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Stability Criteria for Impulsive Systems with Time
Delay and Unstable System Matrices

Xinzhi Liu, Xuemin (Sherman) Shen, Yi Zhang, and Qing Wang

Abstract— This paper studies stability problems of a class of
impulsive systems with time delay whose linear parts contain
unstable system matrices. By using the method of variation of
parameters, Lyapunov functions and inequalities, severalstability
criteria are established for both linear and nonlinear impulsive
systems with time delay. It is shown that the time delay systems
can be stabilized by impulses even if the system matrices are
unstable. Several numerical examples are given to illustrate the
results.

Index Terms— Impulsive delay differential system, time delay,
stability, impulsive stabilization.

I. I NTRODUCTION

Impulsive dynamical systems have attracted considerable
interest in science and engineering in recent years becausethey
provide a natural framework for mathematical modelling of
many real world problems where the reactions undergo abrupt
changes [1]-[7]. However, most research results on impulsive
systems do not consider time delay in their system models.
This is mainly due to some theoretical difficulties in the study
of impulsive delay systems which have been unsolved until
recently. It is well known that time delay is inevitable in many
practical problems. Hence it is important to study impulsive
systems with time delay. Generally speaking, the study of
impulsive delay systems is more difficult than that of impulsive
systems without time delay. It is even more challenging when
there are delayed impulses.

There are several research works appeared in the literature
on impulsive delay differential equations. In [8], Ballinger and
Liu have proved some existence and uniqueness results for
general impulsive delay differential equations, and the results
for some special classes of impulsive differential equations
have been obtained in [9]-[11]. In [12], Liu and Shen have
obtained two criteria on asymptotic behavior for a class
of nonlinear impulsive neutral differential equations. Using
fundamental matrices, exponential stability has been investi-
gated for some linear impulsive delay differential equations
by Berezansky and Idels [10] and Anokhin, Berezansky, and
Braverman [11]. Impulsive integro-differential equations in
a Banach space have been studied by Guo and Liu [13].
Lyapunov function method has been applied to the stability
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analysis of impulsive delay differential equations by Guan
[14].

Stability is one of the most important issues in the study
of impulsive delay differential equations [10]–[18]. However,
most of the research results on the stability are based on
the assumption that the system matrix is stable. Recently,
using Lyapunov functional, Lyapunov function method and
Razumikhin technique, the stability issue has been studiedin
[18] for some linear time-invariant impulsive control system
with time delay where the system matrix is unstable. Several
criteria on asymptotic stability are established, and those
results show that a system can be stabilized by impulses even
if it contains an unstable system matrix. In this paper, we
investigate the stability problems of impulsive time-varying
linear and nonlinear delay systems which contain unstable sys-
tem matrix and/or there are time delays at impulsive moments
by using the method of variation of parameters, Lyapunov
functions and differential inequalities. For the linear impulsive
delay differential system, our results are more applicablethan
those in [18] in the sense that we consider the equations with
system matrix having eigenvalues with both positive or zero
or negative real parts (see Example 3.1), while in [18] only
system matrix having all eigenvalues with either positive real
parts or negative real parts is studied.

The remainder of this paper is organized as follows. In
Section 2, we introduce notation and definitions. We develop
impulsive delay inequalities in Section 3 and then establish
several stability criteria for linear and nonlinear impulsive
systems with time delay. Numerical examples are given to
illustrate our results. Finally, conclusions are given in Section
4.

II. PRELIMINARIES

Let N
∗ be the set of positive integers,R the set of real

numbers,R+ the set of nonnegative real numbers, andR
n the

space ofn-dimensional column vectorsx = col(x1, · · · , xn)
with the Euclidean norm‖ · ‖. For any matrixA ∈ R

n×n,
let λ(A) denote the eigenvalue ofA, AT the transpose
of A, λmax(A) (or λmin(A)) the maximum (or minimum)
eigenvalue ofA, ‖A‖ = {λmax(ATA)}

1
2 the norm ofA

induced by the Euclidean vector norm.

For a, b ∈ R with a < b and forS ⊆ R
n, we define the
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following classes of functions:

PC[[a, b], S] =
{
ψ : [a, b] → S

∣∣ψ(t) = ψ(t+), ∀t ∈ [a, b);

ψ(t−) exists in S, ∀t ∈ (a, b], andψ(t−) = ψ(t) for all but

at most a finite number of pointst ∈ (a, b]
}
,

PC[[a,∞), S] =
{
ψ : [a,∞) → S

∣∣∀b > a, ψ ∈ PC[[a, b], S]
}
.

Let Ja = [a,∞), Cr = PC[[−r, 0],Rn], and ‖φt‖ =
sup

t−r≤θ≤t

‖φ(θ)‖ denote the norm of functionφ ∈ Cr, where

r > 0 is a constant.

Consider the impulsive delay system




x′(t) = A(t)x+ f(t, xt), t ≥ t0, t 6= tk
x(t) = I(t−, xt−), t = tk, k ∈ N

∗

xt0 = φ,

(1)

where t0 ∈ R+, x ∈ R
n, A ∈ C[Jt0 ,R

n×n], f, I ∈
PC[Jt0 × Cr,R

n], φ ∈ Cr , and f(t, 0) = I(t, 0) = 0.
Assume thatr ≤ tk+1 − tk ≤ r = constant. Let Φ(t, s)
be the fundamental matrix of the systemx′ = A(t)x, i.e.,
Φ(s, s) = E (identity matrix) and∂Φ(t,s)

∂t
= A(t)Φ(t, s). For

conditions on the existence and uniqueness of the solution of
system(1), see [8].

Denote withx(t, t0, xt0) the solution of system(1) with
initial function xt0 = φ. We define the stability of trivial
solution of system(1) as:

Definition 2.1: The trivial solutionx = 0 of system(1) is

i) stable, if for any givent0 ∈ R+ andǫ > 0, there exists a
δ > 0 such that‖xt0‖ < δ implies that‖x(t, t0, xt0)‖ ≤
ǫ, t ≥ t0;

ii) asymptotically stable, if it is stable and there exists a
σ > 0 such that‖xt0‖ < σ implies

lim
t→∞

x(t, t0, xt0) = 0;

iii) exponentially stable, if there existσ > 0, α > 0 and
M > 0 such that‖xt0‖ < σ implies

‖x(t, t0, xt0)‖ ≤Me−α(t−t0), t ≥ t0.

For simplicity, we call the system stable (or exponentially
stable) if its trivial solutionx = 0 is stable (or exponentially
stable).

III. M AIN RESULTS

A. Linear impulsive delay systems

Consider the time-varying impulsive delay system




x′(t) = A(t)x(t) +B(t)x(t − r), t 6= tk
x(tk) = Dkx(t

−
k )

xt0 = φ,

(2)

whereA,B ∈ C[Jt0 ,R
n×n], Dk ∈ R

n×n, andφ ∈ Cr.
Theorem 3.1:Assume that

i) there exist constantM > 0 and functionα ∈ C[Jt0 ,R]
such that‖Φ(t, s)‖ ≤ Me

t

s
α(η)dη, M‖B(t + r)‖ +

α(t) ≥ 0, t ∈ [tk−1, tk), k ∈ N
∗;

ii)
1 ≤ e

t+r

t
α(η)dη <∞, t ≥ t0.

Then

‖x(t)‖ ≤ M [‖x(t0)‖ + ‖xt0‖l0]e
t

t0
δ(s)ds

k∏

j=1

Mj ,

t ∈ [tk, tk+1), k ∈ {0} ∪ N
∗,

wherex(t) , x(t, t0, xt0) is the solution of system(2), δ(t) =
M‖B(t + r)‖ + α(t), Mk = M [‖Dk‖ + lk max{‖Dk‖, 1}],
lk =

∫ tk+r

tk
‖B(s)‖e

− s

tk
α(η)dη

ds.

Proof. By the method of variation of parameters, the solution
of (2) for t ∈ [t0, t1) is given by

x(t) = Φ(t, t0)x(t0) +

∫ t

t0

Φ(t, s)B(s)x(s − r)ds.

Then, we obtain that

‖x(t)‖ ≤ ‖Φ(t, t0)‖‖x(t0)‖ +

∫ t

t0

‖Φ(t, s)‖‖B(s)‖

×‖x(s− r)‖ds

≤ Me
t

t0
α(η)dη

‖x(t0)‖ +

∫ t

t0

Me
t

s
α(η)dη‖B(s)‖

×‖x(s− r)‖ds

≤





Me
t

t0
α(η)dη

‖x(t0)‖ +
∫ t

t0
Me

t

s
α(η)dη

×‖B(s)‖‖x(s− r)‖ds, if t ∈ [t0, t0 + r),

Me
t

t0
α(η)dη

‖x(t0)‖ +
∫ t0+r

t0
Me

t

s
α(η)dη

×‖B(s)‖‖x(s− r)‖ds+
∫ t

t0+r
Me

t

s
α(η)dη

×‖B(s)‖‖x(s− r)‖ds, if t ∈ [t0 + r, t1).

For t ∈ [t0, t0 + r),

‖x(t)‖ ≤Me
t

t0
α(η)dη

‖x(t0)‖ + ‖xt0‖M

×
∫ t0+r

t0
e

t

s
α(η)dη‖B(s)‖ds,

thus,

e
− t

t0
α(η)dη

‖x(t)‖ ≤M [‖x(t0)‖ + ‖xt0‖l0].

For t ∈ [t0 + r, t1),

‖x(t)‖ ≤Me
t

t0
α(η)dη

‖x(t0)‖ + ‖xt0‖M
∫ t0+r

t0
e

t

s
α(η)dη

×‖B(s)‖ds+
∫ t

t0+r
Me

t

s
α(η)dη‖B(s)‖‖x(s− r)‖ds

≤Me
t

t0
α(η)dη

‖x(t0)‖ + ‖xt0‖M
∫ t0+r

t0
e

t

s
α(η)dη

×‖B(s)‖ds+
∫ t−r

t0
Me

t

s+r
α(η)dη‖B(s+ r)‖‖x(s)‖ds.

Multiply e
− t

t0
α(η)dη on both sides, we obtain that

e
− t

t0
α(η)dη

‖x(t)‖ ≤M‖x(t0)‖ + ‖xt0‖M
∫ t0+r

t0
‖B(s)‖

×e
t0
s

α(η)dηds+
∫ t−r

t0
Me

− s+r

t0
α(η)dη

‖B(s+ r)‖‖x(s)‖ds.
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Let y(t) = e
− t

t0
α(η)dη

‖x(t)‖, then

y(t) ≤M [‖x(t0)‖ + ‖xt0‖l0] +
∫ t−r

t0
Me−

s+r

s
α(η)dη

×‖B(s+ r)‖y(s)ds

≤M [‖x(t0)‖ + ‖xt0‖l0] +
∫ t

t0
M‖B(s+ r)‖y(s)ds,

t ∈ [t0 + r, t1).

It is obvious that the inequality holds over the interval[t0, t1),
i.e.,

y(t) ≤M [‖x(t0)‖ + ‖xt0‖l0] +
∫ t

t0
M‖B(s+ r)‖y(s)ds,

t ∈ [t0, t1).

Then, the Gronwall inequality implies

y(t) ≤M [‖x(t0)‖ + ‖xt0‖l0]e
t

t0
M‖B(s+r)‖ds

.

Thus, fort ∈ [t0, t1)

‖x(t)‖ ≤M [‖x(t0)‖ + ‖xt0‖l0]e
t

t0
δ(s)ds

.

Similarly, for t ∈ [tk, tk+1), we obtain that

‖x(t)‖ ≤M [‖x(tk)‖ + ‖xtk
‖lk]e

t

tk
δ(s)ds

.

Since

‖xtk
‖ = sup

tk−r≤s≤tk

‖x(s)‖

= max{‖x(tk)‖, sup
tk−r≤s<tk

‖x(s)‖}

= max{‖Dk‖‖x(t
−
k )‖, sup

tk−r≤s<tk

‖x(s)‖}

≤ max{‖Dk‖, 1}M [‖x(tk−1)‖ + ‖xtk−1
‖lk−1]

×e
tk
tk−1

δ(s)ds
,

for t ∈ [tk, tk+1),

‖x(t)‖ ≤M [‖x(tk)‖ + ‖xtk
‖lk]e

t

tk
δ(s)ds

≤M [‖Dk‖‖x(t
−
k )‖ + ‖xtk

‖lk]e
t

tk
δ(s)ds

≤M [‖Dk‖ + lk max{‖Dk‖, 1}]‖x̃(tk)‖e
t

tk
δ(s)ds

≤Mke
t

tk
δ(s)ds

‖x̃(tk)‖,

where‖x̃(tk)‖ = Me
tk
tk−1

δ(s)ds
[‖x(tk−1)‖ + ‖xtk−1

‖lk−1].

By induction,

‖x̃(tk)‖ ≤Mk−1e
tk
tk−1

δ(s)ds
‖x̃(tk−1)‖

≤ · · ·

≤
k−1∏
j=1

Mje
tj+1
tj

δ(s)ds
‖x̃(t1)‖,

and hence

‖x(t)‖ ≤Mke
t

tk
δ(s)ds

k−1∏
j=1

Mje
tj+1
tj

δ(s)ds
‖x̃(t1)‖

= M [‖x(t0)‖ + ‖xt0‖l0]e
t

t0
δ(s)ds

k∏
j=1

Mj ,

t ∈ [tk, tk+1).

Corollary 3.1: Assume that the conditions of Theorem3.1
hold. Then system(2) is

i) stable, if there exists anM̃ > 0 such that
k∏

j=1

Mje
tj+1
tj

δ(s)ds
≤ M̃ <∞;

ii) asymptotically stable, if

lim
k→∞

k∏

j=1

Mje
tj+1
tj

δ(s)ds
= 0;

iii) exponentially stable, if there exist constants̃M > 0 and
β > 0 such that

k∏

j=1

Mje
tj+1
tj

δ(s)ds
≤ M̃e−β(tk+1−t0),

wherek ∈ {0} ∪ N
∗.

The proof is straightforward from Theorem3.1, and thus
omitted.

Corollary 3.2: Assume that the conditions of Theorem3.1
hold. Furthermore, there existηk such that|ηk| ≤ 1 and

Mje
tj+1
tj

δ(s)ds
≤ 1 + ηk for all k ∈ {0} ∪ N

∗.

Then system(2) is

i) stable, if
∞∑

k=1

|ηk| <∞;

ii) asymptotically stable, if lim
k→∞

k∏
j=1

(1 + ηj) = 0;

iii) exponentially stable, if there exist anη > 0 andN ∈ N
∗

such that1 + ηk ≤ e−η(tk+1−tk) for k ≥ N .
Proof. For t ∈ [tk, tk+1), we have

∏

1≤j≤k

Mje
tj+1
tj

δ(s)ds
≤

k∏

j=1

(1 + |ηj |).

System(2) is stable since
∞∑

k=1

|ηk| < ∞ implies
∞∏

k=1

(1 +

|ηk|) <∞. This provesi).

ii) follows from the fact that

0 ≤ lim sup
k→∞

∏
1≤j≤k

Mje
tj+1
tj

δ(s)ds

≤ lim
k→∞

k∏
j=1

(1 + ηj) = 0;
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To proveiii), let N = 1. Note that

∏
1≤j≤k

Mje
tj+1
tj

δ(s)ds
≤

k∏
j=1

(1 + ηj) ≤
k∏

j=1

e−η(tj+1−tj)

= e−η(tk+1−t1) = e(t1−t0)e−η(tk+1−t0)

≤ e(t1−t0)e−η(t−t0), t ∈ [tk, tk+1),

which implies that system(2) is exponentially stable.

For the special caseA(t) = A andB(t) = B, system(2)
becomes





x′(t) = Ax+Bx(t− r), t 6= tk
x(tk) = Dkx(t

−
k )

xt0 = φ,

(3)

andΦ(t, s) = eA(t−s). Let σ denote the maximum of the real
part of the eigenvalues of the matrixA. Then for α > σ,
there existsM > 0 such that‖Φ(t, s)‖ ≤ Meα(t−s). It
is also noticed that‖B‖ =

√
λmax(BTB) and ‖Dk‖ =√

λmax(DT
k Dk). By Theorem 3.1 we have the following

corollary.
Corollary 3.3: Assume that there exist constantsM > 0

andα ≥ 0 such that‖Φ(t, s)‖ ≤Meα(t−s),Mk = M [‖Dk‖+
r‖B‖max{‖Dk‖, 1}], andλ = M‖B‖ + α. Then

‖x(t)‖ ≤ eλ(t−t0)M [ ‖x(t0)‖ + r‖B‖ ‖xt0‖ ]
k∏

j=1

Mj,

t ∈ [tk, tk+1), k ∈ {0} ∪ N
∗,

wherex(t) is any solution of system(3).
Remark 3.1. To achieve the stability, Corollary3.3 provides
some hints for the choice of parametersr, ‖B‖, and ‖Dk‖.
For instance,

(i) for given‖B‖, delay r ≪ 1 (small delay system) implies
that the stability of system(3) is determined by‖Dk‖ and
impulsive intervaltk+1 − tk;

(ii) for given delay r, ‖B‖ ≪ 1 (the termBx(t − r) is a
small perturbation of system(3)) implies that the stability
of system(3) is determined by‖Dk‖ and the length of
impulsive interval.

Hence, whenr‖B‖ ≪ 1, we can achieve stability, asymptotic
stability and so on by adjusting the value of‖Dk‖. This
implies that the impulsive matricesDk are essential in system
stabilization and impulsive control.

By Corollary 3.3, we obtain the following results:
Corollary 3.4: Assume that conditions of Corollary3.3

hold. Then system(3) is

i) stable, if
k∏

j=1

Mje
λ(tj+1−tj) ≤ M̃ <∞, k ∈ N

∗;

ii) asymptotically stable, if

lim
k→∞

k∏

j=1

Mje
λ(tj+1−tj) = 0, k ∈ N

∗;

iii) exponentially stable, if there exist constantsβ, M > 0

such that
k∏

j=1

Mje
λ(tj+1−tj) ≤Me−β(tk+1−t0), k ∈ N

∗.

Corollary 3.5: Assume that the conditions of Corollary3.3
hold and there exist constantsξ, M > 0 such thattk−tk−1 =
ξ ≥ r andMk ≤M for k ∈ {0} ∪ N

∗.
Then

i) M = e−(M‖B‖+α)ξ implies that system(3) is stable;
ii) M < e−(M‖B‖+α)ξ implies that system(3) is exponen-

tially stable.
Proof. i) is straightforward from Corollary3.3 and hence we
only proveii).
SinceMk ≤ M < e−(M‖B‖+α)ξ, there exists aδ > 1 such
thatM = e−δ(M‖B‖+α)ξ.
Thus

Mk ≤M = e−δ(M‖B‖+α)ξ, k ∈ N
∗.

Then by Corollary3.3, for t ∈ [tk, tk+1) andk ∈ {0} ∪ N
∗,

‖x(t)‖ ≤ eλ(tk+1−t0)M [ ‖x(t0)‖ + r‖B‖ ‖xt0‖ ]
k∏

j=1

Mj

≤ eλ(k+1)ξM∗e−δλ(k+1)ξ = M∗e−(δ−1)λ(k+1)ξ

≤ M∗e−β(tk+1−t0) ≤M∗e−β(t−t0),

where λ = M‖B‖ + α, β = (δ − 1)λ > 0, and M∗ =
M [ ‖x(t0)‖ + r‖B‖ ‖xt0‖ ]. Therefore,ii) is true.

Corollary 3.6: Assume that the conditions of Corollary3.3
hold and there exist constantsM, p > 0 such thatMk ≤ M

for all k ∈ {0} ∪ N
∗ and

lim
T→∞

η(t, t+ T )

T
= p,

where η(t, t + T ) denotes the number of impulses in time
interval [t, t+ T ).
Then

i) M = e−
λ
p implies that system(3) is stable;

ii) M < e−
λ
p implies that system(3) is exponentially stable.

Proof. Since lim
T→∞

η(t,t+T )
T

= p, it follows that for anyǫ > 0,

there existT > 0 andM̃ = M̃(t0) > 0, such thatt ≥ t0 + T

implies η(t0,t)
t−t0

≤ p+ ǫ, and

∏
t0≤tj≤t

Mj = e
t0≤tj≤t

ln Mj

≤ e
η(t0,t)
t−t0

(t−t0) lnM

≤ M̃e(p+ǫ) lnM (t−t0).

Hence,
∏

t0≤tj≤t

Mje
λ(tj−tj−1) ≤ M̃e[(p+ǫ) ln M+λ](t−t0).

Since ǫ can be chosen arbitrarily small, the last inequality
implies the results.

Next we use an example to illustrate our result.
Example 3.1:Consider the following linear differential sys-

tem with delayed feedback control and impulsive control




x′(t) =

[
1 0
0 −1

]
x+

[
1
30 − 1

500
1
20

1
27

]
u(t− 1), t 6= tk

x(tk) = Dkx(t
−
k ), k ∈ N

∗

xt0 = φ,
(4)

wherex, u ∈ R
2, tk+1 − tk = 1, φ ∈ C1, andDk ∈ R

2×2.
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If we choose the feedback control as

u(t) =

[
1069
3450 − 18

1081
− 9

23
481
2162

]
x(t),

we can rewrite the original system as




x′(t) =

[
1 0
0 −1

]
x+

[
1
90 − 1

1000
1

1000
1

135

]
x(t− 1),

t 6= tk
x(tk) = Dkx(t

−
k ), k ∈ N

∗

xt0 = φ,
(5)

Let

‖Dk‖ ≤





1
4e2 , k = 10i+ µ, i ∈ N

∗, µ = 1, 2, · · · , 9

e2, k = 10i, i ∈ N
∗.

(6)

Using the notations in Corollary3.3, we obtain thatα = 1,
M = 1, r = 1, and‖B‖ ≤ 1

4e2 .

Mk = M [‖Dk‖ + ‖B‖max{‖Dk‖, 1}]

≤

{
1

2e2 , k = 10i+ µ, i ∈ N
∗, µ = 1, 2, · · · , 9

e2 + 1
4 , k = 10i, i ∈ N

∗,

and

λ = M‖B‖ + α = ‖B‖ + 1 ≤
1

4e2
+ 1.

Then, fork = 10i+ µ, wherei ∈ N
∗ andµ = 1, 2, · · · , 9,

eλ(tk+1−t1)
k∏

j=1

Mj =
10i+µ∏
j=1

[Mje
λ(tj+1−tj)]

≤
10i∏
j=1

[Mje
λ(tj+1−tj)]

10i+µ∏
j=10i+1

[Mje
λ(tj+1−tj)]

≤ {[ 1
2e2 e

1+ 1
4e2 ]9[(e2 + 1

4 )e1+
1

4e2 ]}i[ 1
2e2 e

1+ 1
4e2 ]µ

≤ e−
1
2 (tk+1−t1).

For t ∈ [tk, tk+1), we obtain that

‖x(t)‖ ≤ eλ(t−t0)M [‖x(t0)‖ + r‖B‖‖xt0‖]
k∏

j=1

Mj

≤ e2[‖xt0‖ + 1
4e2 ‖xt0‖]e

− 1
2 (t−t0).

The last inequality implies that system(5) is exponentially
stable.
Remark 3.2. In the example, the corresponding system
without impulses is unstable sinceA has a positive eigenvalue
and‖B‖ is small, the numerical result of this delay differential
equation with initial functions

φ1(t) =

{
0, t ∈ [−1, 0)
−2.1, t = 0,

φ2(t) =

{
0, t ∈ [−1, 0)
2.1, t = 0,

is shown in Figure 1.

0 1 2 3 4 5 6 7 8
−60

−50

−40

−30

−20
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10

t
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x1
x2

Figure 1. System without impulses.

However, if we chooseDk such that(6) holds, for instance
Dk = 1

36I for k ∈ N
∗, whereI is the identity matrix, by

Corollary 3.3, the unstable delay differential equation can be
exponentially stabilized by impulses, as shown in Figure 2.

0 2 4 6 8 10 12 14 16 18 20
−6
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3

t

x
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Figure 2. Impulsive system.

Notice that ‖Dk‖ ≤ 1 is not required for allk ∈ N
∗ to

achieve stability, i.e., the trajectories of system(2) are not
required to be decreasing at all impulse moments even if the
system matrix is unstable. In addition, the results in [18] are
not applicable here since the system matrixA in Example 3.1
has both negative and positive eigenvalues.

B. Nonlinear impulsive delay system

Using similar approach, we can study the nonlinear impul-
sive delay system





x′(t) = A(t)x+ f(t, x(t), x(t − r(t))), t 6= tk
x(tk) = Dkx(t

−
k )

xt0 = φ,
(7)
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whereA ∈ C[Jt0 ,R
n×n], f ∈ C[R × R

n × Cr,R
n], Dk ∈

R
n×n, k ∈ N

∗, 0 ≤ r(t) ≤ r, andφ ∈ Cr.
Theorem 3.2:Assume that there exists some positive defi-

nite and symmetric matrixP ∈ R
n×n such that

i) there exist functionsα ∈ C[R,R] and a1, a2 ∈
C[R,R+] such thatλ(AT (t)P + PA(t)) ≤ α(t) and
2|xTPf(t, x, y)| ≤ a1(t)‖x‖

2 + a2(t)‖y‖
2;

ii)

l2k =
∫ tk+r

tk
e

tk
s

q0(η)dη a2(s)
λmin(P )ds,

Mk = ‖Dk‖ + lk max{‖Dk‖, 1},

βk =
√

λmax(P )
λmin(P ) e

1
2

tk+1
tk

q(s)ds;

whereq0(η) = α(η)+a1(η)
λmin(P ) and

q(s) =
1

λmin(P )

(
a2(s+ r)+α(s)+a1(s)

)
e

s

s+r
q0(η)dη.

iii)
∫ t

tk
q(s)ds ≥ 0, for t ∈ [tk, tk+1).

Then

i) if there exists anM > 0 such that
∏k

j=1Mjβj ≤ M <

∞, k ∈ N
∗, system(7) is stable;

ii) if lim
k→∞

∏k
j=1Mjβj = 0, system(7) is asymptotically

stable;
iii) if there exist M and β > 0 such that

∏k
j=1Mjβj ≤

Me−β(tk+1−t0), system(7) is exponentially stable.
Proof. Let V (t) = xT (t)Px(t), wherex(t) is the solution of
system(7). Then fort 6= tk, the derivative ofV along system
(7) is

V ′(t) = xT (AT (t)P + PA(t))x

+2xTPf(t, x(t), x(t− r))

≤ α(t)xT x+ a1(t)‖x‖
2 + a2(t)‖x(t− r)‖2

= q0(t)V + a2(t)
λmin(P )V (t− r).

Thus, fort ∈ [t0, t1),

V (t) ≤ V (t0)e
t

t0
q0(s)ds

+
∫ t

t0
e

t

s
q0(η)dη

× a2(s)
λmin(P )V (s− r)ds.

For t ∈ [t0, t0 + r),

V (t) ≤ V (t0)e
t

t0
q0(s)ds

+ ‖Vt0‖

×
∫ t

t0
e

t

s
q0(η)dη a2(s)

λmin(P )ds

≤ V (t0)e
t

t0
q0(s)ds

+ ‖Vt0‖

×
∫ t0+r

t0
e

t

s
q0(η)dη a2(s)

λmin(P )ds,

and for t ∈ [t0 + r, t1),

V (t) ≤ V (t0)e
t

t0
q0(s)ds

+ ‖Vt0‖

×
∫ t0+r

t0
e

t

s
q0(η)dη a2(s)

λmin(P )ds

+
∫ t

t0+r
e

t

s
q0(η)dη a2(s)

λmin(P )V (s− r)ds

≤ V (t0)e
t

t0
q0(s)ds

+ ‖Vt0‖

×
∫ t0+r

t0
e

t

s
q0(η)dη a2(s)

λmin(P )ds

+
∫ t−r

t0
e

t

s+r
q0(η)dη a2(s+r)

λmin(P )V (s)ds.

Multiplying e
− t

t0
q0(s)ds on both sides of the last inequality

gives

V (t)e
− t

t0
q0(s)ds

≤ V (t0) + ‖Vt0‖
∫ t0+r

t0

a2(s)
λmin(P )

×e
t0
s

q0(η)dηds+
∫ t−r

t0
e

t0
s+r

q0(η)dη a2(s+r)
λmin(P )V (s)ds

≤ V (t0) + ‖Vt0‖l
2
0 +

∫ t−r

t0
e

s

s+r
q0(η)dη a2(s+r)

λmin(P )

×e
t0
s

q0(η)dηV (s)ds.

Let y(t) = V (t)e
− t

t0
q0(s)ds, then fort ∈ [t0 + r, t1)

y(t) ≤ V (t0) + ‖Vt0‖l
2
0 +

∫ t

t0

e
s

s+r
q0(η)dη a2(s+ r)

λmin(P )
y(s)ds.

It can be seen that the last inequality holds for allt ∈ [t0, t1),
i.e.,

y(t) ≤ V (t0) + ‖Vt0‖l
2
0 +

∫ t

t0

e
s

s+r
q0(η)dη a2(s+ r)

λmin(P )
y(s)ds.

Then, the Gronwall-Bellman inequality implies that

y(t) ≤ [V (t0) + ‖Vt0‖l
2
0]e

t

t0
e

s
s+r

q0(η)dη a2(s+r)

λmin(P )ds
,

t ∈ [t0, t1).

Therefore,

‖x(t)‖ ≤ e
1
2

t

t0
q(s)ds

√
V (t0)+‖Vt0‖l20

λmin(P )

≤ e
1
2

t

t0
q(s)ds

√
λmax(P )
λmin(P ) [‖x(t0)‖ + ‖xt0‖l0],

t ∈ [t0, t1).

Similarly, we have

‖x(t)‖ ≤ e
1
2

t

tk
q(s)ds

√
λmax(P )
λmin(P )

×[‖x(tk)‖ + ‖xtk
‖lk], t ∈ [tk, tk+1).

Furthermore,

‖x(tk)‖ ≤ ‖Dk‖‖x̃(tk)‖,
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and

‖xtk
‖ = sup

tk−r≤t≤tk

‖x(t)‖

= max{‖x(tk)‖, sup
tk−r≤t<tk

‖x(t)‖}

≤ max{‖Dk‖‖x(t
−
k )‖, sup

tk−r≤t<tk

‖x(t)‖}

≤ max{‖Dk‖, 1}‖x̃(tk)‖,

where

‖x̃(tk)‖ = [‖x(tk−1)‖ + ‖xtk−1
‖lk−1]βk−1.

Then

‖x̃(tk)‖ = [‖x(tk−1)‖ + ‖xtk−1
‖lk−1]βk−1

≤ [‖Dk−1‖ + lk−1 max{‖Dk−1‖, 1}]‖x̃(tk−1)‖βk−1

= Mk−1‖x̃(tk−1)‖βk−1

≤ Mk−1βk−1Mk−2βk−2‖x̃(tk−2)‖

≤ · · · ≤
k−1∏
j=1

Mjβj‖x̃(t1)‖.

Thus, fort ∈ [tk, tk+1),

‖x(t)‖ ≤
√

λmax(P )
λmin(P ) [‖x(tk)‖ + ‖xtk

‖lk]e
1
2

t

tk
q(s)ds

≤
√

λmax(P )
λmin(P )Mk

k−1∏
j=1

Mjβj‖x̃(t1)‖e
1
2

t

tk
q(s)ds

≤ ‖x̃(tk+1)‖ ≤
k∏

j=1

Mjβj‖x̃(t1)‖.

This inequality implies the results of Theorem3.2.
Remark 3.3. In Theorems3.1 and 3.2, α(t) ≥ 0 is not
required, which means it may be negative for somet. And
for some special case such astk − tk−1 = η with k ∈ N

∗,
additional useful and simple results similar to Corollaries 3.5
and3.6 can be obtained.

C. System with delayed impulses

Consider the following linear impulsive system with delayed
impulses





x′(t) = A(t)x +B(t)x(t − r), t 6= tk
x(tk) = Dkx(t

−
k ) + Ekx(t

−
k − r1)

xt0 = φ,

(8)

whereA,B ∈ C[Jt0 ,R
n×n], Dk, Ek ∈ R

n×n, k ∈ N
∗, φ ∈

Cr∗ with r∗ = max{r, r1}, and 0 ≤ r, r1 < tk − tk−1 ≤
sup{tk − tk−1} = constant < ∞. Denote withΦ(t, t0) the
fundamental matrix of systemx′ = A(t)x.

Theorem 3.3:Assume that there exist constantM > 0 and
function α ∈ C[Jt0 ,R] such that‖Φ(t, s)‖ ≤ Me

t

s
α(η)dη,

δ(t) ≥ 0, t ∈ [tk−1, tk), and 1 ≤ e
t+r

t
α(η)dη < ∞ for

t ≥ t0.
Then system(8) is

i) stable, if there exists añM <∞ such that
k∏

j=1

Mje
t

t0
δ(s)ds

≤ M̃, k ∈ N
∗;

ii) asymptotically stable, if

lim
k→∞

k∏

j=1

Mje
t

t0
δ(s)ds

= 0, k ∈ N
∗;

iii) exponentially stable, if there existM∗, β > 0 such that
k∏

j=1

Mje
t

t0
δ(s)ds

≤M∗e−β(tk+1−t0), k ∈ N
∗,

wherelk =
∫ tk+r

tk
‖B(s)‖e

− s

tk
α(η)dη

ds and

Mk = M [‖Dk‖ + ‖Ek‖e
tk−r1
tk

δ(s)ds+

lk max{‖Dk‖ + ‖Ek‖e
tk−r1
tk

δ(s)ds
, 1}].

Proof. Based on the proof of Theorem3.1, we have

‖x(t)‖ ≤ M [‖x(tk)‖ + ‖xtk
‖lk]e

t

tk
δ(s)ds

,

t ∈ [tk, tk+1), k ∈ {0} ∪ N
∗.

Furthermore,

‖x(tk)‖ ≤ ‖Dk‖‖x(t
−
k )‖ + ‖Ek‖‖x(t

−
k − r1)‖

≤ ‖Dk‖‖x̃(tk)‖ + ‖Ek‖‖x̃(tk)‖e
tk−r1
tk

δ(s)ds

= [‖Dk‖ + ‖Ek‖e
tk−r1
tk

δ(s)ds]‖x̃(tk)‖,

where

‖x̃(tk)‖ = M [‖x(tk−1)‖ + ‖xtk−1
‖lk−1]e

tk
tk−1

δ(s)ds
,

and
‖xtk

‖ = sup
tk−r≤t≤tk

‖x(t)‖

= max{‖x(tk)‖, sup
tk−r≤t<tk

‖x(t)‖}

≤ max{[‖Dk‖ + ‖Ek‖e
tk−r1
tk

δ(s)ds]‖x̃(tk)‖,

sup
tk−r≤t<tk

‖x(t)‖}

≤ max{‖Dk‖ + ‖Ek‖e
tk−r1
tk

δ(s)ds
, 1}‖x̃(tk)‖.

Thus,

‖x(t)‖ ≤M [‖x(tk)‖ + lk‖xtk
‖]e

t

tk
δ(s)ds

≤M [‖Dk‖ + ‖Ek‖e
tk−r1
tk

δ(s)ds + lk‖x̃(tk)‖e
t

tk
δ(s)ds

×max{‖Dk‖ + ‖Ek‖e
tk−r1
tk

δ(s)ds
, 1}]

= Mk‖x̃(tk)‖e
t

tk
δ(s)ds

, t ∈ [tk, tk+1), k ∈ {0} ∪ N
∗.
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Since

‖x̃(tk)‖ = M [‖x(tk−1)‖ + ‖xtk−1
‖lk−1]e

tk
tk−1

δ(s)ds

≤M [[‖Dk−1‖ + ‖Ek−1‖e
tk−1−r1
tk−1

δ(s)ds
]‖x̃(tk−1)‖

+lk−1 max{‖Dk−1‖ + ‖Ek−1‖e
tk−1−r1
tk−1

δ(s)ds
, 1}

×‖x̃(tk−1)]‖e
tk
tk−1

δ(s)ds

= M [‖Dk−1‖ + ‖Ek−1‖e
tk−1−r1
tk−1

δ(s)ds

+lk−1 max{‖Dk−1‖ + ‖Ek−1‖e
tk−1−r1
tk−1

δ(s)ds
, 1}]

×‖x̃(tk−1)‖e
tk
tk−1

δ(s)ds

= Mk−1‖x̃(tk−1)‖e
tk
tk−1

δ(s)ds
,

we have

‖x(t)‖ = Mk‖x̃(tk)‖e
t

tk
δ(s)ds

≤ MkMk−1‖x̃(tk−1)‖e
t

tk−1
δ(s)ds

≤ · · · ≤
k∏

j=1

Mj‖x̃(t1)‖e
t

t1
δ(s)ds

≤ M [‖x(t0)‖ + ‖xt0‖l0]e
t

t0
δ(s)ds

k∏
j=1

Mj,

t ∈ [tk, tk+1), k ∈ {0} ∪ N
∗.

This inequality implies the results of Theorem3.3.

Remark 3.4.

• Theorem3.3 (also Theorems3.1 or 3.2) indicates that
even if the system matrixA may be unstable, providing
‖B‖ is not large, we can choose appropriate impulse
matricesDk, Ek to stabilize the original system.

• The result of Theorem3.3 is a little stricter than that of
Theorem3.1. This is because there exists time delay at
impulsive moments in system(8). Notice that time delay
sometimes plays a very important role in system analysis.
For example, if a solution of an ODE ’jumps’ to0 at
time t1, then the solution will be0 after t1 providing the
system has only one solution passing through every point.
But for delay system, jumping to0 at one point does not
effect the solution as much as ODE does since the delay
determines the change of the system at a neighborhood
of that point. Therefore, the investigation of delay system
is much more difficult than that of the system without
delay. Similarly, if time delay is included in the impulsive
moment, it may dominate the value of the solution at the
point. That is why the result of Theorem3.3 is a little
more restrictive than that of Theorem3.1.

For impulsive system with nonlinear impulses with time
delay, the system becomes





x′(t) = A(t)x + f(t, x, xt), t 6= tk
x(tk) = Dkx(t

−
k ) + g(x(t−k ), xt

−
k
)

xt0 = φ,

(9)

wherext ∈ Cr, f ∈ C[R×R
n×Cr,R

n], g ∈ C[Rn×Cr1 ,R
n],

φ ∈ Cr∗ with r∗ = max{r, r1}, and0 ≤ r, r1 < tk − tk−1 ≤
sup{tk − tk−1} <∞ for k ∈ N

∗.
Theorem 3.4:Assume that

i) there exist functionsα ∈ C[Jt0 ,R], a1, a2 ∈ C[R,R+], and
constantsbk1, bk2 ∈ R+ such that

λ(AT (t) +A(t)) ≤ α(t),

2|xT f(t, x, y)| ≤ a1(t)‖x‖
2 + a2(t)‖y‖

2,

‖g(x, y)‖ ≤ bk1‖x‖ + bk2‖y‖;
ii)
∫ t

tk
q1(s)ds ≥ 0, t ∈ [tk, tk+1),

βk = e
1
2

tk+1
tk

q1(s)ds
,

∫ tk+r

tk
e

tk
s

(α(η)+a1(η))dηa2(s)ds = l2k,

Mk = ‖Dk‖ + bk1 + bk2 + lk max{‖Dk‖ + bk1 + bk2, 1},

where

q1(s) =
(
a2(s+ r) + α(s) + a1(s)

)
e

s

s+r
(α(η)+a1(η))dη.

Then

‖x(t)‖ ≤ Mk

k−1∏

j=1

Mjβj‖x̃(t1)‖e
1
2

t

tk
q1(s)ds

,

where x(t) is the solution of system(9) and ‖x̃(t1)‖ =
[‖x(t0)‖ + ‖xt0‖l0]β0.
Proof. Based on the proof of Theorem3.2 with P = I, where
I is the identity matrix, we have

‖x(t)‖ ≤ [‖x(tk)‖ + ‖xtk
‖lk]e

1
2

t

tk
q1(s)ds

,

t ∈ [tk, tk+1).

Furthermore,

‖x(tk)‖ ≤ ‖Dk‖‖x(t
−
k )‖ + bk1‖x(t

−
k )‖ + bk2‖xt

−
k
‖

= (‖Dk‖ + bk1 + bk2)‖x̃(tk)‖,

where

‖x̃(tk)‖ = [‖x(tk−1)‖ + ‖xtk−1
‖lk−1]βk−1,

and

‖xtk
‖ = sup

tk−r≤t≤tk

‖x(t)‖

= max{‖x(tk)‖, sup
tk−r≤t<tk

‖x(t)‖}

≤ max{(‖Dk‖ + bk1 + bk2)‖x̃(tk)‖, sup
tk−r≤t<tk

‖x(t)‖}

≤ max{‖Dk‖ + bk1 + bk2, 1}‖x̃(tk)‖.
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Then,

‖x̃(tk)‖ = [‖x(tk−1)‖ + ‖xtk−1
‖lk−1]βk−1

≤ [‖Dk−1‖ + b(k−1)1 + b(k−1)2 + lk−1

×max{‖Dk−1‖ + b(k−1)1 + b(k−1)2, 1}]‖x̃(tk−1)‖βk−1

= Mk−1‖x̃(tk−1)‖βk−1

≤Mk−1βk−1Mk−2βk−2‖x̃(tk−2)‖

≤ · · · ≤
k−1∏
j=1

Mjβj‖x̃(t1)‖.

Thus, fort ∈ [tk, tk+1),

‖x(t)‖ ≤ [‖x(tk)‖ + ‖xtk
‖lk]e

1
2

t

tk
q1(s)ds

≤Mk‖x̃(tk)‖e
1
2

t

tk
q1(s)ds

≤ · · ·

≤Mk

k−1∏
j=1

Mjβj‖x̃(t1)‖ e
1
2

t

tk
q1(s)ds

.

Corollary 3.7: Assume that the conditions of Theorem3.4
hold. Then,

i) if there exists anM > 0 such that
∏k

j=1Mjβj ≤ M <

∞, k ∈ N
∗, system(9) is stable;

ii) lim
k→∞

∏k
j=1Mjβj = 0, k ∈ N

∗ implies that system(9)

is asymptotically stable;
iii) if there exist constantsM, β > 0 such that∏k

j=1Mjβj ≤ Me−β(tk+1−t0), k ∈ N
∗, system(9) is

exponentially stable.
Similar to Corollary3.2, we obtain the following result:
Corollary 3.8: Assume that the conditions of Theorem3.4

hold, tk+1 − tk = η < ∞ and there existηk with |ηk| ≤ 1
such thatMkβk ≤ 1 + ηk for all k ∈ {0} ∪ N

∗. Then,

i)
∞∑

k=1

|ηk| <∞ implies system(9) is stable;

ii)
∞∏

k=1

(1 + ηk) = 0 implies system(9) is asymptotically

stable;
iii) if there exist γ > 0 andN > 0 such that whenk ≥ N ,

1+ηk ≤ e−γ(tk+1−tk), system(9) is exponentially stable.
Example 3.2:Consider the nonlinear impulsive delay sys-

tem with time delay at impulsive moments




x′(t) =

[
1−| sin t|

2 −0.1t

0.1t 1−| sin t|
2

]
x+ f(t, x, xt), t 6= tk

x(tk) = g(x(t−k ), xt
−
k
), k ∈ N

∗

xt0 = φ,
(10)

wherex = (x1, x2)
T ∈ R

2, xt, φ ∈ Cr, f ∈ C[R × R
2 ×

Cr,R
2], g ∈ C[R2 × Cr ,R

2], r = 0.2, tk − tk−1 = 0.5,
andDk = 0.1I, whereI is the identity matrix. Assume that

f(t, x, xt) andg(x(t−k ), xt−
k
) satisfy

2|xT (t)f(t, x, xt)| ≤ (
1

2
+ | sin t|)‖x(t)‖2 +

1

2
‖x(t− r)‖2,

‖g(x(t−k ), xt
−
k
)‖ ≤ bk1‖x(t

−
k )‖ + bk2‖x(t

−
k − r)‖,

wherebk1 + bk2 ≤ 0.7.
Using the notations of Theorem3.4, we obtain that

α(t) = 1 − | sin t|, a1(t) = 1
2 + | sin t|, a2(t) = 1

2 ,

βk = e
1
2

tk+1
tk

q1(s)ds = 1.5962,

l2k =
∫ tk+r

tk
e

tk
s

(α(η)+a1(η))dηa2(s)ds,

=
∫ tk+r

tk
etk−serds = 0.0864,

Mk = ‖Dk‖ + bk1 + bk2 + lk max{‖Dk‖ + bk1 + bk2, 1}
= 0.1 + bk1 + bk2 + 0.2939.

ThusMkβk = (bk1 + bk2 + 0.3939)1.5962.

By Corollary 3.8, we make the following conclusions

• bk1 + bk2 ≤ 0.2326 implies that system(10) is stable;
• bk1 + bk2 ≤ 0.2326 − 1

k
implies that system(10) is

asymptotically stable;
• bk1 + bk2 ≤ τ < 0.2326 implies that system(10) is

exponentially stable.

To illustrate our conclusions numerically, we choose the
functions as

f(t, x, xt) =

[
0.5(sin(t)x1(t) + x2(t− 0.2))
0.5(sin(t)x2(t) + x1(t− 0.2))

]
,

g(x(t−k ), x(tk− )) =


 0.05

√
|x1(t

−
k )x2(t

−
k − 0.2)|

0.05
√
|x2(t

−
k )x1(t

−
k − 0.2)|


 ,

so bk1 = bk2 = 0.05, and the initial functions are given by

φ1(t) =

{
0, t ∈ [−0.2, 0)
−0.05, t = 0,

φ2(t) =

{
0, t ∈ [−0.2, 0)
0.1, t = 0,

0 5 10 15 20 25 30 35
−100

−80

−60

−40

−20

0

20

40

60

t

x

x1
x2

Figure 3. System without impulses.
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Figure 3 shows that the corresponding system without im-
pulses is unstable, but it can be exponentially stabilized by
impulses, as shown in Figure 4.

Figure 4. Impulsive system.

IV. CONCLUSIONS

We have investigated the stability issues of both linear
and nonlinear impulsive delay systems which include unstable
system matrix and/or time delay at impulsive moments. Some
criteria on stability and exponential stability have been ob-
tained. Our results show that the impulsive delay system with
unstable matrix can be stabilized by adjusting impulsive value
under certain conditions. Although only single delay has been
considered in the paper, the study can be extended to the case
with multiple delays. It should be mentioned that the results
presented in this paper are not applicable to systems without
impulses since the corresponding equations without impulses
discussed in this paper are unstable.
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