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Abstract

In this paper, a novel authentication protocol is proposed, which satisfies both security and reliability requirements for group com-
munications in ad hoc networks. The security features include identity anonymity and location intracability, periodic one-way session
key and pseudonym identity refreshment with implicit authentication, dynamic joining and leaving an in-progress communication ses-
sion, and data encryption. The reliability features include efficient Denial of Service tolerance for broadcasting refreshment messages,
fault-tolerance for recovering lost refreshment messages, robustness for resisting the clock skews among member nodes and seamless
key switch without disrupting ongoing data transmissions. The performance and security analysis show that the communication and
computation overhead of the proposed protocol is similar to the existing one, while the security can be enhanced significantly. The sim-
ulation results demonstrate the robustness of the proposed protocol under severe Denial of Service attack and poor wireless channel
quality.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Wireless ad hoc networks have attracted great intension
in both academia and industry due to their unique charac-
teristics and wide application scenarios [1]. They consist of
mobile nodes which communicate with each other through
wireless medium without fixed infrastructure. The key
advantages include easy and fast deployment and
decreased dependence on infrastructure, etc. Therefore,
wireless ad hoc networks are widely used in emergency
operations, such as search and rescue, policing and fire-
fighting, and military use, such as on the battle field, etc.
In those applications, group communications, as a growing

application area in mobile communications, are preferred
in many cases to keep the privacy of information for each
onsite units and reduce the wireless traffic load. As shown
in Fig. 1, the mobile nodes from two units in the ad hoc
network form two communication groups. In such afore-
mentioned applications, there is usually at least one officer
leading each unit. We define the corresponding node as
commander (CMD) node, which takes charge of issuing
secret certificate to group communication members.

A secure group communication session guarantees that
only legal members share a common key which can be used
in the session. The concept of traditional conference key
distribution was first proposed in [2], and further studied
in [3–8], which is not quite suitable for ad hoc group com-
munications scenario. The protocol in [3] provides a basic
secure key distribution protocol for mobile networks. The
schemes in [4,5] are for active members to dynamically join
or leave an in-progress group session. Two cryptosystems
used in the schemes are not friendly for the mobile devices.
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In [6], the protocol does not offer identity anonymity so
that an intruder can easily obtain real identity of a member
by message interception and trace its mobility and current
location. The light-weight protocol [7] lacks key refresh-
ment mechanism so that the communication may be com-
promised by using a stale key. The impaired ad hoc
communication environment and other various attacks
from the Internet, such as DoS attacks, need be considered
carefully, which otherwise may lead to protocol failure if
members cannot communicate with the CMD due to com-
munication interruption.

It is important that the confidentiality and authenticity
mechanism is available in ad hoc group communications
to prevent various illegal intrusions [1,9,10]. The intrusions
include traditionally known attacks, such as impersona-
tion, conversation eavesdropping, mobile user’s mobility
tracing, etc., and newly appeared and more severe attacks,
such as Denial of Services (DoS) attack, which can dimin-
ish or black out a network’s capacity. The main plausible
ways for DoS attacks [11] include signal jamming in the
physical layer and packet collision/exhaustion in the link
layer. In this paper, we focus on the DoS attacks in the link
layer.

In this paper, a DoS and fault-tolerant authentication
protocol for ad hoc group communications is proposed.
Besides resisting common attacks, the proposed protocol
features several notable properties:

• identity anonymity to protect a legal member’s identity
and mobility information from tracking by deploying
dynamic identity replacement-pseudo-identity (PID);

• forward secrecy so that the communication key (CK)
and member’s PID can be refreshed with implicit
authentication in a one-way manner;

• dynamic joining or leaving an in-progress group
communication;

• DoS-tolerance for broadcasting CK renewal message
without relying on message retransmissions or acknowl-
edgement (ACKs);

• fault-tolerance by recovering the lost CKs;
• seamless CK&PID renewal without disrupting ongoing

data transmissions;

• robustness to the clock skews among member nodes and
the CMD.

The proposed protocol also takes into account the
resource constraints in the mobile devices by minimizing
the computation overhead. Because of its implicit authenti-
cation capability of the CK&PID refreshment mechanism,
the proposed protocol can work well under impaired wire-
less environment, without using message retransmission or
ACKs. Therefore, the communication overhead is light-
weight. Demonstrated by the performance analysis and
simulation results, the proposed protocol can effectively
tolerate high channel loss rate and DoS attacks, which
are of particular importance in the emergency and military
applications.

The rest of the paper is organized as follows. In Section
2, the authentication protocol with forward secrecy for ad
hoc group communications is proposed. In Sections 3 and
4, the security and the performance analysis are presented,
respectively, followed by conclusion given in Section 5.

2. Proposed DoS- and fault-tolerant authentication protocol

Fig. 2 shows the messages used in the protocol between
the member nodes and the CMD. The InitConfKey message
initiates or re-initiates refreshment parameters. It is sent to
all member nodes in the initial phase. The CMD uses the
RefreshKey message to periodically broadcast the next
CK in the key sequence to member nodes. The member
nodes employ the RequestKey message to explicitly request
the current CK in the key sequence. This message is gener-
ated by a node when it fails to receive CKs over t key
renewal intervals. We assume the nodes may also receive
forged CMD messages sent by attackers.

For the convenience, we list the related notations used in
the rest of the paper in Table 1.

2.1. Architecture

The architecture of the proposed protocol consists of
four modules: DoS-tolerant module, fault-tolerant module,
CK&PID switch module, and the stream encryption/

Member node CMD
InitConfKey

RefreshKey

RequestKey

Forged

Attacker

Fig. 2. Message flows between CMD and group members.

Unit 2Unit 1

Member nodes

Commander node 2Commander node 1

Group1

Group 2

Fig. 1. Ad hoc group communication architecture.
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decryption and integrity check module. As shown in Fig. 3,
the DoS-tolerant module uses two-phase DoS-tolerant
authentication: WV (weak verification) and SV (strong ver-
ification) to filter out forged packets efficiently. TheCMD

pre-computes key sequence of CKs by utilizing a one-way
hash function, which is similar to that of S/KEY [12]. Each
CK is distributed to all member nodes before it is used for
encryption or decryption. The authenticity of the received
CK is verified by using the other pre-stored CKs, and the
missed CKs can be recovered from the new CKs. The
new PID is computed based on the CK and its previous
PID. The detailed description of each module is list as
follows.

The DoS-tolerant module protects the RefreshKey mes-
sage from DoS attack by using two-stage verification. Weak

verification filters out a large number of forged messages by
executing fast authentication with simple computation.
And strong verification executes strict authentication with a
little more complex computation to drop a few forged mes-
sages which have passed the weak verification phase.

The fault-tolerant module provides a robust and reliable
mechanism for tolerating the packet loss in the impaired
wireless channel. On receiving an authentic RefreshKey

message, each member node can automatically recover the
lost CK&PID without requesting the CMD to retransmit
the lost message. The fault-tolerant feature relies on the dis-
tinctive property of the cryptographic one-way hash func-
tion, which is also used in TESLA [13–15] and LiSP [16].
The proposed protocol can improve: (1) efficiency since
each member node only buffers the constant number of
keys, whereas TESLA is required to buffer all the received
control messages until the node receives an authentic mes-
sage; and (2) reliability since DoS-tolerance mechanism is
offered while it is not considered in LiSP protocol.

The CK&PID switch module computes the new PID

and seamlessly refreshes CK&PID without disrupting
ongoing data transmission. To accomplish the functions,
two key-slots, which can be operated concurrently are set
up in each member node. When the CK&PID in one key-
slot is being used for data encryption or decryption, the
received new CK in the key sequence will be stored in the
other key-slot. At the middle point of the refreshment
interval, the member node switches to the other key-slot
to use the new CK key.

Finally, the stream encryption/decryption and integrity
check module guarantees data privacy. By considering
the dynamic or periodic CK&PID refreshment and the fast
stream cipher, the proposed protocol provides enhanced
security to resist key-stream reuse attacks.

2.2. Forward secrecy

Forward secrecy is used to assure the refreshment of
CK&PID and offer a base for implementing DoS- and
fault-tolerant mechanisms. As shown in Fig. 4, forward
secrecy is ensured in three aspects: one-way CK refresh-
ment, one-way PID refreshment, and one-way data pri-
vacy. To ensure the forward secrecy in CK refreshment,
the proposed architecture offers an MK used by the
CMD to encrypt the InitConfKey or the RefreshKey mes-
sage containing the temporal CK, which is used to encrypt
or decrypt data. Similarly, to assure the forward secrecy in
the PID renewal, it also defines a master PID and a tempo-
ral PID. The temporal PID is derived from master PID and
its corresponding temporal CK. The data privacy is also
endowed with the forward secrecy, since we uses the tem-
poral CK&PID as the seeds to compute the block cipher
and message integrity code. Hence, key-stream collisions
can be efficiently avoided due to the forward secrecy.

InitConfKey

RefreshKey

Forged
Packets

CK&PID Switch Module

CK2

CK1

PID2

PID1

Stream Encryption/Decryption
and Integrity Check Module

WV: Weak Verification
SV: Strong Verification

CK3 CKt+1… CKt+2

Fault Tolerant Module

Discard
forged packet

DoS Tolerant Module Random
Scheduler

Discard
forged packet

SVWV

Fig. 3. Architecture of proposed protocol.

Master Key Master PID

One-way CK
refreshment

One-way PID
refreshment

Stream Encryption/Decryption and
Data Integrity Check

Fig. 4. Forward secrecy: one-way CK&PID renewal and data privacy.

Table 1
Notations

Tk Member node
CMD Commander node
t Timestamp
IDk Identity of mobile member Tk

PIDk Pseudo-identity of mobile member Tk

CK Group Communication Key
CK_I Integrity key derived from CK

CK_E Data encryption key derived from CK

¯ Bitwise XOR operation
i Concatenation operation
f (.) Key generating function
H (.) One-way hash function
Ek (.) Symmetric encryption with key k

Dk (.) Symmetric decryption with key k

MIC Message integrity code generated by integrity key CK_I

MK Master key used to encrypt InitConfKey and RefreshKey
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Forward secrecy is based on a one-way hash chain,
which is generated by a one-way function H. H satisfies
two properties: (1) given x, it is easy to compute y such that
y = H(x); and (2) given y, it is computationally infeasible to
compute x such that y = H(x). A one-way hash chain is a
sequence of hash values, xn,xn�1, . . .,x0, such that
"j:0 < j 6 n, xj�1 = H(xj). Thus, there exists the following
linear derivative relation:

x1 ¼ Hðx2Þ ¼ � � � ¼ Hj�1ðxjÞ ¼ � � � ¼ H n�2ðxn�1Þ
¼ H n�1ðxnÞ ð1 < j 6 nÞ:

In the proposed protocol, all temporal CKs are also derived
from a one-way hash function H and belong to one key se-
quence. In the initial phase, the CMD needs to pre-com-
pute a one-way key sequence {CKiji = 1,2, . . .,n}, where n

is reasonably large. The CMD selects CKn as the last key
in the key chain and repeatedly performs the hash function
H to compute all the rest of keys as CKi = H(CKi+1),
0 6 i 6 n � 1. Each key CKi will be distributed to all mem-
bers by the CMD at ith time interval. With this one-way
function, given CKj in the key chain, anybody can compute
the previous keys CKi, 0 6 i 6 j, but cannot compute any
of other keys CKi, j + 1 6 i 6 n. Similarly, all temporal
CKs also form the following linear derivative relation:

CK1 ¼ HðCK2Þ ¼ � � � ¼ Hj�1ðCKjÞ ¼ � � � ¼ H n�2ðCKn�1Þ
¼ Hn�1ðCKnÞ ð1 < j 6 nÞ:

Given that the temporal PIDk,j(1 6 j 6 n) is defined as the
function of PIDk,j�1 and CKj, for member Tk, the corre-
sponding one-way PID chain can be derived as follows:

PIDk;1(���( PIDk;j(���( PIDk;n�1( PIDk;n ð1< j6 nÞ:

Thus, the PID can be renewed with CK synchronously.
Based on the mentioned linear derivative relations, the for-
ward secrecy in the proposed protocol provides three signif-
icant security properties: (1) the identity anonymity
mechanism is enhanced, since a dynamic PID can protect a
member node’s location and mobility information from
being tracked more efficiently than a long-term static PID;
(2) the key-stream reuse attacks are avoided, in which the
CK&PID, used to compute the stream cipher, are renewed
by the CMD both periodically or dynamically; and (3) for-
ward secrecy leads to a solution to implement the important
DoS- and fault-tolerance feature in our protocol, which will
be discussed in detail in the following sections.

2.3. Mutual authentication protocol

When a member node (it becomes chairman in this case)
intends to start on a group session, it firstly initiates mutual
authentication protocol (MAP). In this phase, the CMD

setups an MK, and then uses the MK to encrypt the InitConf-

Key message which includes the length t of key buffer for
CKs, an initial CK, and the key refreshment period
Trefresh. The message is securely broadcasted to each node.

Then, at each interval Trefresh, the CMD uses MK to encrypt
a RefreshKey message that contains the next CK in the pre-
computed key sequence. All the refreshment messages will
be securely broadcasted or unicasted to each node.

The MAP offers basic identity anonymity. When a mem-
ber Ti registers with the CMD, it submits its identity IDi to
the CMD. The CMD generates a secret sufficiently long,
e.g., 256 bits, random number Ni for each Ti, computes a
pseudonym identity PIDi for Ti using Eq. (1), and records
the mapping relation of PIDi and Ni (PIDi M Ni).

PIDi ¼ hðNikIDCMDÞ � IDi � IDCMD; ð1Þ

where ‘‘¯’’ denotes XOR operation, IDCMD is the identity
of the CMD, and h() is a one-way hash function. Then, the
CMD delivers PIDi to Ti through a secure channel. With
this secret-splitting mechanism, the real identity IDi is con-
cealed in PIDi and the identity anonymity is ensured. The
CMD also shares a long-term secret key si = f(IDi) with
Ti, where f is a key generating function.

In the following, we describe the MAP according to the
order of message exchanges, and discuss the security goals
which can be achieved in each message (Fig. 5).

Step 1. The chairman T1 chooses a random r1 and com-
putes its long-term key s1 by s1 = f(ID1). Then,
T1 uses s1 to encrypt (t1is1ir1iID2i� � �iIDm) and
sends fPID1;Es1

ðt1ks1kr1kID2k � � � kIDmÞg to the
CMD.

Step 2. On receiving the message from T1, the CMD

derives the real identity of member T1 by
computing

ID1 ¼ PID1 � hðN 1kIDCMDÞ � IDCMD: ð2Þ

The CMD can retrieve corresponding shared key
s1 and decrypt Es1

ðt1ks1kr1kID2k � � � kIDmÞ. Then,
the CMD verifies the authenticity of s1 and the
timestamp t1. If it is true, the CMD calls the
other user IDi (i = 2, . . .,m). All the keys si

(i = 1, . . .,m) are pre-computed by the CMD.
Step 3. Each member Ti, i = 2,3, . . .,m, does the same as

T1 in Step 1. The member Ti chooses a random
ri, computes the long-term key si as si = f(IDi),
uses si to encrypt {tiisiiri}, and sends the message
fPIDi;EsiðtiksikriÞg to the CMD.

Step 4. On receiving the message from Ti, the CMD

extracts the real identity IDi of member Ti by
computing

IDi ¼ PIDi � hðNikIDCMDÞ � IDCMD: ð3Þ

Then, the CMD can retrieve corresponding
shared key si, and further decrypt EsiðtiksikriÞ.
Next, the CMD checks the authenticity of key
si and ti. If it is true, the CMD pre-computes a
key sequence {CKiji = 0,1,2, . . .,n} by using a
one-way hash function H, where n is chosen to
be reasonably large (e.g., 256) and each CKi sat-
isfies CKi = H(CKi+1), or CKi = Hn�i(CKn). The

Y. Jiang et al. / Computer Communications 30 (2007) 2428–2441 2431
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CMD selects a nonzero random r0, and com-
putes PI and PA by

PI ¼ MKþ lcmðr0; r1; . . . ; rmÞ; ð4Þ
PA ¼ EMKðIDCMDÞ; ð5Þ

where lcm(r0,r1,. . .,rm) denotes the least common
multiple function and MK(=CK0) is the master
key of the group session. Then, at time tstart, the
CMD broadcasts this message to nodes Ti

(i = 1,2, . . .,m).

CMD! T i : fPI ; PA; InitConfKeyg;

where InitConfKey denotes EMK(tiCKt+2iTrefresh).
Note that MK and CKt+2 satisfy MK = CK0 =
Ht+2(CKt+2).

Step 5. According to the received message, Ti gets MK

which is given by

MK ¼ PI modðriÞ: ð6Þ

Then Ti verifies the validity of MK by checking if
PA = EMK (IDCMD). If it holds, Ti gets
{t,CKt+2,Trefresh} by decrypting EMK(tiCKt+2i
Trefresh). The detailed corresponding procedures
are given by Algorithm 1.

Fig. 6 shows how the member node copies CK sequence
into its key buffer and key-slots, and switches the active-

key after receiving CKt+2. Algorithm 2 gives the right-shift
process of automatic key renewal at the midpoint of each
interval Trefresh. Each member node maintains two
variables e and CKW. Sentry CKW tracks the most recently
outdated CK, and e traces the number of CK that the node
failed to receive correctly.

Algorithm 1. Initial group communication session parameters

1: function Init_Conf_Key ( ) {
2: if (InitConfKey message received) {
3: Compute MK = PI mod (ri), EMK (IDCMD);
4: if (PA „ EMK(IDCMD)) return ERROR;
5: Decrypt InitConfKey to get {CKt+2,t,Trefresh};
6: Allocate a key buffer of length t(kb[1], . . .,kb[t]),

and two key-slots (ks[1],ks[2]);
7: for (i = 1; i <= t � 1; i++) do

kb[i] = Ht�i(CKt+s);
8: ks[2] = Ht(CKt+s), ks[1] = Ht+1(CKt+s);
9: CKW = Ht+2(CKt+s);
10: Set key ks[1] for data encryption;
12: Set RefreshKeyTimer to Trefresh/2;
13: }
14: }

Algorithm 2. Refresh key timer

1: function Refresh_Key_Timer ( ) {
2: if (RefreshKeyTimer triggered) {
3: Right-shift the key buffer and key-slot;
4: e++; CKW = {the inactive key in key-slots};
5: }
6: Set active CKs in key-slots;
7: Set RefreshKeyTimer to Trefresh;
8: If (e = = t) send RequestKey message to CMD

9: }

CK2

CK1

PID2

PID1

key slot
InitConfKey

CKt+2 CKt+1 … CK3

kb[t] kb[t-1] … kb[1]

CKt+2
WV & SV

RefreshKey
CKt+3 CKt+2 … CK4

CK2

CK3

PID2

PID3

1( ) WH CK CK=

CKt+3

WV & SV

Fig. 6. Initial setup and CK&PID refreshment mechanisms.
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Step 5)
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CKt+2, Trefresh

Commander CMD

Step 4)
Checks ti and si

Extracts IDi from PIDi

Retrieves the key si

Computes

Calls T2, T3, ... , Tm

11 1 1 1

2 3

, ( || || ||

|| || ... || )

s

m

PID E t s r

ID ID ID
Step 2)
Checks t1 and s1

Extracts ID1 from PID1

Retrieves the key s1

, ( || || )
ii s i i iPID E t s r

( )i is f ID=
1 1( )s f ID=

PI = MK+lcm(r0, r1,... , rm)

2( || || )MK t refresh

PI, PA, PI, PA,

E t CK T+ ( )MK CMDPA E ID= 2( || || )MK t refreshE t CK T+
Step 5)
Gets MK, t,
CKt+2, Trefresh

Fig. 5. Mutual authentication protocol for the proposed teleconference.
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2.4. One-way CK&PID renewal mechanism

Forward secrecy requires that the CK&PID be refreshed
in a one-way manner. One-way CK renewal guarantees
that the CMD can update the CK at regular intervals.
One-way PID renewal allows each member to renew its
PID frequently and reduces the risk that it uses a compro-
mised PID to communicate with the CMD.

If the RefreshKey message is broadcast every interval
Trefresh, an intruder may predict when to launch an attack.
Thus, it is much easier for the intruder to disrupt such mes-
sages by initiating the DoS attacks. To refrain from such
attack, the CMD should send the RefreshKey packets ran-
domly or in a pseudorandom ways that cannot be predicted
by an attacker.

Assume that the MAP phase completes at time tinit. To
resist DoS attack, the CMD broadcasts the RefreshKey

message with CKi+t+2 (i = 0, . . .,n � t � 2) for the ith
CK&PID renewal to all member nodes at the time ran-
domly chosen from the interval [tinit + i Æ Trefresh � d,
tinit + i Æ Trefresh + d], d < Trefresh/4, i.e.,

CMD! T jðj ¼ 1; . . . ;mÞ : fCKi;EMKðCKiþtþ2kCKiþ1Þg;
where CKi+1 is the active encryption key at the time when
the RefreshKey message is broadcast, and CKi is the
outdated CK in the CK sequence. To provide the DoS-
tolerant functionality, CKi is used for weak verification
(WV) and EMK(CKi+t+2iCKi+1) is used for strong verifica-
tion (SV).

On receiving the RefreshKey message, each participant
deals with this message according to Algorithm 3. Fig. 6
illustrates how to initialize and refresh the CK&PID. Due
to one-way property of the CK sequence, the RefreshKey

message does not need message authentication code, since
the receiver can verify if the received CK belongs to the same
key sequences as those stored in the key buffer. Such
implicit authentication notably decreases the message
size.

Algorithm 3. CK&PID refreshment for member node

1: function Refresh_CK&PID ( ) {
2: while (RefreshKey message received) {
3: if (CKi 6¼ CKW ) {/* weak Verification*/
4: Discard this message; continue;
5: }
6: Decrypt RefreshKey to get CKi+t+2;
7: CKW = {the inactive key in key-slots};
8: Right-shift kb[1] = CKi+3 to the inactive key-slot;
9: Computing PIDk,i+3 = H(PIDk,i+2iCKi+3);
10: for (i = 2; i <= t; i++) do kb[i] fi kb[i � 1];
12: if (e „ 0) {/* there are lost CKs */
13: Recover the lost CKs by Algorithm 4;
14: CKi+t+2 fi kb[t]; e = 0;
15: }
16: }
17: }

In the following, we discuss the PID renewal mecha-
nism. Though in the MAP phase, basic identity anonymity
is provided by using PIDi for Ti instead of its real identity
IDi, there are still some security issues to be concerned. For
instance, even Ti never reveals IDi to parties other than the
CMD, it does reveal its long-term PIDi during the session.
Hence, illegal parties can track a member’s location by
PIDi, although they cannot obtain IDi.

In the proposed protocol, the PID renewal is in progress
with the CK renewal synchronously. For the jth refresh-
ment, a member Tk can compute its new pseudonym iden-
tity PIDk,j as

PIDk;j ¼ HðPIDk;j�1kCKjÞ; j ¼ 1; 2; . . . ; n: ð7Þ
Evidently, it will vary with CKj. Note that PIDk,0 of Tk is
equal to the initial PID in the MAP phase, i.e., PIDk,0 =
PIDk, k = 1,2, . . .,m. Hence, the PID of each member is
updated with forward secrecy due to the one-way CK

renewal.
The computation complexity of the refreshment algo-

rithm is light-weight, since it is only requisite to broadcast
the RefreshKey messages and perform low-cost hash oper-
ations. Periodically refreshing CK&PID can also improve
the system scalability.

2.5. DoS-tolerant authentication mechanism

The CK&PID refreshment scheme relies on the authen-
ticity of the RefreshKey messages, which makes the
RefreshKey messages attractive targets for the DoS attack.
An attacker may send a large amount of forged messages
to exhaust the nodes’ buffer before they can verify the mes-
sages, and force them to drop some authentic messages.

An efficient way for an attacker to disrupt the
RefreshKey message is to jam the communication channel
when the RefreshKey messages are transmitted. If the
attacker can predict the schedule of such messages, it
would be much easier for the attacker to disrupt such
message transmissions. Thus, the CMD is required to send
the RefreshKey packets randomly or in a pseudorandom
ways so that prediction is not feasible.

In the proposed protocol, a packet filter is designed
to efficiently verify the RefreshKey message, {CKi,EMK

(CKi+t+2iCKi+1)}. As shown in Fig. 3, in the WV phase,
the member nodes perform a fast check to identify the
forged messages, and try to discard most unintended
forged messages. The ‘‘unintended’’ refers to those ran-
dom packets used for jam purpose only, and the
‘‘intended’’ refers to those fake packets used for both
fraud and jam. Upon receiving the RefreshKey message,
each node first checks the authenticity of clear-text CKi

in {CKi, EMK(CKi+t+2iCKi+1)}. The messages that fail
this test are discarded. The computation overhead for
the WV is very low. Those intended forged messages
that slip through the WV are removed in the SV phase.
Compared with the WV, the SV performs strict check
with hash computation.

Y. Jiang et al. / Computer Communications 30 (2007) 2428–2441 2433
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To further improve the possibility that a member node
receives authentic RefreshKey packets, the node uses a
random selection policy to store and authenticate the
incoming packets that pass the above weak verification.

Without loss of generality, assume that the length of the
buffer at each member node is m. During each time interval
Trefresh, a node can save the first m copies of RefreshKey

packets that pass the WV. Then, if a new copy is to be kept,
the member node randomly selects one of the m buffers and
replaces the corresponding copy. For the kth copy (k > m),
the node keeps it with the probability m/k. It is easy to ver-
ify that if a node receives n copies of RefreshKey packets,
all copies have the same probability m/n to be kept in
one of the buffers. The key issue is to make sure that all
RefreshKey copies have the equal probability to be
selected. Otherwise, an attacker who knows the refresh-
ment rule may exploit the unequal probabilities and make
a forged RefreshKey be chosen with high possibility. There-
fore, each member node verifies EMK(CKi+t+2iCKi+1) for at
most m times and (m � 1)/2 on average. With random
selection strategy, the probability that a member node
receives an authentic RefreshKey copy can be estimated as

P ½RefreshKey packet is authentic� ¼ 1� pm; ð8Þ

where

p ¼ #forged copies

#total copies
: ð9Þ

This indicates that the longer the buffers are, the more
effective the random selection algorithm is. Due to the
exponential form of (8), a little longer buffer can remark-
ably improve the reliability of broadcasting the RefreshKey

messages. To maximize the successful DoS attack, an
attacker has to send as many forged copies as possible.
Hence, the DoS-tolerant method makes the DoS attack
so difficult that the attacker would rather use signal jam-
ming than directly attacking the member nodes.

2.6. Fault-tolerant key recovery mechanism

The RefreshKey message can also be used to recover the
lost CKs for fault-tolerant and key recovery mechanism
shown in Algorithm 4. Suppose that there are r(6t) CKs
reserved in the key buffer due to previous lost messages,
i.e., there are e = t � r empty slots in the key buffer. Let
fCK 0r; . . . ;CK 01g denote these r CKs in the key buffer
{kb[r],. . .,kb[1]}, respectively. They also belong to the same
key sequence, and satisfy HðCK 0rÞ ¼ CK 0r�1; . . . ;
HðCK 02Þ ¼ CK 01.

Upon receiving a RefreshKey message with CKk, each
node checks if H(CKi+1) = CKW, where CKW tracks the
most recently outdated CK. If it is true, the node uses
CKi+t+2 to recover the lost CKs in the same key sequence.
Fig. 7 illustrates the recovery of the lost CK(s). Assume
that a node receives a RefreshKey message with CKt+2.
Since H(CKt+2) = CKt+1 and e = 0, there is no message
loss. However, the next two renewal messages are dis-

carded because HðCK�1Þ 6¼ CKW and HðCK�2Þ 6¼ CKW .
Thus, there are t � 2 CKs in the key-buffer. The member
receives an authentic RefreshKey message with CKt+5.
Since HðCK�3Þ ¼ CKW , the member can recover the previ-
ous two lost CKs as CKt+3 = H2(CKt+5) and
CKt+2 = H3(CKt+5).

Algorithm 4. Strong verification & CK recovery

1: function Recover_CK( ) {
2: if (H(CKi+1) „ CKW) {/* Strong Verification*/
3: Discard RefreshKey message

{CKi,EMK(CKi+t+2iCKi+1)};
4: return FALSE;
5: }
6: if (e P 1) for (i = 1;i <= e;i + +) do

7: {Hi(CKk) fi kb[t � i + 1]; e = 0;}
8: return TRUE;
9: }

2.7. Dynamic participation mechanism

The dynamic participation mechanism, as a basic secu-
rity requirement, is that any active participant can join or
leave an in-progress group session while assuring the fresh-
ness of the key.

Member joining: When a participant Tm+1 joins an in-
progress session, Tm+1 is required to obtain the permission
from the chairman T1 to join the session. The correspond-
ing actions are described as follows.

Step 1. T1 sends the CMD the message J ¼ Es1

ðIDmþ1kt0kJOINÞ with its current PID1, where t 0

is timestamp and IDm+1 is the identity of the par-
ticipant Tm+1.

Step 2. The CMD decrypts J with s1(=f(ID1)) to obtain
t 0 and IDm+1, and then it checks the validity of
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CK3

PID2

PID3
*

3tCK +

CK3 PID3

RefreshKey
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CK4 PID4
*
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CKt+5 CKt+4 … CK6

CK4 PID4

CKt+5

1( ) WH CK CK==

RefreshKey
CKt+2 CKt+1 … CK3
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Fig. 7. Fault-tolerant and key recovery mechanisms.
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the timestamp t 0 and IDm+1. If it is true, the
CMD calls Tm+1.

Step 3. Tm+1 chooses a random rm+1, and computes the
secret key sm+1 as sm+1 = f(IDm+1). It uses sm+1

to encrypt {tm+1ism+1irm+1} and sends the mes-
sage fPIDmþ1;Esmþ1

ðtmþ1ksmþ1krmþ1Þg to the
CMD.

Step 4. On receiving the message from Tm+1, the CMD

extracts IDm+1 as IDm+1 = PIDm+1 ¯ h

(NiIDCMD) ¯ IDCMD, computes sm+1, and
decrypts Esmþ1

ðtmþ1ksmþ1k rmþ1Þ with sm+1. Later,
the CMD checks the authenticity of sm+1 and
tm+1. If it is true, the CMD calculates PI 0 by

PI 0 ¼ MKþ rmþ1 � smþ1;

where MK is the main key of the session. Finally,
at time tinit + i Æ Trefresh (assume that the MAP
phase ends at time tinit), the CMD sends follow-
ing message to Tm+1

CMD! T mþ1 : fPI 0; PA; InitConfKey 0g;
where InitConfKey 0 = EMK(tiCKi+t+2iTrefresh).

Step 5. Tm+1 processes the RefreshKey message accord-
ing to Algorithm 1. That is, Tm+1 computes MK

as MK ¼ PI 0modðrmþ1Þ and verifies its validity by
checking if PA is equal to EMK(IDCMD). If it
holds, Tm+1 decrypts EMK(tiCKi+t+2iTrefresh)
with MK. Tm+1 joins the session.

Member leaving: When a participant wants to leave an
in-progress session, the CMD must update all of the previ-
ous CKs to assure the freshness of CK. Assume that mem-
ber Tq has exited the session. The procedure of updating
CK can be depicted as follows:

Step 1. T1 sends the message Q ¼ Es1
ðIDqkt00kQUIT Þ to

the CMD, where IDq is the identity of Tq.
Step 2. The CMD obtains t00 and IDq by decrypting Q

with s1, and then it checks the validity of t00. If
it is true, the CMD selects a new MK 0 and fur-
ther calculates PI 0 and PA 0 as:

PA0 ¼EMK 0 ðIDCMDÞ;
PI 0 ¼CK 00 þ lcmðr00; r01; . . . ; r0q�1; r

0
qþ1; . . . ; r0mÞ;

where r0i ¼ ri þ t0, and t 0 denotes the current
time. Then, the CMD broadcasts following mes-
sage to the remaining members Ti(i „ q).

CMD! T iði 6¼ qÞ : fPI 0; InitConfKey 0g;
where InitConfKey 0 ¼ EMK 0 ðtkCKtþskT refreshÞ, and
MK 0 and CKt+2 satisfy MK 0 = Ht+2(CKt+2).

Step 3. The rest of members Ti(i „ q) attain the MK 0 as
MK 0 = PI 0 mod (ri + t 0) and verify the authen-
ticity of MK 0 by checking PA0 ¼ EMK 0 ðIDCMDÞ.
If it is true, they get {t,CKt+2,Trefresh} by
decrypting EMK 0 ðtkCKtþ2kT refreshÞ and then exe-
cute the Algorithm 1 to re-initiate the system.

The CMD updates the CKs and makes all previ-
ous CKs obsolete.

2.8. Re-initialization mechanism

The CMD needs to re-initialize the group session sys-
tem, if all n CKs in the CK sequence have been used up,
or existing member nodes have been compromised, or a
node has definitely requested CK since it has missed more
than t CKs. In the former two scenarios, all nodes are
forced to be re-initialized, while in the third scenario only
the requested node needs to be re-initialized.

Specifically, for the first case, the CMD re-computes a
new CK sequence fCK 0iji ¼ 1; 2; . . . ; ng and then broadcasts
a new InitConfkey message with CK 0tþs to all the nodes. For
the second case, the procedures of re-initialization are sim-
ilar to those when a participant leaves an in-progress ses-
sion. For the third case, theCMD only sends the
requesting node anInitConfkey message with the current
configuration parameter {tiCKi+t+2iTrefresh}. Subse-
quently, this node can periodically renew the CK&PID

by receiving the RefreshKey message.

2.9. Robustness for clock skews

The proposed protocol is robust to clock skew among
the member nodes and the CMD. Let mi(T) denote the
mapping from clock time to real time at node Ti. Then
the clock skew between node A and B is denoted as
k = jmA(T) � mB(T)j, where T is clock time. To seamlessly
renew the CK&PID, k should satisfy k < Trefresh/2, since
each member will switch the active key to the new one at
the midpoint of the renewal interval.

Assume that MAP ends at time tinit. Then at the ith
renewal period [tinit + (i � 1/2) Æ Trefresh,tinit + (i + 1/2) Æ
Trefresh], node A uses CKi+2 for data encryption while nodes
B still uses CKi+1 due to the clock skew between A and B.
However, they can still successfully communicate with each
other during this period, since both A and B hold the same
decryption key pair, {CKi+1,CKi+2}. Therefore, the
proposed protocol can ensure the worst case clock skew
of Trefresh/2, For any two member nodes A and B, the
timing margin against clock skews should satisfy

maxfjmAðT Þ � mBðT Þj; 8A;Bg < T refresh=2: ð10Þ

The proposed protocol can also tolerate the clock skew be-
tween the CMD and the member node. For the ith
CK&PID renewal, to resist DoS attacks, the CMD broad-
cast RefreshKey message at a time randomly chosen from
the interval [tinit + i Æ Trefresh � d, tinit + i Æ Trefresh + d],
d < Trefresh/4. d should satisfy d < Trefresh/4 for refreshing
the CK&PID seamlessly. Under this constraint, the timing
margin against clock skews between the CMD and any
node B is denoted as

maxfjmNCðT Þ � mBðT Þj; 8Bg < T refresh=2� 2d: ð11Þ
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2.10. Message encryption/decryption and integrity

mechanism

We also propose a privacy mechanism for the session
between any two member nodes (sender or receiver),
which offers data confidentiality via encryption and data
integrity via an integrity checker, Message Integrity Code
(MIC).

Fig. 8 shows the frame format of a message, in which the
PID identifies the pseudo-identity of the sender, KeyID

indexes which CK in the two key-slots is active, and IV

denotes the initialization vector. They are all sent unen-
crypted, only the data is encrypted and denoted by shaded
part of the frame. Once the sender generates such a frame,
it sends the frame to the receiver via the wireless link.

sender! receiver

: fHeaderkKeyIDkPIDkIVkCiphertextkMICg:

IV, PID, and KeyID offer seeds for computing the block ci-
pher and the MIC, and thus make encryption and decryp-
tion self-synchronous between the sender and receiver.
Because of the key renewal mechanism, the length of the
IV field can be small, e.g., 32 bits. Typically, the IV is var-
ied with each frame. The KeyID field is used to identify the
CK, which is used to derive the integrity key CK_I and
encryption key CK_E, respectively.

As shown in Fig. 9, the MIC field is used to provide
integrity mechanisms, which is computed from KeyID,
PID, IV, and the cipher-text data by CBC (Cipher Block
Chaining) mode. The integrity key is CK_I. The MIC is
created by using an IV that is fed into a cipher block and
its output is XOR’d with selected elements from the frame
header which is then fed into the next cipher block. The
process is continued over the remainder of the frame
header until a 128 bit MIC is obtained.

To assure data confidentiality, data encryption involves
bitwise module 2 addition of the output of a block stream

cipher with the transmitted data. Fig. 10 shows how the
data is encrypted/decrypted between the sender and the
receiver. The block cipher is seeded by the encryption key
CK_E, PID, and IV. The output key-stream is fed back
to the block cipher. This process is repeated until the entire
frame has been encrypted.

The block cipher takes the concatenation of PID, IV,
CK_E, and previous key-stream KeyStreami�1 as input.
As a result, it outputs a new stream block KeyStreami.

KeyStreami ¼ BlockCipherðKeyStreami�1;CK E; PID; IV Þ:
Thus, if the plain-text is equally divided into n blocks,
{PlainTextiji = 1,2, . . .,n}, the ith cipher text is generated
as CipherTexti = KeyStreami ¯ PlainTexti.

The proposed protocol ensures that the key-steam will
never be reused with the following measures: (1) a sender
blends its own PID into the key-steam to ensure that all
the member sharing the CK use different key-streams; (2)
a sender increases its own IV by 1 for each message to
avoid any repetition of key-stream; and (3) updating CK

periodically also guarantees that none of member nodes
reuse IV. Therefore, the proposed protocol addresses data
integrity with a MIC value and confidentiality with sym-
metric CBC encryption.

3. Security analysis

We demonstrate that the proposed protocol satisfies
security requirements for ad hoc group communications.

3.1. Identity anonymity and intracability analysis

The security requirement for concealing members’ loca-
tion information is achieved by introducing a simple iden-
tity anonymity mechanism. This feature makes an intruder
unable to trace a particular user’s location by intercepting
the conversation. Our protocol provides identity anonym-
ity in all phases by replacing members’ real identity with
a pseudonym identity.

Case 1. In the MAP phase, the real identity IDi of Ti is
replaced with PIDi(=h(NiiIDCMD) ¯ IDi ¯ IDCMD).
Since only the CMD knows the secret Ni and
h(NiiIDCMD) ¯ IDCMD, nobody except the CMD can

Header KeyID PID IV Ciper-text MIC

Fig. 8. Message frame format.

KeyIDPIDIV DATA-1 DATA-n

BC

CK_I

BC BC BC

…

… BC

MIC

Fig. 9. Message integrity check mechanisms (BC: Block Cipher).
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Fig. 10. Message encryption and decryption mechanisms.
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obtain IDi from PIDi by computing IDi = PIDi ¯ h

(NiiIDCMD) ¯ IDCMD. Given that a tracker does not
know h(NiiIDCMD) ¯ IDCMD, it cannot get IDi from
the transmitted messages and then trace the location
of a mobile member. Since each Ti’s PIDi is computed
using unique Ni, the legitimateTi cannot compute
another member Tk’s IDk by intercepting PIDk and fur-
ther impersonate Tk.
Case 2. In one-way CK&PID renewal phase, the identity
anonymity is enhanced by one-way CK refreshment
mechanism. A member Tk can renew its PID as
PIDk,j = H(PIDk,j�1iCKj), j = 1, 2, . . ., n.

3.2. Resistance to relay attack

A replay attack is a method that an intruder stores
‘‘stale’’ intercepted messages and retransmits them at a
later time. An efficient measure against a replaying attack
is to introduce timestamp t and lifetime L into the transmit-
ted messages and set an expected valid time interval Dt for
transmission delay.

All transmitted messages in each step of the proposed
protocol scheme contain timestamps. According to the
timestamp t and the interval Dt, the receiver can efficiently
verify the validity of these messages by checking if
t � ti < Dt is true, where ti is the timestamp of a message
while t is the current time when it is received. If this
inequality holds, the message is valid. Otherwise, the
CMD regards the message as a replaying message. This
mechanism resists replaying attacks to a large extent.

3.3. Privacy of group conversation

The conversation information will be encrypted with
CK. Hence, an intruder cannot know the conversation con-
tent without CK. To obtain CK in InitConfkey or
RefreshKey message, an intruder must get the secret
random ri and then use it to calculate the MK as in Eq.
(6). However, ri (i = 1,2, . . .,m) is generated secretly by
Ti. Nobody except Ti itself and the CMD know ri. Hence,
even fPID1;Es1

ðt1ks1kr1kID2k � � � kIDmÞg and {Q,y,R,PA}
can be intercepted, the intruder cannot obtain ri

(i = 1,2,. . .,m) and compute MK = (Q Æ 2y + R) mod ri,
since it is impossible for him to get the key si(si = f(IDi))
unless it knows IDi of Ti. Hence, the intruder is prohibited
from taking CK and eavesdropping any communication
content.

3.4. Prevention of fraud

To prevent fraud, the CMD and members should mutu-
ally authenticate each other. Consider the following imper-
sonation attack scenarios in MAP. This security
requirement can be achieved by verifying the correctness
of the member’s identity IDi and its secret key si.

Case 1. An intruder cannot impersonate the CMD to
cheat Ti. Since the shared key si is only known to Ti

and the CMD, and an intruder cannot send member
Ti the valid response {PI,PA} which is generated by
the CMD. Once Ti receives the pair, it computes
MK = PI mod ri and verifies the validity of MK by
checking if PA = EMK(IDCMD).
Case 2. An intruder cannot impersonate Ti to deceive
the CMD since it cannot know the real identity of Ti.
If the intruder uses a phony identity ID0i, the correspond-
ing spurious pseudonym identity PID0i can be identified
by the CMD, since the CMD can obtain ID0i by
ID0i ¼ PID0i � hðNikIDCMDÞ � IDCMD and detect the fake
ID0i. Since the real identity IDi is kept secret, nobody
except Ti itself and the CMD know the real identity.

Therefore, the MAP can efficiently prevent an intruder
from impersonating attacks become of the mandatory
mutual authentication mechanism between Ti and the CMD.

Similarly, in the CK&PID renewal phase, Ti and the
CMD are also compulsorily authenticated to each other.
Due to the one-way property of the CK sequence, the
receivers can verify whether the new CK in the RefreshKey

message belongs to the same key sequences as those stored
in the key buffer, thus verifying its authenticity by an impli-
cit authentication way.

3.5. Forward secrecy mechanism

The proposed protocol meets the security requirement
for forward secrecy, since its key distribution mechanism
can assure the one-way CK&PID refreshment by periodi-
cally or dynamically re-configuring the protocol, when (1)
a member joins or leaves an in-progress group communica-
tion session; (2) the lifetime of the keys is overdue; (3) all n

CKs in the CK sequence have been used up; (4) existing
member nodes have been compromised; and (5) a node
has definitely requested the CK, because more than t CKs
is lost.

4. Performance analysis

In this session, the computation and communication
overhead of the proposed protocol is analyzed. We quan-
tify the cost of the communication and computation over-
head when member nodes renew the CK&PID, and the
performance improvement because to the robust and reli-
able mechanism.

4.1. Steady Markov state distribution

Fig. 11 shows the distribution state of a member node
with a Markov chain. We assume that occurrence of the
CK loss or authentication failure is random and mutually
independent, and each node can finish the operation
(RequestConfKey) within the interval Trefresh, if the key-
buffer of a node is full. Let state Si denote that there are
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iCK authentication failures, and thus there are i empty slots
in the key-buffer. The state transition is triggered by three
events: packet loss, CK authentication failure and CK
authentication success. Let pf = Pr{CK authentication fails
jCK is received}, and ps = Pr{CK authentication succeeds
jCK is received}.

Without loss of generality, we also assume that all trans-
mitted messages (including both legal and forged packets)
via the wireless channel have the same loss probability pl,
which is defined as pl = Pr{Message is lost}. The assump-
tion is reasonable since the wireless channel cannot distin-
guish the different packets. According to Eqs. (8) and (9),
we have ps = pl Æ (1 � pm) and pf = pl Æ pm, where
pf + ps + pl = 1. pl represents the channel condition. A high
pl means that a wireless channel is with high loss or error
rate. pf is imposed by the forged packets, which leads to
successful DoS attacks.

Let P(k) denote the steady-state probability of state Si

that there are exactly k empty slots. According to the glo-
bal balance equation, we have

PðiÞ � ðps þ pf þ plÞ ¼ Pði� 1Þ � ðpf þ plÞ ði ¼ 1; . . . ; tÞ:

Pð0Þ � ðpf þ plÞ ¼ PðtÞ þ
Pt�1

i¼1

PðiÞ � ps:

8><
>:

ð12Þ
Considering

Pt
k¼0P ðkÞ ¼ 1, each P(k) is derived as

P ð0Þ ¼ ð1� hÞ=ð1� htþ1Þ:
P ðiÞ ¼ P ð0Þ � hk ðk ¼ 1; 2; . . . ; tÞ:

(
ð13Þ

where h = pf + pl.

4.2. Communication overhead

To evaluate the communication overhead between the
CMD and a member node, we normalize the expected com-
munication overhead CComm by the cost of transmitting
RefreshKey messages. Let Cinit and Crefresh denote commu-
nication costs for sending the InitConfKey and the
RefreshKey message, respectively. Let a = Cinit/Crefresh be
the ratio of communication cost of InitConfKey to that
of RefreshKey. Clearly, a > 1 since the InitConfKey

message needs more bandwidth or resources than the
RefreshKey message.

It is necessary for the CMD to transmit the InitConfKey

message when the following events occur:

Case 1. When a participant joins an in-progress group
communication session, the CMD sends this new

member the current configuration via an InitConfkey

message.
Case 2. When a participant leaves a group communica-
tion session, the CMD will revoke this member by
broadcasting the InitConfkey message to all the other
member nodes.
Case 3. When all n CKs have been used, the CMD re-
computes a new key sequence fCK 0iji ¼ 1; 2; . . . ; ng and
broadcasts the InitConfkey message to all members.
Case 4. A member node has definitely requested the
CK, since it missed more than t RefreshKey messages.
For this event, the CMD sends an InitConfkey mes-
sage containing the configuration parameters to the
node.

Note that in cases 2 and 3, all member nodes are
required to be re-initialized, while in cases 1 and 4 the
requesting node needs to be re-initialized by sending the
InitConfkey message. Except for these cases, the CMD

broadcasts the RefreshKey message periodically. So the
expected communication cost of a node is

E½CComm� ¼ Cinit �
1

n
þ P ðtÞ þ pe þ pj

� �
þ Crefresh �

Xt�1

k¼0

P ðkÞ;

where pe and pj denote the probability of a member joining
or leaving a group session, respectively. According to
Eq. (13), the communication cost can be normalized with
Crefresh as:

Ccomm ¼ a � 1

n
þ ht � Pð0Þ þ pe þ pj

� �
þ
Xt�1

k¼0

hk � P ð0Þ: ð14Þ

If the value of CComm is close to 1, it indicates that most
RefreshKey messages should work well. If CComm is close
to a, RefreshKey messages works less efficiently. To analyze
the dynamics of the CK refreshment, we assume that the
frequency of joining or leaving a group session is low so
that Eq. (14) can be approximated as

Ccomm ¼ a � 1

n
þ ht � Pð0Þ

� �
þ
Xt�1

k¼0

hk � P ð0Þ:

Fig. 12 shows the function relation between CComm and
the key buffer length t, where n = 500, pl = 0.05–0.45,
and a = 10. The choice of a implies that the cost of trans-
mitting and dealing with InitConfKey message is higher
than that of transmitting RefreshKey message, since the
packet size of InitConfKey is larger than that of RefreshKey.
It can be seen that the key-buffer length in each member
node determines the communication cost. A small t will
lead to a high communication overhead while a large t

can remarkably reduce the communication overhead.
Fig. 12 also shows that the proposed protocol is efficient
in terms of communication overhead even under serious
DoS attacks (pf P 0.25) and packet loss (pl P 0.25), since
the normalized communication cost CComm approaches 1
if t P 10.

ps

ps
1

S0

ps

S1 St - 1 St
…

pf +pl pf+ pl pf+ pl pf+ pl

Fig. 11. State transition diagram of each member node.
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4.3. Computation overhead

The main computation overhead in member nodes is the
modular arithmetic per InitConfkey message and the hash
computation per RefreshKey message. Let Nm and Nh

denote the number of modular arithmetic per InitConfKey
message and hash computations per RefreshKey message,
respectively. If there are exactly k < t empty slots, Nh can
be computed as

N h ¼
0; if CK message is lost;

1; if CK strong authentication fails;

kþ 1; if CK authentication succeeds:

8><
>: ð15Þ

If all t slots in the key-buffer are empty due to the CK

authentication failure or message loss, the member node
can explicitly initiate a RequestConfKey message to obtain
the new CK. Thus, it needs to do (t + 1) extra hash compu-
tations according to the received CK, and we can have

N h ¼
tþ 1; if CK message is lost;

tþ 2; if CK strong authentication fails;

tþ 1; if CK authentication succeeds:

8><
>: ð16Þ

Therefore, if there are k empty slots, the corresponding
conditional expected value of Nh, can be derived as

E½N hjk slots� ¼
pf þ ðkþ 1Þ � ps ðk < tÞ;
ðtþ 2Þ � pf þ ðtþ 1Þ � ðps þ plÞ ðk ¼ tÞ;

(

ð17Þ

and the expected value of Nh is calculated as

E½N h� ¼
Xt

k¼0

E½N hjk slots� � P ðkÞ ¼ ðtþ 1þ pf Þ � Pð0Þ � ht

þ
Xt�1

k¼0

fðkþ 1Þ � ð1� plÞ � k � pfg � P ð0Þ � hk: ð18Þ

Let that CHash and CModular denote the cost of calculating a
single modular arithmetic and hash operation, respectively.
Let b = CModular/CHash. Similar to the evaluation of the
communication costs, the expected computation costs of
a member node can be computed as follows

E½CComp� ¼ Chash � E½N h� þ CModular �
1

n
þ P ðtÞ þ pe þ pj

� �
:

According to Eq. (13), the computation cost of member
nodes can be normalized with CModular as

Ccomp ¼ E½N h� þ b � 1

n
þ Pð0Þ � ht þ pe þ pj

� �
: ð19Þ

To reduce the analysis complexity, we also assume that the
frequency of joining or exiting a group session is low. So, pe

and pj in Eq. (19) can be ignored. Figs. 13 and 14 show the
normalized computation cost Ccomp as the function of pl

and pf under the assumption of n = 500 and b = 5, respec-
tively. The computation cost of each node is low, since each
node only computes less than three hash functions per
CK&PID renewal even in the worst case, e.g., where
pl = 0.45 and pf = 0.45.

Fig. 15 depicts Ccomp as the function of the key buffer
length t, where both pf and pl vary from 0.05 to 0.45. It can
be seen that the desirable number of key buffer is t P 15 to
keep communication and computation cost low, i.e., the
normalized communication or computation cost is within
the range of 1–1.5. Therefore, the proposed protocol is effi-
cient in terms of communication and computation overhead,
even under heavy DoS attacks and high packet loss rate.

4.4. Comparison with existing protocol

The performance comparison between the proposed
protocol and the one in [6] is listed in Table 2. The number
of modular arithmetic, symmetric encryption/decryption
operations, and message transmissions are compared. The

Pf = 0.05
Pf = 0.15
Pf = 0.25
Pf = 0.35
Pf = 0.45

a

d e

b c

Fig. 12. Normalized communication costs CComm vs. the key buffer length t at member node: pf = 0.05–0.45. (a) p1 = 0.05, n = 500, a = 10. (b) p1 = 0.15,
n = 500, a = 10. (c) p1 = 0.25, n = 500, a = 10. (d) p1 = 0.35, n = 500, a = 10. (e) p1 = 0.45, n = 500, a = 10.
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security features of the two protocols are also listed side by
side in the table. The differences between them are shown in
shaded rows. It can be seen that the communication and
computation complexity required for the proposed proto-

col is similar to that in [6], but the proposed protocol
achieves the salient features, such as identity anonymity
and location intracability, periodically one-way CK&PID

refreshment, dynamically joining and leaving an in-pro-
gress session, forward secrecy, data privacy, DoS-tolerance
for broadcasting refreshment message, fault-tolerance for
recovering the lost refreshment message, robustness for
resisting the clock skews among member nodes, and seamless
key switch without disrupting ongoing data transmissions.

5. Conclusion

In this paper, a novel secure and reliable authentication
protocol has been developed for group communications in
ad hoc networks. The protocol has several attractive fea-
tures, such as identity anonymity and location intracability,
one-way CK&PID refreshment, dynamically joining and
leaving an in-progress session, forward secrecy, data pri-
vacy, etc. In addition, reliability enhancement features, such
as DoS- and fault-tolerance, clock skews resistance, and
seamless key switch, can improve the robustness, and two-
phase packet filters with random selection strategies can tol-
erate the DoS attack and improve the system survivability.
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