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Abstract

In this paper, we study the qualitative properties of linear and nonlinear delay switched systems which have stable and unstable
subsystems. First, we prove some inequalities which lead to the switching laws that guarantee: (a) the global exponential stability
to linear switched delay systems with stable and unstable subsystems; (b) the local exponential stability of nonlinear switched delay
systems with stable and unstable subsystems. In addition, these switching laws indicate that if the total activation time ratio among
the stable subsystems, unstable subsystems and time delay is larger than a certain number, the switched systems are exponentially
stable for any switching signals under these laws. Some examples are given to illustrate the main results.
c© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Switched systems are systems that consist of several subsystems and controlled by switching laws. Such systems
are often encountered in biochemical systems, control systems, etc., (see [5,4]). For switched systems, one of the most
important and challenging problems is to find the switching laws, i.e., what switching laws can guarantee the switched
systems stable.

Recently, there has been increasing interest in the stability analysis of switched systems, and switching control
design of such systems (see [8,9,11–13] and the references therein). Using common Lyapunov functions, [18] studies
stability for linear switched systems and shows that a common Lyapunov function exists when the stability matrices Ai
commute pairwise, i.e. Ai A j = A j Ai , i, j = 1, 2, . . . , N . Exponential stability is studied for some special linear time-
invariant switched system in [23,11]. Similar results are presented in [7]. Lie algebra is used to prove the existence
of common Lyapunov function and then the stability of switched systems is derived in [16,15,1]. The stability for
nonlinear-switched systems is proposed in [4,2,3] and the linearization method is developed in [2]. Multiple Lyapunov
function techniques are used in [10–20] to investigate the stability of the switched systems. The stability of some slow-
switched control systems is studied in [12–25]. Lagrange stability for switched systems is considered in [4,3,24]. A
review of stability results covering the majority of research works can be found in [6]. Stability analysis of switched
systems with stable and unstable subsystems is driven in [26,27].

∗ Corresponding author.
E-mail address: xzliu@math.uwaterloo.ca (X. Liu).

1751-570X/$ - see front matter c© 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.nahs.2006.03.001

http://www.elsevier.com/locate/nahs
mailto:xzliu@math.uwaterloo.ca
http://dx.doi.org/10.1016/j.nahs.2006.03.001


Y. Zhang et al. / Nonlinear Analysis: Hybrid Systems 1 (2007) 44–58 45

However, the studies for the stabilities of switched systems have mainly focused on the systems without time
delay due to its difficulty. In this paper, we study stability properties of linear and nonlinear switched delay systems
with stable and unstable subsystems. Firstly, we prove some useful inequalities in Section 2. Then switching laws
are proposed in Section 3, which ensures that the switched delay system is stable or exponentially stable for any
switching signals under the laws. Linear switched delay systems are studied in Section 4 and some switching laws are
given, which guarantee the switched system to be stable or globally exponentially stable. In Section 5, using delay
inequalities instead of linearization, which may lose some nonlinear properties, we study a nonlinear switched system
and propose a switching law that guarantees the stability or local exponential stability of the systems. Some examples
are given to illustrate the main results. Section 6 concludes the paper.

2. Preliminary

In this section, some useful notations are given, and necessary inequalities are derived.
Let R be the set of real numbers, R+ the set of nonnegative numbers, Rn the n-dimensional space, Rn×m the

n × m matrix space, respectively. If A = (ai j ) ∈ Rn×m , denote ‖A‖ = max1≤ j≤m
∑n

i=1 |ai j | the norm of A. If
A = (ai j ) ∈ Rn×n , denote λ(A) the eigenvalue of A, Reλ(A) the real part of λ(A).

Let Cτ = {φ : φ ∈ C[[−τ, 0], Rn
]}, where τ > 0 is a constant. If x ∈ Cτ , define xt = x(t + θ), θ ∈ [−τ, 0] and

‖xt‖ = supt−τ≤s≤t ‖x(s)‖.
Denote

Γ (λ, t − s) =

{
1, t ≤ s,
eλ(t−s), t ≥ s;

K1 = {φ|φ ∈ C[R+, R+], φ(0) = 0, φ is nondecreasing}.

ℵ = {1, 2, . . .},

ℵi = {1, 2, . . . , Ni }.

In this paper, we study the stability of the following switched delay system

x ′(t) = fσi (t, x(t), xt ), σi ∈ ℵi , (2.1)

where x ∈ Rn, fσi ∈ C[R × Rn
× Cτ , Rn

], fσi (t, 0, 0) = 0 for any σi ∈ ℵi , i = 1, 2.
In the rest of the paper, let ik ∈ ℵ1 ∪ℵ2 denote the ik th subsystem, tk the switching points, [tk, tk+1) the time period

over which the ik th subsystem is activated. Let xσ1(t) and xσ2(t) denote the solution of systems

x ′(t) = fσ1(t, x(t), xt ), σ1 ∈ ℵ1, (2.2)

and

x ′(t) = fσ2(t, x(t), xt ), σ2 ∈ ℵ2, (2.3)

respectively, i.e.,

x ′
σ1

(t) = fσ1(t, xσ1(t), xσ1t ), σ1 ∈ ℵ1,

x ′
σ2

(t) = fσ2(t, xσ2(t), xσ2t ), σ2 ∈ ℵ2.

Let kσi (t) be the number of times that the σi th subsystem of (2.1) is switched on during [t0, t), πσi (t) be the total
activation time of σi th subsystem of (2.1) during [t0, t).

Assume that

(B1) tk+1 − tk ≥ τ, limk→∞ tk = ∞;
(B2) The switching sequence is minimal, i.e., ik 6= ik+1;
(B3) Each fσi (t, x, y) is locally Lipschitzian in x and y.

Our aim is to find switching laws under which switched delay system (2.1) is stable or exponentially stable.
Assumption (B1) is introduced to prevent the problem from being trivial. In fact, if after t ≥ tk the system (2.1)
is not switched any more, then the switched system becomes

x ′

ik
(t) = fik (t, xik (t), xik t ), t ≥ tk
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and the convergent property of (2.1) is trivially dependent on the ik th subsystem. Assumption (B2) means that for any
consecutive interval [tk−1, tk), [tk, tk+1), the active subsystems are different. The assumption (B3) guarantees that all
subsystems have a unique solution for any initial condition.

Definition 2.1. For given switching signal, the equilibrium point of system (2.1) is said to be

(i) stable, if for any given t0 and ε > 0, there exists a δ > 0 such that ‖xt0‖ < δ implies that ‖x(t; t0, xt0)‖ ≤ ε for
t ≥ t0. Otherwise, the system is said to be unstable;

(ii) locally exponentially stable, if there exist M > 0, γ > 0 and ε > 0 such that if ‖xt0‖ < γ , the solution
x(t; t0, xt0) of (2.1) satisfies

‖x(t; t0, xt0)‖ ≤ Me−ε(t−t0), t ≥ t0;

(iii) globally exponentially stable, if there exist M > 0 and ε > 0 such that the solution x(t; t0, xt0) of (2.1) satisfies

‖x(t; t0, xt0)‖ ≤ M‖xt0‖e−ε(t−t0), t ≥ t0.

Theorem 2.1. Assume that α > 0, V ∈ C1
[R, R+], g ∈ K1, h(s, ·) ∈ K1 for any fixed s ∈ R, and

V ′(t) ≤ −αV (t) + g(‖Vt‖)‖Vt‖ +

∫ t

t0
h(t − s, V (s))V (s)ds.

If there exist constants r > 0 and λ > 0 such that

g(r) +

∫
∞

0
h(s, r)eλsds < α,

then there exists an ε > 0 such that ‖Vt0‖ < r implies that

V (t) ≤ ‖Vt0‖e−ε(t−t0), t ≥ t0,

where ε satisfies

ε + g(r)eετ
+

∫
∞

0
h(s, r)eεsds < α.

Proof. Since g(r) +
∫

∞

0 h(s, r)eλsds < α, there exists an ε, 0 < ε ≤ λ, such that

g(r)eετ
+

∫
∞

0
h(s, r)eεsds < α − ε.

Let

P(t) = V (t)Γ (ε, t − t0).

Then P(t) ≥ V (t), ‖Pt‖ ≥ ‖Vt‖ and for t > t0,

P ′(t) = V ′(t)Γ (ε, t − t0) + εV (t)Γ (ε, t − t0)

≤ Γ (ε, t − t0)
[
−αV (t) + g(‖Vt‖)‖Vt‖ +

∫ t

t0
h(t − s, V (s))V (s)ds

]
+ εV (t)Γ (ε, t − t0)

≤ −αP(t) + g(‖Vt‖)‖Pt‖eετ
+

∫ t

t0
h(t − s, V (s))P(s)eε(t−s)ds + εP(t)

≤ (−α + ε)P(t) + g(‖Vt‖)‖Pt‖eετ
+

∫ t

t0
h(t − s, V (s))P(s)eε(t−s)ds. (2.4)

We claim that ‖Pt0‖ < r implies P(t) ≤ ‖Pt0‖, which can be justified as follows.
For any d ∈ (1, r/‖Pt0‖), P(t) ≤ d‖Pt0‖ = d‖Vt0‖ =: M .
If it is not true, then there must exist a t∗ > t0, such that

P(t∗) = M, P(t) < M, t < t∗.
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Thus P ′(t∗) ≥ 0. On the other hand, it follows from (2.4) that

P ′(t∗) ≤ (−α + ε)P(t∗) + g(‖Vt∗‖)‖Pt∗‖eετ
+

∫ t∗

t0
h(t∗ − s, V (s))P(s)eε(t∗−s)ds

≤ (−α + ε)M + g(‖Pt∗‖)eετ M +

∫ t∗

t0
h(t∗ − s, P(s))Meε(t∗−s)ds

≤ M
[
(−α + ε) + g(r)eετ

+

∫
∞

0
h(s, r)eεsds

]
< 0,

this contradiction implies P(t) ≤ d‖Pt0‖. Let d → 1, we obtain P(t) ≤ ‖Pt0‖ and thus

V (t) ≤ ‖Vt0‖e−ε(t−t0).

The proof is complete. �

3. Switching laws

In this section, we first prove an inequality for switched delay system (2.1). Based on the inequality, switching laws
are derived which guarantee stability of switched delay system (2.1).

Theorem 3.1. Assume that there exist Mσi , εσi > 0 such that

‖xσ1(t)‖ ≤ Mσ1‖xσ1t0‖e−εσ1 (t−t0), t ≥ t0, σ1 ∈ ℵ1, (3.1)

and

‖xσ2(t)‖ ≤ Mσ2‖xσ2t0‖eεσ2 (t−t0), t ≥ t0, σ2 ∈ ℵ2. (3.2)

Then for any function xt0 ∈ Cτ , the solution x(t) of switched delay system (2.1) satisfies

‖x(t)‖ ≤ ‖xt0‖
∏

σi ∈ℵi

M
kσi
σi exp

 ∑
σ1∈ℵσ1

εσ1 [kσ1(t)τ − πσ1(t)] +

∑
σ2∈ℵ2

εσ2πσ2(t)

 . (3.3)

Proof. We replace Mσ1 , Mσ2 , εσ1 , εσ2 with Mσ1,1, Mσ2,2, εσ1,1, εσ2,2. Let t j−1, t j and t j+1 be consecutive switching
points.

(1) Suppose that the lth subsystem of (2.2) is active on the interval [t j , t j+1),
– if the i th subsystem of (2.2) is active on the interval [t j−1, t j ), then

‖x(t)‖ ≤ Ml,1‖xt j ‖e−εl,1(t−t j )

≤ Mi,1 Ml,1‖xt j−1‖e−εi,1(t j −t j1−τ)e−εl,1(t−t j ), t ∈ [t j , t j+1);

– if the i th subsystem of (2.3) is active on the interval [t j−1, t j ), then

‖x(t)‖ ≤ Ml,1‖xt j ‖e−εl,1(t−t j )

≤ Ml,1 Mi,2‖xt j−1‖e−εl,1(t−t j )eεi,2(t j−1−t j ), t ∈ [t j , t j+1);

(2) Suppose that the lth subsystem of (2.3) is active on the interval [t j , t j+1),
– if the i th subsystem of (2.2) is active on the interval [t j−1, t j ), then

‖x(t)‖ ≤ Ml,2‖xt j ‖eεl,2(t−t j )

≤ Mi,1 Ml,2‖xt j−1‖e−εi,1(t j−1−t j −τ)eεl,2(t−t j ), t ∈ [t j , t j+1);

– if the i th subsystem of (2.3) is active on the interval [t j−1, t j ), then

‖x(t)‖ ≤ Ml,2‖xt j ‖eεl,2(t−t j )

≤ Mi,2 Ml,2‖xt j−1‖eεi,2(t j −t j−1)eεl,2(t−t j ), t ∈ [t j , t j+1).
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Using iterative method, we can obtain

‖x(t)‖ ≤ ‖xt0‖
∏

σi ∈ℵi

M
kσi
σi exp

 ∑
σ1∈ℵσ1

εσ1 [kσ1(t)τ − πσ1(t)] +

∑
σ2∈ℵ2

εσ2πσ2(t)

 .

The proof is complete. �

Specially, if ℵ1 = ℵ2 = {1}, then (2.1) becomes

x ′(t) = fσ (t, x(t), xt ) (3.4)

where σ = 1, 2. Let x1(t) and x2(t) be the solution of system, then

x ′

1(t) = f1(t, x1(t), x1t ) (3.5)

x ′

2(t) = f2(t, x2(t), x2t ) (3.6)

respectively, k(t) be the times of subsystem (3.5) being switched on during the interval [t0, t), π1(t) and π2(t) are the
total time of subsystems (3.5), (3.6) used respectively on [t0, t), then we have

Corollary 3.1. Assume that there exist M1, M2 > 0 and ε1, ε2 > 0, such that

‖x1(t)‖ ≤ M1‖x1t0‖e−ε1(t−t0), t ≥ t0,

‖x2(t)‖ ≤ M2‖x2t0‖eε2(t−t0), t ≥ t0.

Then the solution of switched delay system (3.4) satisfies

‖x(t)‖ ≤ ‖xt0‖(M1 M2)
k(t) exp{ε1k(t)τ − ε1π1(t) + ε2π2(t)}. (3.7)

Define switching laws as follows:

(S1)
π2(t)
π1(t)

+
k(t) ln M1 M2

ε2π1(t)
+

k(t)ε1τ
ε2π1(t)

≤
ε1
ε2

, t ≥ T for some T ;

(S2) lim supt→∞[
π2(t)
π1(t)

+
k(t) ln M1 M2

ε2π1(t)
+

k(t)ε1τ
ε2π1(t)

] =
ε1
ε2

;

(S3) lim supt→∞[
π2(t)
π1(t)

−
ε1
ε2

+
k(t) ln M1 M2

ε2π1(t)
+

k(t)ε1τ
ε2π1(t)

] < 0.

We can prove the following theorems.

Theorem 3.2. Assume that the conditions of Corollary 3.1 hold. Then

(1) switching laws (S1) and (S2) imply that switched delay system (3.4) is stable;
(2) switching laws (S3) implies that switched delay system (3.4) is exponentially stable.

Proof. Without loss of generality, suppose that switched delay system (3.4) is{
x ′(t) = f1(t, x, xt ), t ∈ [t2k, t2k+1),

x ′(t) = f2(t, x, xt ), t ∈ [t2k−1, t2k),

where t j are switching points, j ∈ ℵ. Then, when t ∈ [t2k, t2k+1)

‖x(t)‖ ≤ M1‖xt2k ‖e−ε1(t−t2k )

≤ M1 M2‖xt2k−1‖eε2(t2k−t2k−1)e−ε1(t−t2k )

≤ M1 M2 M1‖xt2k−2‖eε2(t2k−t2k−1)e−ε1[(t−t2k )+(t2k−1−t2k−2−τ)]

≤ (M1 M2)
2
‖xt2k−3‖eε2[(t2k−t2k−1)+(t2k−2−t2k−3)]e−ε1[(t−t2k )+(t2k−1−t2k−2−τ)]

≤ · · · · · ·

≤ (M1 M2)
k(t)‖xt0‖eε2π2(t)e−ε1π1(t)+k(t)ε1τ

= ‖xt0‖eε2π2(t)−ε1π1(t)+k(t)ε1τ+k(t) ln M1 M2 .
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So

‖x(t)‖ ≤ ‖xt0‖e
ε2π1(t)

[
π2(t)
π1(t) −

ε1
ε2

+
k(t)ε1τ

ε2π1(t) +
k(t) ln M1 M2

ε2π1(t)

]
.

It is easy to see that the result (1) of Theorem 3.2 is true from about inequality. Next, we prove the result (2).
Let

lim sup
t→∞

[
π2(t)
π1(t)

−
ε1

ε2
+

k(t) ln M1 M2

ε2π1(t)
+

k(t)ε1τ

ε2π1(t)

]
= −2ε∗.

Without loss of generality, suppose that

π2(t)
π1(t)

−
ε1

ε2
+

k(t) ln M1 M2

ε2π1(t)
+

k(t)ε1τ

ε2π1(t)
< −ε∗, t ≥ t0.

Then π1(t) ≥
ε2
ε1

π2(t), and

ε2π1(t)
[
π2(t)
π1(t)

−
ε1

ε2
+

k(t)ε1τ

ε2π1(t)
+

k(t) ln M1 M2

ε2π1(t)

]
≤ −ε∗ε2π1(t)

≤ −ε∗ε2π1(t)/2 − ε∗ε2π1(t)/2

≤ −
ε∗ε2

2
π1(t) −

ε∗ε2
2

2ε1
π2(t)

≤ −ε[π1(t) + π2(t)] = −ε(t − t0),

where ε = min{
ε∗ε2

2 ,
ε∗ε2

2
2ε1

}. Thus

‖x(t)‖ ≤ ‖xt0‖e−ε(t−t0).

The proof is complete. �

For switched delay system (2.1), define switching law as following:

(S4)
∑

σi ∈ℵi
[kσi (t) ln Mσi + εσ1 kσ1(t)τ + εσ2πσ2(t)] ≤

∑
σ1∈ℵ1

εσ1πσ1(t), t ≥ T for some T ;
(S5) lim supt→∞

1∑
σ1∈ℵ1

εσ1πσ1 (t)

∑
σi ∈ℵi

[kσi (t) ln Mσi + εσ1 kσ1(t)τ + εσ2πσ2(t)] = 1;

(S6) lim supt→∞
1∑

σ1∈ℵ1
εσ1πσ1 (t)

∑
σi ∈ℵi

[kσi (t) ln Mσi + εσ1 kσ1(t)τ + εσ2πσ2(t)] < 1.

Theorem 3.3. Assume that the conditions of Theorem 3.1 hold. Then the switched systems (2.1) is

(1) switching laws (S4) and (S5) imply that switched delay system (2.1) is stable;
(2) switching laws (S6) implies that switched delay system (2.1) is exponentially stable.

The proof is similar to that of Theorem 3.2.

4. Linear switched delay systems

In this section, we study the linear switched delay systems

x ′(t) = Aσi x(t) + Bσi x(t − τ(t)) +

∫ t

t0
hσi (t − s)x(s)ds, (4.1)

where x ∈ Rn , Aσi , Bσi ∈ Rn×n , hσi ∈ C[R+, Rn
], σi ∈ ℵσi , i = 1, 2, 0 ≤ τ(t) ≤ τ .

Without loss of generality, we make the following assumptions.

(A1) Φσi ∈ Rn×n , satisfy{
∂Φσi (t, s)

∂t
= Aσi Φσi (t, s),

Φσi (s, s) = I,

where I is an identity matrix, and σi ∈ ℵi , i = 1, 2.
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(A2) there exist λσi > 0 and Mσi ≥ 1, such that

‖Φσ1(t, t0)‖ ≤ Mσ1e−λσ1 (t−t0),

and

‖Φσ2(t, t0)‖ ≤ Mσ2 eλσ2 (t−t0).

Let xσ1(t) and xσ2(t) be the solutions of the subsystems

x ′
σ1

(t) = Aσ1 xσ1 + Bσ1 xσ1(t − τ(t)) +

∫ t

t0
hσ1(t − s)xσ1(s)ds, (4.2)

x ′
σ2

(t) = Aσ2 xσ2 + Bσ2 xσ2(t − τ(t)) +

∫ t

t0
hσ2(t − s)xσ2(s)ds, (4.3)

then we have the following theorems.

Theorem 4.1. Assume that (A1), (A2) hold and ∃εσi > 0, i = 1, 2, such that

−λσ1 + Mσ1‖Bσ1‖eεσ1 τ
+

∫
∞

0
Mσ1‖hσ1(s)‖eεσ1 sds < −εσ1 ,

λσ2 + Mσ2‖Bσ2‖ +

∫
∞

0
Mσ2‖hσ2(s)‖e−εσ2 sds < εσ2 .

Then switched delay systems (4.1) is

(1) stable, if ∃T > 0, such that

1∑
σ1∈ℵ1

εσ1πσ1(t)

∑
σi ∈ℵi

[kσi ln Mσi + εσ1 kσ1τ + εσ2πσ2(t)] ≤ 1, t ≥ T (4.4)

and

lim sup
t→∞

1∑
σ1∈ℵ1

εσ1πσ1(t)

∑
σi ∈ℵi

[kσi ln Mσi + εσ1 kσ1τ + εσ2πσ2(t)] = 1, (4.5)

(2) globally exponentially stable, if

lim sup
t→∞

1∑
σ1∈ℵ1

εσ1πσ1(t)

∑
σi ∈ℵi

[kσi ln Mσi + εσ1 kσ1τ + εσ2πσ2(t)] < 1. (4.6)

Proof. By the variation of parameters, the solution of subsystem (4.2) is

xσ1(t) = Φσ1(t, t0)xσ1(t0) +

∫ t

t0
Φσ1(t, s)Bσ1 xσ1(s − τ(s))ds +

∫ t

t0
Φσ1(t, s)

∫ s

t0
hσ1(s − θ)xσ1(θ)dθds.

Taking the norm on both sides, we have

‖xσ1(t)‖ ≤ ‖Φσ1(t, t0)‖‖xσ1(t0)‖ +

∫ t

t0
‖Φσ1(t, s)‖‖Bσ1‖‖xσ1(s − τ(s))‖ds

+

∫ t

t0

∫ s

t0
‖Φσ1(t, s)‖‖hσ1(s − θ)‖‖xσ1(θ)‖dθds

≤ Mσ1‖xσ1t0‖e−λσ1(t−t0) +

∫ t

t0
Mσ1 e−λσ1 (t−s)

‖Bσ1‖‖xσ1s‖ds

+

∫ t

t0

∫ s

t0
Mσ1 e−λσ1 (t−s)

‖hσ1(s − θ)‖‖xσ1(θ)‖dθds

=: P∗
σ1

(t), t ≥ t0.
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Let

Pσ1(t) =

{
P∗

σ1
(t), t ≥ t0,

Mσ1‖xσ1t0‖, t0 − τ ≤ t ≤ t0.

Then Pσ1(t) ≥ ‖xσ1(t)‖, t ≥ t0 − τ and

P ′
σ1

(t) = −λσ1 Pσ1(t) + Mσ1‖Bσ1‖‖xσ1t‖ +

∫ t

t0
Mσ1‖hσ1(t − s)‖‖xσ1(s)‖ds

≤ −λσ1 Pσ1(t) + Mσ1‖Bσ1‖‖Pσ1t‖ +

∫ t

t0
Mσ1‖hσ1(t − s)‖Pσ1(s)ds.

For any K > 1, we claim that

Pσ1(t) < K‖Pσ1t0‖e−εσ1 (t−t0). (4.7)

In fact, if (4.7) is not true, then ∃t∗ > t0, such that

Pσ1(t
∗) = K‖Pσ1t0‖e−εσ1 (t∗−t0), and

Pσ1(t) ≤ K‖Pσ1t0‖e−εσ1 (t−t0), t < t∗.

Thus P ′
σ1

(t∗) ≥ −εσ1 K‖Pσ1t0‖e−εσ1 (t∗−t0) = −εσ1 Pσ1(t
∗). On the other hand

P ′
σ1

(t∗) ≤ −λσ1 Pσ1(t
∗) + Mσ1‖Bσ1‖‖Pσ1t∗‖ +

∫ t∗

t0
Mσ1‖hσ1(t

∗
− s)‖Pσ1(s)ds

≤ −λσ1 Pσ1(t
∗) + Mσ1‖Bσ1‖Pσ1(t

∗)eεσ1 τ
+

∫ t∗

t0
K Mσ1‖hσ1(t

∗
− s)‖‖Pσ1t0‖e−εσ1 (s−t0)ds

= Pσ1(t
∗)

[
−λσ1 + Mσ1‖Bσ1‖eεσ1 τ

+

∫ t∗

t0
Mσ1‖hσ1(t

∗
− s)‖eεσ1 (t∗−s)ds

]
< −εσ1 Pσ1(t

∗).

This contradiction implies that Pσ1(t) < K‖Pσ1t0‖e−εσ1 (t−t0). Let K → 1, we obtain Pσ1(t) ≤ ‖Pσ1t0‖e−εσ1 (t−t0) and
hence

‖xσ1(t)‖ ≤ Mσ1‖xσ1t0‖e−εσ1 (t−t0). (4.8)

Similarly, we can obtain

‖xσ2(t)‖ ≤ Mσ2‖xσ2t0‖eεσ2 (t−t0). (4.9)

Combining (4.8) and (4.9) and Theorem 3.1, we have

‖x(t)‖ ≤ ‖xt0‖
∏

σi ∈ℵi

M
kσi (t)
σi exp

{ ∑
σ1∈ℵ1

εσ1 kσ1(t)τ −

∑
σ1∈ℵ1

εσ1πσ1(t) +

∑
σ2∈ℵ2

εσ2πσ2(t)

}
.

The results of (1) and (2) of Theorem 4.1 can be obtained by Theorem 3.2. The proof is complete. �

Remark 1. It should be pointed out that, in Theorem 4.1, (4.4)–(4.6) are actually switching laws which guarantee the
switched delay system (4.1) is stable or locally exponentially stable.

Corollary 4.1. Assume that ∃λσi > 0, εσ2 > 0 such that

(i) λ(AT
σ1

+ Aσ1) ≤ −2λσ1 , λ(AT
σ2

+ Aσ2) ≤ 2λσ2 ;
(ii) −λσ1 + ‖Bσ1‖eεσ1 τ

+
∫

∞

0 ‖hσ1(s)‖eεσ1 sds < −εσ1 ;
(iii) λσ2 + ‖Bσ2‖ +

∫
∞

0 ‖hσ2(s)‖e−εσ2 sds < εσ2 .

Then the switched delay systems (4.1) is
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(1) stable, if ∃T > 0, such that

1∑
σ1∈ℵ1

εσ1πσ1(t)

∑
σi ∈ℵi

[εσ1 kσ1τ + εσ2πσ2(t)] ≤ 1, t ≥ T

and

lim sup
t→∞

1∑
σ1∈ℵ1

εσ1πσ1(t)

∑
σi ∈ℵi

[εσ1kσ1τ + εσ2πσ2(t)] = 1,

(2) globally exponentially stable, if

lim sup
t→∞

1∑
σ1∈ℵ1

εσ1πσ1(t)

∑
σi ∈ℵi

[εσ1kσ1τ + εσ2πσ2(t)] < 1.

Proof. Let Vσi = xT
σi

xσi , then the derivative of Vσi along the system x ′
σi

= Aσi xσi is

V ′
σi

= xT
σi

(AT
σi

+ Aσi )xσi .

Thus

•

V ′
σ1

(t) ≤ −2λσ1 Vσ1(t) ⇒ Vσ1(t) ≤ Vσ1(t0)e
−2λσ1 (t−t0), and ‖Φσ1(t, t0)‖ ≤ e−λσ1 (t−t0); (4.10)

•

V ′
σ2

(t) ≤ 2λσ2 Vσ2(t) ⇒ Vσ2(t) ≤ Vσ2(t0)e
2λσ2 (t−t0), and ‖Φσ2(t, t0)‖ ≤ eλσ2 (t−t0). (4.11)

All the results of this theorem can be obtained by (4.10) and (4.11) and Theorem 4.1. The proof is complete. �

We illustrate the results of Corollary 4.1 with a simple linear switched delay system.

Example 4.1.

A1 =

[
−3 10
−10 −3.5

]
, B1 =


1
2e

0

1
e

0

 , h1 =

[
0 0
0 0

]
,

A2 =

[
−1 −3
3 +

√
12 1

]
, B2 =

[ 1
3e

1
4e

0 0

]
, h2 =

[
et cos2 t 0
et sin2 t 0

]
.

Hence λ(AT
1 + A1) ≤ −6, λ(AT

2 + A2) ≤ 4; ‖B1‖ =
3
2e , ‖B2‖ =

1
3e ; ‖h1‖ = 0, ‖h2‖ = et . Take

τ = 1, λ1 = 3, λ2 = 2, ε1 = 1, ε2 = 4.
Then,

−λ1 + ‖B1‖eε1τ +

∫
∞

0
‖h1(s)‖eε1sds = −3 + 3/2 < −1 = −ε1;

λ2 + 1 + ‖B2‖eτ
+

∫
∞

0
‖h2(s)‖e(−ε2+1)sds < 2 + 1 + 1/3 + 1/2 ≤ 4 = ε2.

With the switching laws from Corollary 4.1, we have

(S1) π1(t) > k1(t) + 4πσ2(t) and lim supt→∞

k1(t)+4πσ2 (t)
π1(t)

= 1

(S2) lim supt→∞

k1(t)+4πσ2 (t)
π1(t)

< 1.

By Corollary 4.1, we know that
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• if we choose the switching law (S1), then the switched delay system

x ′(t) = Ai x(t) + Bi x(t − τ(t)) +

∫ t

t0
hi (t − s)x(s)ds, (4.12)

where i = 1, 2, 0 ≤ τ(t) ≤ 1, is stable;
• if we choose the switching law (S2), then switched delay system (4.12) is globally exponentially stable.

5. Nonlinear switched delay systems

In this section, we study the nonlinear switched delay systems

x ′(t) = Aσi x + fσi (t, xt ) +

∫ t

t0
hσi (t − s, x(s))ds, (5.1)

where x ∈ Rn , Aσi ∈ Rn×n , fσi ∈ C[R × Cτ , Rn
], hσi ∈ C[R × Rn, Rn

], σi ∈ ℵi , i = 1, 2.
Denote f̂σ2(t, yt ) = e−εσ2 (t−t0) fσ2(t, xt ), ĥσ2(t − s, y(s)) = e−εσ2 (t−t0)hσ2(t − s, x(s)), where y(s) =

x(s)e−εσ2 (s−t0), then we can obtain the following results about local exponential stability.

Theorem 5.1. Assume that (A1), (A2) hold and

(i) there exist f̃σi ∈ K1 and h̃σi ∈ C[R2, R+] such that h̃σi (s, ·) ∈ K1 for any s ∈ R+ and

‖ fσ1(t, xt )‖ ≤ f̃σ1(‖xt‖)‖xt‖, ‖ f̂σ2(t, xt )‖ ≤ f̃σ2(‖xt‖)‖xt‖,

‖hσ1(t − s, x(s))‖ ≤ h̃σ1(t − s, ‖x(s)‖)‖x(s)‖, ‖ĥσ2(t − s, x(s))‖ ≤ h̃σ2(t − s, ‖x(s)‖)‖x(s)‖;

(ii) ∃εσ1 , εσ2 , r > 0 such that

εσ1 + Mσ1 f̃σ1(r)eεσ1 τ
+

∫
∞

0
Mσ1 h̃σ1(s, r)eεσ1 sds < λσ1 ,

λσ2 + Mσ2 f̃σ2(r)eεδ2 τ
+ Mσ2

∫
∞

0
h̃σ2(s, r)eεσ2 sds < εσ2 .

Then the switched delay systems (5.1) is

(1) stable, if ∃T > 0, such that∑
σi ∈ℵi

kσi (t) ln Mσi +
∑

σ1∈ℵ1

εσ1 kσ1(t)τ +
∑

σ2∈ℵ2

εσ2πσ2(t)∑
σ1∈ℵ1

εσ1πσ1(t)
≤ 1, t ≥ T (5.2)

and

lim sup
t→∞

∑
σi ∈ℵi

kσi (t) ln Mσi +
∑

σ1∈ℵ1

εσ1 kσ1(t)τ +
∑

σ2∈ℵ2

εσ2πσ2(t)∑
σ1∈ℵ1

εσ1πσ1(t)
= 1; (5.3)

(2) locally exponentially stable, if

lim sup
t→∞

∑
σi ∈ℵi

kσi (t) ln Mσi +
∑

σ1∈ℵ1

εσ1 kσ1(t)τ +
∑

σ2∈ℵ2

εσ2πσ2(t)∑
σ1∈ℵ1

εσ1πσ1(t)
< 1. (5.4)

Proof. Let xσ1(t) be the solution of the σ1th subsystem, σ1 ∈ ℵ1, i.e.

x ′
σ1

(t) = Aσ1 xσ1 + fσ1(t, xσ1 t ) +

∫ t

t0
hσ1(t − s, xσ1(s))ds, (5.5)
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By the variation of parameters, we have

xσ1(t) = Φσ1(t, t0)xσ1(t0) +

∫ t

t0
Φσ1(t, s) fσ1(t, xσ1s)ds +

∫ t

t0
Φσ1(t, s)

∫ s

t0
hσ1(s − θ, xσ1(θ))dθds.

Take norm on both sides, we have

‖xσ1(t)‖ ≤ ‖Φσ1(t, t0)‖‖xσ1(t0)‖ +

∫ t

t0
‖Φσ1(t, s)‖‖ fσ1(s, xσ1s)‖ds

+

∫ t

t0

∫ s

t0
‖Φσ1(t, s)‖‖hσ1(s − θ, xσ1(θ))‖dθds

≤ Mσ1‖xσ1t0‖e−λσ1 (t−t0) +

∫ t

t0
Mσ1 e−λσ1 (t−s) f̃σ1(‖xσ1s‖)‖xσ1s‖ds

+

∫ t

t0

∫ s

t0
Mσ1 e−λσ1 (t−s)h̃σ1(s − θ, ‖xσ1(θ)‖)‖xσ1(θ)‖dθds

=: P∗
σ1

(t), t ≥ t0.

Let

Pσ1(t) =

{
P∗

σ1
(t), t ≥ t0,

Mσ1‖xσ1t0‖, t0 − τ ≤ t ≤ t0.

Then Pσ1(t) ≥ ‖xσ1(t)‖, t ≥ t0 − τ and for t ≥ t0

P ′
σ1

(t) ≤ −λσ1 Pσ1(t) + Mσ1 f̃σ1(‖xσ1t‖)‖xσ1t‖ +

∫ t

t0
Mσ1 h̃σ1(t − s, ‖xσ1(s)‖)‖xσ1(s)‖ds

≤ −λσ1 Pσ1(t) + Mσ1 f̃σ1(‖Pσ1t‖)‖Pσ1t‖ +

∫ t

t0
Mσ1 h̃σ1(t − s, Pσ1(s))Pσ1(s)ds.

We claim that for any 0 < ‖Pσ1t0‖ < r , K ∈ (1, r
‖Pσ1t0‖

),

Pσ1(t) < K‖Pσ1t0‖e−εσ1 (t−t0). (5.6)

For contradiction, suppose that ∃t∗ > t0, such that

Pσ1(t
∗) = K‖Pσ1t0‖e−εσ1 (t∗−t0), and

Pσ1(t) ≤ K‖Pσ1t0‖e−εσ1 (t−t0), t < t∗.

Thus P ′
σ1

(t∗) ≥ −εσ1 K‖Pσ1t0‖e−εσ1 (t∗−t0) = −εσ1 Pσ1(t
∗). On the other hand

P ′
σ1

(t∗) = −λσ1 Pσ1(t
∗) + Mσ1 f̃σ1(‖Pσ1t∗‖)‖Pσ1t∗‖ +

∫ t∗

t0
Mσ1 h̃σ1(t

∗
− s, Pσ1(s))Pσ1(s)ds

≤ −λσ1 Pσ1(t
∗) + Mσ1 f̃σ1(r)Pσ1(t

∗)eεσ1 τ
+

∫ t∗

t0
Mσ1 h̃σ1(t

∗
− s, r)Pσ1(t

∗)eεσ1 (t∗−s)ds

≤ Pσ1(t
∗)

[
−λσ1 + Mσ1 f̃σ1(r)eεσ1 τ

+

∫
∞

0
Mσ1 h̃σ1(s, r)eεσ1 sds

]
< −εσ1 Pσ1(t

∗).

This contradiction implies that Pσ1(t) < K‖Pσ1t0‖e−εσ1 (t−t0). Let K → 1, we obtain Pσ1(t) ≤ ‖Pσ1t0‖e−εσ1 (t−t0) and
hence

‖xσ1(t)‖ ≤ Mσ1‖xσ1t0‖e−εσ1 (t−t0). (5.7)

For subsystems

x ′(t) = Aσ2 x + fσ2(t, xt ) +

∫ t

t0
hσ2(t − s, x(s))ds, (5.8)
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let xσ2(t) be the solution (5.8) and let yσ2(t) = xσ2(t)Γ (−εσ2 , t − t0), then

x ′
σ2

(t) = Aσ2 xσ2 + fσ2(t, xσ2t ) +

∫ t

t0
hσ2(t − s, xσ2(s))ds, (5.9)

and for t ≥ t0

y′
σ2

(t) = (Aσ2 − εσ2 I )yσ2(t) + fσ2(t, xt )e−εσ2 (t−t0) +

∫ t

t0
hσ2(t − s, x(s))e−εσ2 (t−t0)ds

= (Aσ2 − εσ2 I )yσ2(t) + f̂σ2(t, yt ) +

∫ t

t0
ĥσ2(t − s, y(s))ds. (5.10)

Let Φ∗
σ2

(t, t0) be a matrix and satisfy
∂

∂t
Φ∗

σ2
(t, s) = (Aσ2 − εσ2 I )Φ∗

σ2
(t, s)

Φ∗
σ2

(s, s) = I.

Then ‖Φ∗
σ2

(t, s)‖ ≤ Mσ2 e(λσ2−εσ2 )(t−t0), and the solution yσ2(t) of (5.10) is

yσ2(t) = Φ∗(t, t0)yσ2(t0) +

∫ t

t0
Φ∗(t, s) f̂σ2(s, yσ2s)ds +

∫ t

t0

∫ s

t0
Φ∗(t, s )̂hσ2(s − θ, yσ2(θ))dθds.

Thus

‖yσ2(t)‖ ≤ Mσ2‖yσ2t0‖e(λσ2−εσ2 )(t−t0) +

∫ t

t0
Mσ2 e(λσ2−εσ2 )(t−s)

‖ f̂σ2(s, yσ2s)‖ds

+

∫ t

t0

∫ s

t0
Mσ2 e(λσ2−εσ2 )(t−s)

‖ĥσ2(s − θ, yσ2(θ))‖dθds

≤ Mσ2

[
‖yσ2t0‖e(λσ2−εσ2 )(t−t0) +

∫ t

t0
e(λσ2−εσ2 )(t−s) f̃σ2(‖yσ2s‖)‖yσ2s‖ds

+

∫ t

t0

∫ s

t0
e(λσ2−εσ2 )(t−s)h̃σ2(s − θ, ‖yσ2(θ)‖)‖yσ2(θ)‖dθds

]
=: P∗

σ2
(t), t ≥ t0.

Let

Pσ2(t) =

{
P∗

σ2
(t), t ≥ t0,

Mσ2‖yσ2t0‖, t0 − τ ≤ t ≤ t0.

Then Pσ2(t) ≥ ‖yσ2(t)‖, t ≥ t0 − τ and

P ′
σ2

(t) ≤ (λσ2 − εσ2)Pσ2(t) + Mσ2

[
f̃σ2(‖Pσ2t‖)‖Pσ2t‖ +

∫ t

t0
h̃σ2(t − θ, Pσ2(θ))Pσ2(θ)dθ

]
.

Using a similar approach, we can obtain Pσ2(t) ≤ ‖Pσ2t0‖ and thus

‖yσ2(t)‖ ≤ Pσ2(t) ≤ Mσ2‖yσ2t0‖.

Then

‖xσ2(t)‖ ≤ Mσ2‖xσ2t0‖eεσ2 (t−t0). (5.11)

Combining (5.7) and (5.11) and Theorem 3.1, we have

‖x(t)‖ ≤ ‖xt0‖
∏

σi ∈ℵi

M
kσ1 (t)
σ1 exp

{ ∑
σ1∈ℵ1

εσ1 kσ1(t)τ −

∑
σ1∈ℵ1

εσ1πσ1(t) +

∑
σ2∈ℵ2

εσ2πσ2(t)

}
.

By Theorem 3.2, we can obtain the results of this theorem. The proof is complete. �
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Theorem 5.2. Assume that (A1), (A2) hold and
(i) there exist f̃σ1 ∈ K1 and h̃σ1 ∈ C[R2, R+], bσ2 ≥ 0 and h̃σ2 ∈ C[R+, R+] such that h̃σ1(s, ·) ∈ K1 for any

s ∈ R+ and

‖ fσ1(t, xt )‖ ≤ f̃σ1(‖xt‖)‖xt‖, ‖ fσ2(t, xt )‖ ≤ bσ2‖xt‖,

‖hσ1(t − s, x(s))‖ ≤ h̃σ1(t − s, ‖x(s)‖)‖x(s)‖, ‖hσ2(t − s, x(s))‖ ≤ h̃σ2(t − s)‖x(s)‖;

(ii) ∃εσ1 , εσ2 , r > 0 such that

εσ1 + Mσ1 f̃σ1(r)eεσ1 τ
+ Mσ1

∫
∞

0
h̃σ1(s, r)eεσ1 sds < λσ1 ,

λσ2 + Mσ2 bσ2 + Mσ2

∫
∞

0
h̃σ2(s)e

−εσ2 sds < εσ2 .

Then switched delay systems (5.1) are
(1) stable, if ∃T > 0, such that∑

σi ∈ℵi

kσi (t) ln Mσi +
∑

σ1∈ℵ1

εσ1 kσ1(t)τ +
∑

σ2∈ℵ2

εσ2πσ2(t)∑
σ1∈ℵ1

εσ1πσ1(t)
≤ 1, t ≥ T (5.12)

and

lim sup
t→∞

∑
σi ∈ℵi

kσi (t) ln Mσi +
∑

σ1∈ℵ1

εσ1 kσ1(t)τ +
∑

σ2∈ℵ2

εσ2πσ2(t)∑
σ1∈ℵ1

εσ1πσ1(t)
= 1; (5.13)

(2) locally exponentially stable, if

lim sup
t→∞

∑
σi ∈ℵi

kσi (t) ln Mσi +
∑

σ1∈ℵ1

εσ1 kσ1(t)τ +
∑

σ2∈ℵ2

εσ2πσ2(t)∑
σ1∈ℵ1

εσ1πσ1(t)
< 1. (5.14)

The proof is similar to that of Theorem 5.1.
As in Remark 1, in Theorems 5.1 and 5.2, (5.2)–(5.4) and (5.12)–(5.14) are actually switching laws which guarantee

the switched delay system (5.1) to be stable or locally exponentially stable. We give an example to show how to design
switching laws for the switched delay systems.

Example 5.1. Consider nonlinear switched delay systems

x ′(t) = Ai x + fi (t, xt ) +

∫ t

t0
hi (t − s, x(s))ds, i = 1, 2 (5.15)

where x = (x1, x2)
T

∈ R2,

A1 =

[
−4 1
−1 −5

]
, f1(t, xt ) =

[
0

x3
1(t − 1)

]
, h1(t − s, x(s)) =

[
e−2(t−s)x3

2(s)
0

]
,

A2 =

[
2 0
0 1

]
, f2(t, xt ) =

[
sin x1(t − 1)

sin x2(t − 1)

]
, h2(t − s, x(s)) =

[
et−s x1
et−s x2

]
.

With Theorem 5.2, we have λ1 = −4, λ2 = 2; f̃1(‖xt‖) = ‖xt‖
2, b2 = 1; h̃1(t − s, x(s)) = e−2(t−s)

‖x(s)‖2,
h̃2(t) = et . Take τ = 1, ε1 = 1/2, ε2 = 7/2, M1 = M2 = 1, r = 1.

Then,

ε1 + M1 f̃1(r)eε1τ + M1

∫
∞

0
h̃1(s, r)eε1sds < 4 = λ1,

λ2 + M2b2 + M2

∫
∞

0
h̃2(s)e−ε2sds < 7/2 = ε2.
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The switching laws are:

(S1)
∗ π1(t) ≥ k1(t) + 7π2(t) and lim supt→∞

k1(t)+7π2(t)
π1(t)

= 1.

(S2)
∗ lim supt→∞

k1(t)+7π2(t)
π1(t)

< 1.

By Theorem 5.2,

• if we choose switching law (S1)
∗, then the switched delay system

x ′(t) = Ai x(t) + fi (t, xt ) +

∫ t

t0
hi (t − s, x(s))ds, (5.16)

where i = 1, 2, 0 ≤ τ(t) ≤ 1, is stable;
• if we choose switching law (S2)

∗, then the switched delay system (5.16) is locally exponentially stable.

Remark 2. (a) If r = ∞ in Theorems 5.1 and 5.2, then the results are globally exponential stability.
(b) If in some σ1th subsystem, λσ1 is not large enough to satisfy the condition (ii) in Theorems 5.1 and 5.2, we can

consider it as a σ2 subsystem and use a similar approach to discuss switching laws so that the switched delay
system is stable.

(c) If ℵσ1 = {1} and fσ2 ≡ 0, i.e., the switched system is composed by a stable delay system and some unstable
non-delay systems, then we can obtain some more simple criteria.

Corollary 5.1. Assume that all the conditions of Theorems 5.1 or 5.2 hold except f̃σ2 ≡ 0 and ℵ1 = {1}. Then
switched system (5.1) is

(1) stable, if ∃T > 0, such that∑
σi ∈ℵi

kσi (t) ln Mσi +
∑

σ2∈ℵ2

εσ2πσ2(t)∑
σ1∈ℵ1

εσ1πσ1(t)
≤ 1, t ≥ T

and

lim sup
t→∞

∑
σi ∈ℵi

kσi (t) ln Mσi +
∑

σ2∈ℵ2

εσ2πσ2(t)∑
σ1∈ℵ1

εσ1πσ1(t)
= 1;

(2) locally exponentially stable, if

lim sup
t→∞

∑
σi ∈ℵi

kσi (t) ln Mσi +
∑

σ2∈ℵ2

εσ2πσ2(t)∑
σ1∈ℵ1

εσ1πσ1(t)
< 1.

6. Conclusion

We have studied some stability properties of linear and nonlinear switched delay systems consisting of both stable
and unstable subsystems. Some switching laws have been developed, which show that if the average of total activation
time of unstable subsystems is relatively small compared with that of stable subsystems, then global exponential
stability for linear switched delay systems, and local exponential stability for nonlinear switched delay systems can
be guaranteed. In the interests of brevity, only single delay is studied in this paper, but it can be extended to the case
with multiple delays.
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