
Tto = )
and®(t,s) = eA(*=*), Let o denote the maximum of the real

part of the eigenvalues of the matrix. Then fora > o,
there existsM > 0 such that||®(t,s)]| < Me*(t=5). It
is also noticed thal|B|| = \/Ama(BTB) and | D] =
\/ Amaz(DE Dy). By Theorem 3.1 we have the following
corollary.

Corollary 3.3: Assume that there exist constanté > 0
anda > 0 such that|®(¢, s)|| < Me**=%), My, = M[||Dy||+
r||B|| max{||Dgl||,1}], and A = M||B|| + . Then

< 8)\(25 to

(@) Mz (to)[l + 7l B [lzx] l_[1 Mj;,

t e [tk7tk+1) ke {O} UN*,

wherex(t) is any solution of systeni3).

Remark 3.1. To achieve the stability, Corollary.3 provides

some hints for the choice of parametets| B||, and || Dy||.

For instance,

(i) forgiven| BJ, delay r < 1 (small delay system) implies
that the stability of syster(8) is determined by| Dy || and
impulsive intervalty; — t;

(i) for given delayr, [|B|| < 1 (the termBx(t —r) is a
small perturbation of syste(i3)) implies that the stability
of system(3) is determined byj| D;|| and the length of
impulsive interval.

Hence, wherr||B|| < 1, we can achieve stability, asymptotic

stability and so on by adjusting the value pDy||. This
implies that the impulsive matricd3;, are essential in system
stabilization and impulsive control.

By Corollary 3.3, we obtain the following results:
Corollary 3.4: Assume that conditions of Corollarg.3
hold. Then systenﬁ3) is

i) stable, if H MeMtiv1=t) < M < 0o, k€ N¥;
i) asymptotlcally stable, if
k
lim [ MeMt+—t) =0, ke N
k—o0

j=1
iii) exponentially stable, if there exist constants M > 0
k S
such that[[ M;ert+1—t) < Me=Alleri—to) | | ¢ N*,
j=1

Corollary 3.5: Assume that the conditions of Corolla3y3
hold and there exist constargts M > 0 such that, —t,_; =
¢>rand M, < M for k € {0} UN*.

Then
) M = e~ (MIBI+)¢ implies that systent3) is stable;
i) M < e~ MIBI+2)¢ implies that systen{3) is exponen-
tially stable.
Proof. 1) is straightforward from Corollar$.3 and hence we
only proveii).
Since M), < M < e~ MIBlI+)¢  there exists & > 1 such
that M = e~ d(MIIBl+a)¢,
Thus

My <M = 6*5(1\4IIBH+04)£7 ke N*.

Then by Corollary3.3, for ¢ € [ty, tx+1) andk € {0} U N*,

k
lz@®)l < e}t M([[|z(to) ]| + 7| B f|x4]l] ,Ul M;
< ABFDE P rre—dAk+E — M*e—(é—l)kj(k-i—l)ﬁ
S M*efﬁ(t;prlfto) S M*efﬂ(tftg)’
whereA = M||B|| +«a, 8 = (6 —1)A > 0, and M* =

MT|lz(to)l| + 7| B|| ||zt || ]- Thereforeji) is true.

Corollary 3.6: Assume that the conditions of Corollay3
hold and there exist constantg, p > 0 such thatM, < M
for all k£ € {0} UN* and

n(t,t+T)
T

wheren(t,t + T) denotes the number of impulses in time
interval [t,t + T).
Then

) 7 = e 7 implies that systent3) is stable;

iy M < e v implies that systen3) is exponentially stable.
Proof. SinceTli_{r;O w = p, it follows that for anye > 0,

there existF > 0andM = M(ty) > 0, such thatt >ty + T
implies 7 t) <p+e and

lim
T—o0

=D

In M

tg,t
to<t; <t n(to,t)

<ett

H (t to) In M

to<t; <t

M;

=e
< Me(p+e)nM (t—to)
Hence,
H Mje/\(tj—tj—l) < Melpte) InM+X](t—to)
to<t; <t

Since ¢ can be chosen arbitrarily small, the last inequality
implies the results. u

Next we use an example to illustrate our result.
Example 3.1:Consider the following linear differential sys-
tem with delayed feedback control and impulsive control

1 0 T
xl(t) = [ ] T+ [ 30 {00 ] u(t - 1), t # ty,
xz(ty) = Dkl'(t];), k € N*
xto = (b?

(4)

wherex, u € R?, ty,1 —tp =1, ¢ € C1, and Dy, € R?*2,



If we choose the feedback control as

1069 _ _18
u(t) = [ 310 081 }x(t),
T 23 2162
we can rewrite the original system as
1 0 11
1000 135
t £ty
x(ty) = Dypa(ty), keN*
ItO = Qsa
(%)
Let
& k=10i+pu, i€N, p=1,2---,9
1Dkl <

e, k =10z,

7 € N*,

(6)

Using the notations in Corollar$.3, we obtain thato = 1,
M=1r=1,and|B| < 1.

My, = M[|| D[] + || Bl| max{[| Dx[[, 1}]

[ k=10itp, €N, p=1,2,---.9
= e2+3%, k=10, i € N¥,
and .
A=M|B|+a=|B|+1<— +1.

~ 4e2

Then, fork = 10¢ + p, wherei e N* andpy =1,2,--- .9,

k 10i+u
eMtrt1—t1) 1M = 11 [Mje)\(tj+1—tj)]
J=1 j=1
10 10i+u
< H[Mje)\(tj+1—tj)] I1 [Mje)\(tj+1_tj)]
=1 j=10i+1

< {lgke TP + Pettaz]) e T
< e~ 3 (tey1—t1)

Fort € [tg,tx+1), we obtain that

k
< M= M||a(to)|| + 7| Bl ]

Jj=

@) M

< Sl |l + gz i l]le2¢ 7).

The last inequality implies that systefh) is exponentially
stable.
Remark 3.2.

equation with initial functions

B 0, te[-1,0)
91t = —21,  t=0,

B 0, te[-1,0)
%2(t) = 21, t=0,

is shown in Figure 1.

10

Figure 1. System without impulses.

However, if we choosd),, such that(6) holds, for instance
Dy, = %I for k € N*, where is the identity matrix, by
Corollary 3.3, the unstable delay differential equation e
exponentially stabilized by impulses, as shown in Figure 2.

3
2k q
1F o 1

o, N —

-1k
X

-2 i

0 2 4 6 8 10 12 14 16 18 20
t

Figure 2. Impulsive system.

Notice that||Dg|| < 1 is not required for allk € N* to
achieve stability, i.e., the trajectories of systéf) are not
required to be decreasing at all impulse moments even if the
system matrix is unstable. In addition, the results in [1& a
not applicable here since the system mattiin Example 3.1
has both negative and positive eigenvalues.

In the example, the corresponding system
without impulses is unstable sinegehas a positive eigenvalue

and|| B|| is small, the numerical result of this delay diﬁerentiaﬁ Nonlinear impulsive delay system

Using similar approach, we can study the nonlinear impul-
sive delay system

Zt) = Az + f(ta(t),x(t — (), t# by
x(ty) = Dya(ty)
xto = (ba

(@)



where A € C[J,,R"*"], f € C[R x R" x C,,R"], D, € and fort € [to + r, 1),
R ke N* 0<r(t)<r, andg € C,. . .
Theorem 3.2:Assume that there exists some positive defi- V(t) < Vitg)e o wlds 4 Vo |l

nite and symmetric matri’ € R"*" such that
% to+7“ S' o(n)dn _a2(s) ds

i) there exist functionsa € C[R,R] and aj,as € Amin (P)
C[R,R,] such that\(AT(t)P + PA(t)) < a(t) and wolrrdn_az(s)
az(s
22T Pf(t,,y)] < ar(t)]z]? + ax(t)]ly]% € OISR V(s — 1)ds
i)
Boo= e Ml s g < V(to)e o " 4|V |
M = IIDkH+lkmaX~k{ﬂleH 1}, x [0+ ¢ Lao(nn o) g
61@ _ M(P) q(s)ds Amin (P)

Amin

+ jﬂttfr e :+T qo(n)d'q a2(5+7‘) V( )d
0

min P

wheregq(n) = 2taln gpqg

Xoin (P) .
Multiplying e~ t ©®)¥* on poth sides of the last inequality
1 s i
q(s) = Amin (P) (az(s+7)+als)+ai(s))e =+ M, gives
V(t)e™ %% < V(1) + Vi | 277 522l

iii) ft s)ds > 0, for t € [tg, tgs1)- e
xe ° qo(n)dnds-l-ftt "o o3, qo(n)dn%‘”))v(s)ds
0

Then Nmin (P
i) if there exists anM > 0 such that]_[f:1 M;B; <M < < V(to) + |[Va |12 + fttfrre Shr qo(")d"%
o0, k € N*, system(7) is stable;
i) if kli_}n;() H;?:leﬁj = 0, system(7) is asymptotically xe < ©MINY (g)ds.
stable;

jii) if there exist M and 3 > 0 such that]_[f:1 M;B; < Lety(t)=V(t)e 1o fp G0(s)ds , then fort € [to + 1, t;)
MePter1—t0)  system(7) is exponentially stable. .
Proof. Let V(t) = 2™ (t)Px(t), wherex(t) is the solution of y(¢) < V(t,) + ||V, ||12 +/ ¢ Sprao(man 82(s + 1) r)y(s)ds.
to

system(7). Then fort # ¢, the derivative of” along system Amin (P)
(7) is It can be seen that the last inequality holds fortad [to, ¢1),
ie.,
V'(t) =aT(AT(t)P + PA(t))x
t
s + ’f‘)
1) < V(to) + | Vi |li2 w825 g
F2TPf(,2(0), 2t — 1) O < Vi) + Vall + [ e s
<at)xTz +ar(t)||z||* + az(t)||z(t —r)||? Then, the Gronwall-Bellman inequality implies that
t oo Spra0(m)dn ag(st+r) ds
= )V + 25Vt — 7). y(t) < [V(to) + [ Vaolige o Amin(F]
" t e [to,tl).
Thus, fort € [to, 1), Therefore,
t s)ds t it s)ds V (to)+|| Vi, |12
V(t) < V(tg)e 0@ 4 [ ¢ Jaolman lz()] < e e JEIHITSlE
xa?i(S)V(s —r)ds.
A ) L a(s)ds )
< e? V2= lato)] + llz o],
Fort € [to, to +7), t € [to,t1).
' qo(s)ds Similarly, we have
V(t) <Vltoe o + Vil

3 ¢ 4()ds  [Anas (P
x [ e s ao(mdn az(—s()P)'d @) <e* u* Ammgpg

Amin

t oo (s)ds X[zl + e llk], t € [ty trgr)-
< V(to)e 0% 1 |1v, || ‘

Furthermore,
to+r ¢ dn _a2(s) ~
X oo e o 0 22 ds, ()| < | DelllIZ (),

min



and 5(t) > 0, t € [ta1,tr), and1l < e @mdn < o5 for
t > to.
= S t = 1o
|4, tkirggtk llz(®)]] Then system(8) is

i) stable, if there exists an/ < oo such that

= max{fle(ty)], sup_ ()} Kk . -
b —rSE<ty H Mje to 3(s)ds <M, keN*
_ j=1
< max{||[ De[lllz(@ ), sup  [la(®)]} ) ! .
te—r<t<ty i) asymptotically stable, if
k
< max{|| D[], 1}H[Z(5) Jim [T Mje w®®% _ 0 | e N
where =1

~ iii) exponentially stable, if there exist/*, 5 > 0 such that
12l = llea-)ll + @, k1] Bk

k
Then H Mje to 5(s)ds < M*ePlten—to) e N*.

2@ = Uzl + [z 1 k-1]0k— =

wherel,, = tt:JrT HB(S)HS_ tsk a(n)dﬂds and

< Dkl 4 Ty max{[| Dy [|, 1} [|2(Ex 1) | B2

My = M[IDs| + |[Bylle o "%

~ tp—r1
= My || (tr—1)[| Br—1 L max{ | De|| + || Exfle % *© 1],
< My— 181 My—2Br—2||Z(tr—2)|| Proof. Based on the proof of Theoreml,tvz(e ):ave

Kot lz@Il < Mzt + [l e ",
<. < M; Bz (t1)|-
<o < jl;[l iBillz ()l € e tian), k€ {0} UNY,

Thus, fort € [tg, tit1), Furthermore,

lz@)ll - < D&l + | Belll(ty =)l
Amaz 1 tt s)ds
()| < /3 ot | + [l e o

Amin

~ ~ k7T §5(5)ds
IDul|Z ()| + || Bl () e v °

IN

tr

min T §(s)ds |~
1Dkl + || Bxlle & PO |7 (¢,

k=1 _ 1t o
< >\7nazgl€§Mk I MjﬁijC(tl)H62 ¢, 4(s)d
j=1

& where
<||z(t < M B: ||z (t . ~ ko §(s)ds
< Z(tran)l| < jl;[l 8112 (t) || 1Zt)] = M[||@(te—1)|| + |z, [ le_1]e *1 (s)d 7
This inequality implies the results of Theoresr. m and
Remark 3.3. In Theorems3.1 and 3.2, a(t) > 0 is not [z, [ = , Sw l|lz(®)]]
k—TSUSTk

required, which means it may be negative for soméind
for some special case such gs— t;_1 = n with £k € N*

. . . ! = t t
additional useful and simple results similar to Corollares max [z, tk_srlgt)qk ol
and 3.6 can be obtained.

tlp—71 Vs~
max{[||Dy|| + | Exlle = "))z (5)]),

IN

C. System with delayed impulses , Slilﬂt’ , lz(®)]}
k=T St<ty
Consider the following linear impulsive system with deldye

impulses T §(s)ds ~
'mpu < max{||Dyl| + | Exlle = O 1}t
P(t) = Alt)e+ Bt —r), t#£ b Thus,
x(ty) = Dra(ty)+ Exa(t, —ri) (8) ¢ 5(s)ds
w, = o le(®)] < Mle(t)ll + bl e
where A, B € C|J;,,R"*"]|, Dy, E, € R™*", k € N*, ¢ € YL s (s)ds 5(s)ds

< M{||Dkll + || Exle + L[zt [le

Cp with 7* = max{r,r1}, and0 < rr < t — tp—1 <
sup{tx — tx—1} = constant < oo. Denote with®(¢, o) the BT g (s)ds
fundamental matrix of system’ = A(t)zx. x max{|| Dkl + || Ex[le * , 1}

Theorem 3.3:Assume that there exist constaht > 0 and ,
function o € C[J;,,R] such that||®(t,s)|| < Me < @mdn, = M| E(t0)lle = ° D% t € [ty turr), k € {0} UN.



Since For impulsive system with nonlinear impulses with time
N e delay, the system becomes
Il = M)l + o Jile S0 = AW+ S, (£
e x(ty) = Dpa(ty)+g(z(ty), xt;) 9)
< M[[[ Dyl + [| Ex—alle -2 Iz (k1) Ty = ¢
17T sy wherez; € C,, f € C[RxR"xC,.,R"], g € CIR"xC,,,R"],
+lp—1 max{|| Dx—1|| + || Ex—1]je *-1 , 1} ¢ € Crx With r* = max{r,r;}, and0 < r,ry <ty —tg_1 <
sup{tp — tp—1} < oo for k € N*,
~ 'k 5(s)ds .
|| (tp_1)][le -1 (s) Theorem 3.4:Assume that

i) there exist functionsr € C[Jy,,R], a1,a2 € C[R,R,], and
constantdy, bi2 € Ry such that

AAT () + A() < oft),

fk—17T1 d(s)ds
— M[|D1|l + | Bprlle -1 2

:kilirl 6(s)ds
+lk—1 max{|| D1 + [ Ex—1]le =2 , 1}] 22T f(t, 2, y)| < ar(t)||2]|? + az()]|y]|?,
'k s)ds .
x||F(te1)le tr-r O lg(@, I < brallz]| + brzllyll;
ii)
_ ~ ok 8(s)ds ¢
= Mpi—1|2(tr-1)le ; I a1(s)ds >0, t€ [tr,try),
we ha.Ve ﬁk _ e% ::+1 q1(s)ds
~ b §(s)ds ’
le(®) = MllE(t)le bt
t 5(s)ds ft:+r € Sk(a(n)Jral(n))dna?(S)dS = ll%v
< MM ||Z(te-1)lle "
M, = HDk” + br1 + b + Ik maX{”Dk” + br1 + bia, 1},
k
= [ 8(s)ds where
< < T MlEH) e
a q1(s) = (az(s +7) + a(s) + ai(s))e =@V Far()dn,
¢ k Then
6(s)ds
< Mla(to)] + i lole " IT M -
1= ~ . s)ds
le@ll < M [T MisslIE(E) e o "™,
te [tkatk-‘rl)a kE{O}UN*. Jj=1
. T where z(t) is the solution of system9) and ||z(t1)|| =
This inequality implies the results of Theorehs. [ ] (o) + [|4c llo] o
Remark 3.4 Proof. Based on the proof of Theore®® with P = I, where
o o I is the identity matrix, we have
o Theorem3.3 (also Theorems.1 or 3.2) indicates that L e
even if the system matrixl may be unstable, providing @) < [zl + ||lze, |k]e> o2,
|IB]| is not large, we can choose appropriate impulse t € [ty thr1)-
matricesDy, Ej to stabilize the original system. Furthermore,

« The result of Theoren3.3 is a little stricter than that of _ _
Theorem3.1. This is because there exists time delay at el < 1D [l ()N + bi |2 ()N + b“th; I
impulsive moments in systeii3). Notice that time delay = (1Dl + br1 + br2)[|[Z(tx)]
sometimes plays a very important role in system analysighere
For example, if a solution of an ODE ’jumps’ 10 at ~
time ¢, then the solution will b® after¢, providing the 2@ = llz el + e [k-1]Bk-1,
system has only one solution passing through every poiahd

But for delay system, jumping t0 at one point does not |z = sup |lz(t)]]

effect the solution as much as ODE does since the delay tr—r<t<ty

determines the change of the system at a neighborhood

of that point. Therefore, the investigation of delay system = max{||z(tz)]], S [z}
kTS k

is much more difficult than that of the system without
delay. Similarly, if time delay is included in the impulsive ~

. ) . < D b b t t
moment, it may dominate the value of the solution at the — max{([|Del + b + br2) [ 2t )], tkquk @)1}
point. That is why the result of Theoref3 is a little
more restrictive than that of Theoresnl. < max{|| Dg|| + bk1 + br2, 1}|Z(tr)]-



Then, f(t,x,z) andg(x(ty ),z ) satisfy

z(t = th_ I _ 1 1
o= et e e 22T (Of (b .20 < (5 + [sint) 2@ + Zllat = I,
S IDk—1ll + be—1)1 + br—1)2 + lx—1 B B i
lg(@(ty), ) < bralle @O + brallz(t — ),
x max{||Dr_1]| + br—1)1 + b(k—1)2, L} |Z(tr—1)|| Br—1 whereby; + brs < 0.7.

- Using the notations of Theoref4, we obtain that
= Mp_1||T(te—1)||Br—1

alt) = 1—|sint| a1(t) = & + |sint|, az(t) = 3,
< My—1Br—1 Mi—2Bk—2[|Z(te—2)| B = e ull@®ds _q 5060
- 12 = t’““ 'k (a(n)+a1(n))dna2( )ds,
<< I M) =(U““SwVw%M
=1 M, = HDk||+bk1 + bro + Uy max{|| Dgl|| + br1 + bre, 1}
Thusy fort c [tkv tk+1), = 01 + bkl + ka + 02939
1t s)ds Thus M, = (br1 + bra + 0.3939)1.5962.
()| < [l + e, ke o™ o = ut + bua ’

By Corollary 3.8, we make the following conclusions
< Mkl\f?(tk)l\e% i, a1(s)ds < . o b1 + b2 < 0.2326 implies that systen{10) is stable;
o bp1 + bz < 0.2326 — ¢ implies that system(10) is
k=1 _ 1t g (s)ds asymptotically stable;
< My, 1:[1 M;B;]|z(ta)] e : o bi1 + b2 < 7 < 0.2326 implies that systen(10) is
= exponentially stable.

® 710 illustrate our conclusions numerically, we choose the
Corollary 3.7: Assume that the conditions of Theorédr  functions as

hold. Then, . _ 0.5(sin(t)a1 () + z2(t — 0.2))
i) if there exists ani/ > 0 such that[[;_, M;3; < M < [t o 2) = 0.5(sin(t)za(t) + 21 (£ — 0.2)) :
oo, k € N*, system(9) is stable;
. . k % .
ii) klin;o | Mjﬁj =0, k € N* implies that systent9) ) 0. 05\/|$1 tk " 09)
Is asymptotically stable; g(z(ty,), z(ty-)) = ,
i) if there exist constantsM, (G > 0 such that 0. 05\/|a:2 —0.2)]

[T°, M;3; < Me-Plen—t, | e N7, system(9) is

exponentially stable S0 by, = bi, = 0.05, and the initial functions are given by

Similar to Corollary3.2, we obtain the following result: 0, t €[-0.2,0)
Corollary 3.8: Assume that the conditions of Theor&n o) = —0.05, t=0,
hold, tx+1 — tx = n < oo and there exisyy, with |n;| < 1 0, t€[-0.2,0)
such thatM B, < 1+mnx for all k € {0} UN*. Then, $2(t) = 0.1, t=0,

60

i) > |mk] < oo implies system(9) is stable;
k=1

ii) ]O_O[ (1 4+ n,) = 0 implies system(9) is asymptotically 40

gfzalble;
i) if there existy > 0 and N > 0 such that wherk > N,
14, < e 7teri=te) system(9) is exponentially stable.
Example 3.2:Consider the nonlinear impulsive delay sys-
tem with time delay at impulsive moments X oo

, Iosint] (14 w0
() = 2 1—|sint| 4+ f(t,z, @), tFt
O.lt f
-60
w(tr) = glalty) o, ), ke N »
Ito = ¢5
(10) e ‘ ‘ ‘ ‘ ‘ ‘ ‘
wherer = (:Z?l,:ZZQ)T c RQ, T, (b c Or, f c C[R X RQ X 0 5 10 15 . 20 25 30 35

C,R?, g € C[R? x C,,R?], r = 0.2, t}), — tj_1 = 0.5,
and D, = 0.11, where[ is the identity matrix. Assume that Figure 3. System without impulses.
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Figure 3 shows that the corresponding system without im6] V. Lakshmikantham and X. Liu, "On quasi stability for inlsive

pulses is unstable. but it can be exponentially stabilizged p differential systems Nonlinear Anal. Theory, Methods, and Application,
' vol. 13, pp. 819-828, Jul. 1989.

ImpUIseS’ as shown in Flgure 4. [7] T. Yang, "Impulsive control theory, Lecture Notes in Gumi and
012 ‘ ‘ ‘ . ‘ : Information Sciences,” Springer-Verlag, Berlin, 2000.
L [8] G.Ballinger and X. Liu, "Existence and uniqueness resfdr impulsive
4 3] delay differential equationsPynam. Contin. Discrete Impuls. Systems

Ty vol. 5, pp. 579-591, 1999.

| [9] S. V. Krishna and A. V. Anokhin, "Delay differential symnhs with
discontinuous initial data and existence and uniquenessréms for
systems with impulse and delay]! Appl. Math. Stochastic Analvol.
7, pp. 49-67, 1994,

[10] L. Berezansky and L. Idels, "Exponential stability obrse scalar
impulsive delay differential equationCommun. Appl. Analvol. 2, pp.

; 301-309, 1998.
L ’ [11] A. Anokhin, L. Berezansky, and E. Braverman, "Exporignstability
j/i' of linear delay impulsive differential equations]” Math. Anal. Appl.
_ vol. 193, pp. 923-941, Aug. 1995.
[12] X. Liu and J. Shen, "Asymptotic behavior of solutions iofipulsive

00sr

0.08)

|
|
|
I
|
I
|
|
1
'
004y

ol

-0.02 ) neutral differential equations,Appl. Math. Lett. vol. 12, pp. 51-58,
1999.
-0.04} 1 [13] D. Guo and X. Liu, "First order impulsive integro-difiential equations
on unbounded domain in a Banach spad@ynam. Contin. Discrete
-0 oso : > s : : s 5 ; 5 m Impuls. Systems/ol. 2, pp. 381-394, 1996.
t [14] Z. Guan, "Decentralized stabilization for impulsivarde scale systems

with delays,”Dynam. Contin. Discrete Impuls. Systemal. 6, pp. 367-
379, 1999.

[15] J. Shen, Z. Luo, and X. Liu, "Impulsive stabilization ddinctional
differential equations via Liapunov functionals]. Math. Anal. Appl.
vol. 240, pp. 1-15, Dec. 1999.

[16] J. Shen and J. Yan, "Razumikhim type stability theordorsimpulsive

V. CONCLUSIONS functional differential equationsNonlinear Anal, vol. 33, pp. 519-531,

. . - . . Sep. 1998.
We have investigated the stability issues of both line@f7; x Liu and G. Ballinger, "Uniform Asymptotic Stabilitof Impulsive

and nonlinear impulsive delay systems which include ustab  Delay Differential Equations,Computers and Mathematics with Appli-
i i i i cations vol. 41, pp. 903-915, 2001.

Sy.Ste.m matrix qqd/or time delay aj[ Impms.l\./e moments. Sorﬂ.%] X. Liu, "Stability of impulsive control systems withrtie delay,”Math.

criteria on stability and exponential stability have bedn o Computer Modellingvol. 39, pp. 511-519, Feb. 2004.

tained. Our results show that the impulsive delay systerh wit

unstable matrix can be stabilized by adjusting impulsieea

under certain conditions. Although only single delay hasrbe

C(.)?]Slde:?dlmc}hf paple h tt]he l‘:‘jtubdy can k.)e e>(<jterr]1dedhto the cl:as(sing Wang received the M.Sc. degree in Mathematics from
with multiple delays. It shou e mentioned that the resu unan Normal University, Changsha, China, in 1999, and th®P

presented in this paper are not applicable to systems W'th(aggree in Applied Mathematics from the University of Waterl

impulses since the corresponding equations without inﬂ"F'M%Naterloo, Canada in 2007. Her research interests inclualilisy
discussed in this paper are unstable.

theory, boundedness theory, impulsive control, impulsiystems,
neural networks, and population growth models.

Figure 4. Impulsive system.
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