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Abstract

In this paper, we study the qualitative properties of linear and nonlinear delay switched systems which have stable and unstable
subsystems. First, we prove some inequalities which lead to the switching laws that guarantee: (a) the global exponential stability
to linear switched delay systems with stable and unstable subsystems; (b) the local exponential stability of nonlinear switched delay
systems with stable and unstable subsystems. In addition, these switching laws indicate that if the total activation time ratio among
the stable subsystems, unstable subsystems and time delay is larger than a certain number, the switched systems are exponentially
stable for any switching signals under these laws. Some examples are given to illustrate the main results.
© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Switched systems are systems that consist of several subsystems and controlled by switching laws. Such systems
are often encountered in biochemical systems, control systems, etc., (see [5,4]). For switched systems, one of the most
important and challenging problems is to find the switching laws, i.e., what switching laws can guarantee the switched
systems stable.

Recently, there has been increasing interest in the stability analysis of switched systems, and switching control
design of such systems (see [8,9,11-13] and the references therein). Using common Lyapunov functions, [18] studies
stability for linear switched systems and shows that a common Lyapunov function exists when the stability matrices A;
commute pairwise,i.e. A;A; = AjA;,i, j =1,2,..., N.Exponential stability is studied for some special linear time-
invariant switched system in [23,11]. Similar results are presented in [7]. Lie algebra is used to prove the existence
of common Lyapunov function and then the stability of switched systems is derived in [16,15,1]. The stability for
nonlinear-switched systems is proposed in [4,2,3] and the linearization method is developed in [2]. Multiple Lyapunov
function techniques are used in [10-20] to investigate the stability of the switched systems. The stability of some slow-
switched control systems is studied in [12-25]. Lagrange stability for switched systems is considered in [4,3,24]. A
review of stability results covering the majority of research works can be found in [6]. Stability analysis of switched
systems with stable and unstable subsystems is driven in [26,27].
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However, the studies for the stabilities of switched systems have mainly focused on the systems without time
delay due to its difficulty. In this paper, we study stability properties of linear and nonlinear switched delay systems
with stable and unstable subsystems. Firstly, we prove some useful inequalities in Section 2. Then switching laws
are proposed in Section 3, which ensures that the switched delay system is stable or exponentially stable for any
switching signals under the laws. Linear switched delay systems are studied in Section 4 and some switching laws are
given, which guarantee the switched system to be stable or globally exponentially stable. In Section 5, using delay
inequalities instead of linearization, which may lose some nonlinear properties, we study a nonlinear switched system
and propose a switching law that guarantees the stability or local exponential stability of the systems. Some examples
are given to illustrate the main results. Section 6 concludes the paper.

2. Preliminary

In this section, some useful notations are given, and necessary inequalities are derived.

Let R be the set of real numbers, Ry the set of nonnegative numbers, R" the n-dimensional space, R"*™ the
n x m matrix space, respectively. If A = (a;j) € R"™™, denote |A|| = maxj<j<m » ;_, laij| the norm of A. If
A = (g;j) € R"*", denote A(A) the eigenvalue of A, ReA(A) the real part of A(A).

LetC; = {¢ : ¢ € C[[—T1, 0], R"]}, where T > 0 is a constant. If x € C,, define x; = x(t + 60),0 € [—1, 0] and

llx: | = sup,_; <5< Ix(s)]I.
Denote

1, t<s,
Iy, t—s)= {ex(t—s) > s

K1 = {¢|¢p € C[R+, R+], ¢(0) = 0, ¢ is nondecreasing}.
R={1,2,...},
N, ={1,2,..., N;}.

In this paper, we study the stability of the following switched delay system

x'(1) = fo, (1, x(0), x;), 0; €Xy, (2.1)
where x € R, f5, € C[R x R" x C;, R"], f5,(¢t,0,0) =0forany o; € 8;,i =1,2.
In the rest of the paper, let iy € X1 UR; denote the ixth subsystem, #; the switching points, [#, fx+1) the time period
over which the iith subsystem is activated. Let x,, () and x,, () denote the solution of systems
x'(t) = fo (t,x(1), x1), 01 €Y, (2.2)

and

x'(1) = fo,(t,x(1), x1), 02 €Ny, (2.3)

respectively, i.e.,

x(/yl(t)zfcl(tvxﬁl(t)v-xolt)v (e} ENI’
X(;Q(t) = fo'z(tv -xo'z(t)v-xo'zl)v 02 € N2
Let kg, () be the number of times that the o;th subsystem of (2.1) is switched on during [#, ), 7, (t) be the total

activation time of o;th subsystem of (2.1) during [#, ?).
Assume that

(B1) tgy1 — tx = 7, limg o0 1 = 00;
(B2) The switching sequence is minimal, i.e., iy # ix+1;
(B3) Each f, (¢, x, y) is locally Lipschitzian in x and y.

Our aim is to find switching laws under which switched delay system (2.1) is stable or exponentially stable.
Assumption (B1) is introduced to prevent the problem from being trivial. In fact, if after + > #; the system (2.1)
is not switched any more, then the switched system becomes

xp () = fi (t, xi, (1), Xis), 1> 1
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and the convergent property of (2.1) is trivially dependent on the i;th subsystem. Assumption (B2) means that for any
consecutive interval [#¢_1, ), [, tk+1), the active subsystems are different. The assumption (B3) guarantees that all
subsystems have a unique solution for any initial condition.

Definition 2.1. For given switching signal, the equilibrium point of system (2.1) is said to be

(i) stable, if for any given ¢y and € > 0, there exists a § > 0 such that ||x;, || < & implies that ||x(¢; f9, x4, || < € for
t > ty. Otherwise, the system is said to be unstable;

(ii) locally exponentially stable, if there exist M > 0,y > 0 and € > O such that if ||x,| < y, the solution
x(t; 1y, X4y) of (2.1) satisfies

(3 10, xi0) || < Me U™ 1 > 1
(iii) globally exponentially stable, if there exist M > 0 and € > 0 such that the solution x (¢; #o, x;,) of (2.1) satisfies
llx(t: t0, xi) | < Mllxyy e, 1 > 1.

Theorem 2.1. Assume that « > 0, V € C[R, R.], g € Ky, h(s,-) € K| for any fixed s € R, and

t
Vi(t) < —aV®) + g(IViIDIViI +/ h(t —s, V(s)V(s)ds.

fo

If there exist constants r > 0 and A > 0 such that

o0
g +/ h(s, r)eds < a,
0
then there exists an € > 0 such that ||Vy, || < r implies that

V(1) < |Ville 070 1 > g,

where € satisfies
o
€+ g(r)e’ +[ h(s, reds < a.
0
Proof. Since g(r) + fooo h(s, r)eMds < a, there exists an €, 0 < € < A, such that

o0
g(r)e’ +/ h(s,r)e*ds < a —e.
0
Let
Pt)y=V@®) (e, t —19).
Then P(¢) = V(¢), || |l = || V:|l and for ¢ > 1,
P(t) = V() (e, t —10) + eV () (e, 1 — 1)

t
I'(e, 1t —10) |:_aV(t)+g(”Vt”)”Vt” +/ h(t —s, V(S))V(S)dS} +eV()I'(e,t — 19)
fo

A

t
—aP(t) + g(IViIDIIPfle™ + / h(t — s, V(s))P(s)ec“™ds + e P (1)

fo

IA

IA

t
(= + )P )+ g(IVi DI Prlle™ + f h(t — s, V(s))P(s)ec"ds. (2.4)

fo
We claim that || P, || < r implies P(¢) < || Py,|l, which can be justified as follows.
Forany d € (1, r/|| Pyl), P(t) < d|| Pyl = d|| Vil = M.
If it is not true, then there must exist a * > #(, such that

Pt* =M, P(it) <M, t<t*.
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Thus P’(t*) > 0. On the other hand, it follows from (2.4) that

t*
PI(*) < (—a+ P + g(IVie D Pre €7 + / h(t* — 5, V() P(s)es0" 9 ds
fo
t*
< (—a+ M + g(| PN M + / Bt — 5. P(s))Me<T—5)ds
Ty

<M [(—a +e€)+ gr)e’ +/ h(s, r)e“ds] <0,
0

this contradiction implies P(t) < d|| P;,||. Letd — 1, we obtain P(¢) < || Pl and thus
V(t) < [[Viglle™ =)

The proof is complete. [
3. Switching laws

In this section, we first prove an inequality for switched delay system (2.1). Based on the inequality, switching laws
are derived which guarantee stability of switched delay system (2.1).

Theorem 3.1. Assume that there exist M,, €5, > 0 such that

%0, ()| < Mo, X0y lle™ 1070 1> 19, 01 € Ry, 3.1)
and
X0, (D]l < Mo, | Xoryto €270 £ > 19, 02 € R (3.2)

Then for any function x,, € Cy, the solution x(t) of switched delay system (2.1) satisfies

I < il [T Mol exp ] 3 emlhoy (0T = o, D1+ Y €T (1) § - (33)

o; eR; G’IENJI 0Ny

Proof. We replace My, My,, €5, €5, With My, 1, M, 2, €51, €5,,2. Let t;_1, t; and tj;1 be consecutive switching
points.

(1) Suppose that the /th subsystem of (2.2) is active on the interval [¢;, ¢ 11),
— if the ith subsystem of (2.2) is active on the interval [¢;_1, ;), then

X < My lx, lle 101
< MiaMiallx e~ it —De = U= e [1;,1541);
— if the ith subsystem of (2.3) is active on the interval [z;_1, ;), then

—ep,1 (11
lx@®] < M[’1||xtj lle €r,1(t—tj)

< Ml,lMi,2||xt,-,1||e_€“(t_t’)eéi'z(t"‘]_t-’), t et tjr1);

(2) Suppose that the /th subsystem of (2.3) is active on the interval [z}, ¢ 11),
— if the ith subsystem of (2.2) is active on the interval [¢;_1, ;), then

X < Myalx, [les20=")
< MiiMyollx,,_, lle” 1 G-170 D207 e 1), 154);
— if the ith subsystem of (2.3) is active on the interval [¢;_1, ;), then
X < Myollx, [le20")

< MipMypllx,_ lle2G=-Det20=10 -t [1;,1;4y).
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Using iterative method, we can obtain

Il < Il [T Mo exp ] 3 €orlkoy (07 = 7o, 0]+ 3 €0y (1)

o; EN; 0168, ERy
The proof is complete. [
Specially, if 81 = 8y = {1}, then (2.1) becomes
X () = fo(t, x(®), x)
where 0 = 1, 2. Let x1(¢) and x> (¢) be the solution of system, then

x( (1) = fi(t, x1(2), x15)
x5(1) = fa(t, x2(t), x2)

(3.4)

(3.5)
(3.6)

respectively, k(¢) be the times of subsystem (3.5) being switched on during the interval [#o, ), 1 (¢) and 72 (¢) are the

total time of subsystems (3.5), (3.6) used respectively on [7g, ¢), then we have

Corollary 3.1. Assume that there exist My, My > 0 and €1, € > 0, such that
et < Millxig lle™ 10 1 = 1o,
2l < Mallxag €297, 1 = 1o.
Then the solution of switched delay system (3.4) satisfies
@I <l [|(M1 M) D explerk ()T — €11 (1) + e2ma(0)).
Define switching laws as follows:

7o (1) k(l)lnM M k(t)ert € .

Sy ﬂf(t) ezm(tl) 2z + eznl('t) < é, t > T for some T
In MM

(S2) lim sup,_mo[—gfgi + k(@) In M, My k(t)elr]

" 627T1k((l))l Y A;zﬂl(f)k()
. t t t
(S3) th“PHoo[me —at 62[7111(;) ? 627716(];)]

We can prove the following theorems.

Theorem 3.2. Assume that the conditions of Corollary 3.1 hold. Then
(1) switching laws (S1) and (S32) imply that switched delay system (3.4) is stable;

(2) switching laws (S3) implies that switched delay system (3.4) is exponentially stable.

Proof. Without loss of generality, suppose that switched delay system (3.4) is

x'(t) = filt,x,x1), t € [tak, tt1),
x'(t) = folt,x, x1), 1t € [tar—1, 12k,

where ¢; are switching points, j € R. Then, when ¢ € [t t2x11)

IO < My l|xey, lle 10720

e (tok—tah—1) a—€1(1—t
51‘411‘/[2”%2](71”e 2(t2k—tok—1) g —€1(t —12k)
e (top—trp—1) a—€1[(t—t tok—1—lok—2—T
§M1M2M1||xt2k72||ez(2k 2%-1) g €1 [(E—12)+ (126 -1~ 1242~ T)]
2 e [(tak—top—1)+(top—2—t2p—3)] a—€1 [t —t2p)+(tok—1 —t2k—2—T
< (M| M>) ||xt2k,3||e 2l 2k —tok— 1) +H(t2k—2—t2k-3)] g €1 [t —t2) + (1241 =2k —2=7)]
S ......

< (Ml Mz)k(t) ”xto ”6627'[2(1)6761711 (t)+k(t)e T

— ey () =€ 1 ()-+k(Der T+k (1) In My My
= llxzlle :

3.7



Y. Zhang et al. / Nonlinear Analysis: Hybrid Systems 1 (2007) 44-58 49

So

() €, kDegT | k()InM{M,
)] = g e R0 -G+ ot + o

It is easy to see that the result (1) of Theorem 3.2 is true from about inequality. Next, we prove the result (2).
Let

lim sup
—00

|:712_(t) € k(t)In M{ M, k(t)El‘L'] Ny
m@) e €271 (1) €271 (1)
Without loss of generality, suppose that
() € k(t)InM M, k(t)eit
Mm@ e em@® | em®
Then 71 (t) > :—T]Tz(l‘), and

*

m@) € k(tH)eit k() In MM, N
0| S S e B < O
< —€"am(1)/2 — 'em (1) /2
L S S
- 2 2¢€1
< —€[m @) + m)] = —€(t — 10),

- e e*e%
where € = min{=32, 7 }. Thus

eI < flxg e,
The proof is complete. [
For switched delay system (2.1), define switching law as following:
(S4) Za,-e&,- [ko; (1) In Mo, + €6, ke, ()T + €6, 75, ()] < ZaleM €6,7o, (1), t > T for some T’
(Ss) limsup,_, o, e, 1 0) Za,-e&,- lko; (1) In Mo, + €5,ko (1)T + €6,7T0, ()] = 13

Gglﬂal
1 o ZoieNi [ko; (1) In My, + €6,ko) ()T + €6, 76, ()] < 1.

S¢) limsu
( 6) pl*)OO Zal 8y 501 7[01

Theorem 3.3. Assume that the conditions of Theorem 3.1 hold. Then the switched systems (2.1) is

(1) switching laws (S4) and (Ss) imply that switched delay system (2.1) is stable;
(2) switching laws (Se) implies that switched delay system (2.1) is exponentially stable.

The proof is similar to that of Theorem 3.2.
4. Linear switched delay systems

In this section, we study the linear switched delay systems

t
x'(t) = Ag;x(t) + Bo,x(t — T(1)) + / ho, (t — s)x(s)ds, 4.1

]

where x € R", As,, Bs; € R"", hg; € C[Ry, R"],0, €Rg,,i =1,2,0<1(t) < 7.
Without loss of generality, we make the following assumptions.

(A1) &5, € R™*", satisfy

0P, (2,
{% = AUI' @O'i(tvs)v

éo','(s9s) = 17

where [ is an identity matrix, and o; € 8;,i = 1, 2.
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(A2) there exist Ay; > 0 and M,, > 1, such that
| 2o, (2. 10)1] < Mgy e~ 70,
and
| 2o, (2. 10) ] < M2 710,
Let x4, (r) and xg, ;) be the solutions of the subsystems

t
xél (t) = AgyXo, + Boy X5 (t — T(1)) + / he, (t — 8)X5, (s)ds, 4.2)
fo
t

x(’72 (t) = Aoy Xy + BoyXo, (t — (1)) + / he, (t — §)Xq, (s)ds, 4.3)

Io

then we have the following theorems.

Theorem 4.1. Assume that (A1), (A2) hold and 3e,; > 0,1 = 1, 2, such that
o
Aoy + Mo, || Bo, lle“1” +/ Mo, ||lho, (s)][e“1°ds < —€q,,
0

00
Aoy + Mo, || Bo, || +/ Mo, |l he, (s)lle™*2"ds < €oy-
0

Then switched delay systems (4.1) is
(1) stable, if AT > 0, such that

1
———— > ke In My, + €0,koy T + €0y, (D] <1, 1 =T (4.4)
J]gﬂ 7 (t) o1 <R
and
limsup —=————— Y _ [ko; In My, + €5,ko, T + €0, 76, ()] = 1, (4.5)
1—oo D, €qTo (1) S l
orow, 017701 0; EN;

(2) globally exponentially stable, if

1
limsup—
—0o0 Z 6017'[01(1‘)
o1eR]

> ko In My, + €6,ko, T + €0y, ()] < 1. (4.6)

0 EN;

Proof. By the variation of parameters, the solution of subsystem (4.2) is

t t

Xoy @) = ¢01 (t, tO)xal (to) + f

fo

Py, (t, 5) By, X5 (s — T(s5))ds +f

fo

N
Dy, (2, 5) f ho, (s — 0)xs, (0)dOds.
1o
Taking the norm on both sides, we have

t
1Xo, DN < N o, (2, 10) |l | x5, (20) I +/ | Po, (2, )|l Boy [l X6, (s — T(s))llds
4]

t s
+ / / | @oy (7, $) 126, (s = O) [l X6, (€) | dOds
th Jio

IA

t
7}\’ _ _A‘ —_
Mo, [Xoys I~ 10100 + f Moy e ™15 By, 10,5 s
1o

t s
+ / / Moy e g, (5 — 0) |10, (6) ]| A6
g JIp

= Py (1), t=>t1.
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Let

Py (1), t > to,
MU] ||-x0'11()||9 Ih—17T=1t=<10.

Pal(t)z{

Then Py, (1) > ||, (1)1, 1 = fo — 7 and

t
Pél () = _)\01 P(T] )+ Mcrl ”Bal I ”x(rlt” + / Mal “hO’] -9 ”xd] (s)lds
to

IA

t
—Xoy Poy (1) + Mo, || Bo, || Poy |l +/ Mo, ||ho (t — $)|| Py, (s)ds.
fo

For any K > 1, we claim that
Py, () < K || Poygolle™n 710, (4.7)
In fact, if (4.7) is not true, then Ar* > 1, such that

Py, (1%) = K || Poyylle ™1 0 and
Py, (1) < K || Poyylle 0700 ¢ < 1*,

Thus P} (1*) > —€q, K || Po,y 6”1 ("=10) — ¢, Py, (t*). On the other hand

t*
Py (1) < —hoy Poy (t%) + Mo, || Boy ||| Poys+ +/ Mg, |lho (" = 5)|| Po, (s)ds
fo
* '
< —ho, Py, (t*) + Mo, || By, || Po, (t¥)e‘1 " +/ K Mo, ||hg, (t* = $)|[|| Poygolle™ 1~ ds
fo

t*
Py, () |:_)\d1 + My, || Bs, err™ + / Mg, o, (1% — s5)|len ¢ _S)d5j| < —é€g, Py, ().
fo

This contradiction implies that Py, (1) < K || Py, lle 1™ Let K — 1, we obtain Py, (t) < || Py, lle 1) and
hence

X, (D] < Mo, | X1 lle ™01 710, (4.8)

Similarly, we can obtain

X0, (D1 < Mo, | Xorygo [l 4710, (4.9)

Combining (4.8) and (4.9) and Theorem 3.1, we have

@)l < I T Mo exp: D IENGEDY egznaz(r)}.

0 EN; 01ER] o1ER] 0 ENy
The results of (1) and (2) of Theorem 4.1 can be obtained by Theorem 3.2. The proof is complete. [
Remark 1. It should be pointed out that, in Theorem 4.1, (4.4)—(4.6) are actually switching laws which guarantee the
switched delay system (4.1) is stable or locally exponentially stable.
Corollary 4.1. Assume that Irs; > 0, €5, > 0 such that

() MAL + Ao) < =206, MAL + Agy) < 200,;
(i) —Ao; + 1Boy 1617 + [5° Iy () [[€51°ds < —€q,;
(iii) Aoy + |Boy | + J5~ 1oy (s)lle™2°ds < €5,.

Then the switched delay systems (4.1) is
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(1) stable, if AT > 0, such that

1

—_— l€5 ke, T + €0,75, ()] <1, t>T
Y. €0 7o () G%. o e

o1 €N ! !

and
1
limsup ——— [€5 ke, T + €0, 76, (1)] = 1,
t—>oop Z €5, 75, (1) G;_ aiten 2702
01X ! !

(2) globally exponentially stable, if
i 1
lim sup

Y oo () g nl< 1.
=00 Z €0, 700, (1) Z [€61 ko) T + €6, 706, ()] <

o eN;
o1ER] s

Proof. Let V,, = xgi Xo;» then the derivative of Vy, along the system x, = Ag, X, is

V) =xl (AL + Ag)xo,.

Thus
[ ]
V) (1) < =206, Vo, (1) = Vo, (1) < Vo, (fo)e 1070 and || &g, (1, f9)|| < e 10, (4.10)
[}
V), (1) < 2k, Voo (1) = Vi, (1) < Vi (10)e™ 2", and || g, (1, 1) || < &™271), (4.11)
All the results of this theorem can be obtained by (4.10) and (4.11) and Theorem 4.1. The proof is complete. [
We illustrate the results of Corollary 4.1 with a simple linear switched delay system.
Example 4.1.
1
L[5 0 o |2 ° . _Joo
"= -10 -35] T ’ "=1o o]
-0
e
A—_l -3 B—ii h_etcoszto
2T34viz 1| 2T delr T lesin2e 0]
Hence MA] + A < =6, AM(A] + A2) < 4 [IBil = 5. B2l = 555 Il = 0, [lha]l = e’ Take
t=1,AM=3,2=2,6eg=1,6p =4.
Then,

o0
—h1+ B e’ +/ [A1()llePds = =34+3/2 < —1 = —ey;
0

o0
Ao+ 1+ B’ +/ [ha(s)leT2tsds <2414+ 1/3+1/2 <4 =e).
0
With the switching laws from Corollary 4.1, we have

(S) m1(t) > ki (t) + 4774, (1) and lim sup,_, ,, L0 ® _

(1) =1
. ki (1) 475, (1)
(S2) limsup,_, o, % <L

By Corollary 4.1, we know that
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e if we choose the switching law (S1), then the switched delay system

1
xX'(t) = Aix(t) + Bix(t — t(2)) + / hi(t — s)x(s)ds,

fp
wherei = 1,2,0 < t(t) < 1, is stable;
o if we choose the switching law (S»), then switched delay system (4.12) is globally exponentially stable.

5. Nonlinear switched delay systems

In this section, we study the nonlinear switched delay systems

t

xX'(t) = Ag;x + fo, (1, x1) +/ ho, (t — s, x(s))ds,

fo
where x € R", As; € R™", f,, € C[R X C,R"], hs; € C[R X R",R"],0; e N;,i =1,2.
Denote fo, (1, y1) = e 20 f (1,x), hyy(t — 5,9(s)) = e “2n (r — 5,x(s)), where y(
x(s)e €270 then we can obtain the following results about local exponential stability.
Theorem 5.1. Assume that (A1), (A2) hold and
(1) there exist ]";. € K1 and Ea,. e C[R?, R ] such that ﬁﬂi (s,:) € Ky foranys € Ry and

o X < Fon Qe DIl L fon 20l < Fo Ul 3
ooy (¢ = 5. XD < oy (¢ = 5. Ix@ODIEO . oy (¢ = 5. XGDI < oy (¢ = 5. [x D)

(ii) Jeqy, €5y, ¥ > 0 such that

oo
€0, + Mo, fo, (r)ecr” +/ Mg, ho, (s, r)e“r’ds < Ay,
0

0
Aoy + Moy Joy (M2 + My, / Fros (5, )E25ds < €.
0

Then the switched delay systems (5.1) is
(1) stable, if AT > 0, such that
Y okey (D InMy + Y €qko (DT )Y €5yT0, (1)

0; €R; o1ER] 02ERY

Y €0, 7o (1)

o1ER]

<1, t>T

and
Yookey(DInMg + Y €5ko (DT )Y €5y70, (1)

. 0 EN; 01ERN] €N
lim sup =1;
t—00 Z €01 70y (t)
o1ER]

(2) locally exponentially stable, if
Yooke (D InMg + D €5ko (DT + )Y €5y70, (1)

o N} 01X 0 ER) < 1

lim sup
t—>00 Z €01 oy ()
o1EN]

Proof. Let x,, (¢) be the solution of the oth subsystem, o1 € Ry, i.e.

t
x(/j'l (t) = AG]-XG] + fO’| (t, 'xglt) +[ h(T] (t - S, x0'| (S))dsv

fo

53

4.12)

(5.1)

s) =

(5.2)

(5.3)

54

(5.5)
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By the variation of parameters, we have

t t s
Xg, (1) = Dy, (2, 10) X0, (10) +/ Dy, (t,5) fo, (T, Xgy5)dS +/ Dy, (2, s)/ he, (s — 0, x5,(0))dOds.
) )

fo
Take norm on both sides, we have

t
1%, DN < 1| Boy (2, 20) | 1%, (E0) || + / | Bory (£, $) Il firy (55 Xoy5) s
to
1t s
4 / / | By (12 )11 (5 — 0, %0, (0)) 0
th J1o
t
< Mg, ||xgy le o1 0710 4 / Mo e 10 £ (x5 1) %0y llds
fo
tps N -
+ / / Maye 1T (5 = 6, %oy (01D 10, (6) |46
th Jio
= Py (1), t=>1.
Let
P* () t>1
Py (t)=14,°"" -7
o (1) {Malnxm,on, fh—7 <1<t

Then Py, (¢) = |lxo, ()]l t = to — T and for t > 1o

t
Py (1) < —ho Poy (1) + Mo, fo (X0, 1D 1 X0, | +/ Mo ho) (t — s, [|X6, () D[ X0, (5) [|ds
0]

t
S _)"Gl Pal (t) + Mdlf(T](”PU]t”)”PUIZ‘” +f Mdlhal (t -9, PU] (S))Pdl (S)ds~
fo
We claim that for any 0 < || Py, |l <7, K € (1, 75—,
1o TPoyrol

Poy (1) < K || Payyle™ 17,

For contradiction, suppose that 3t* > f(, such that
Py (") = K[| Poygyle*1 70, and
Po, (1) < K| Pole™ ™, 1 <%,

Thus P(/Il (t*) = —€5, K || Py, lle™ (*—to) — —€g, Py, (t*). On the other hand
t*
Py (1%) = =)oy Poy (t%) 4+ Mo, fo (I Py 1) | Poy +/ Mg, he, (t* — 5, Py, (5)) Py, (s)ds
Ip
~ r ~ *
< —Ag Po, (t*) + My, fal (V)Pm (t*)eéalf + / Mg, hm (t* -, ’")Ptr] (t*)eédl (t 7S)d5
fo

~ 00 -
g (t) I:_)\m + My, fo, (r)ef® + / Mg ho, (s, V)eeﬂlsds:|
0

< —€4, Py, *).

(5.6)

This contradiction implies that Py, () < K || Pg,q, lle™ 1 (=10) et K — 1, we obtain Py, (1) < || Poygolle ™€ (t=10) and

hence
p— t7
X, (D] < Mo, [ X, €1 4710,
For subsystems

t
X (1) = Agyx + fo, (1, X1) +/ he,(t — s, x(s))ds,

fo

(5.7)

(5.8)
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let x4, () be the solution (5.8) and let y,, (1) = Xq, (1) I'(—€4,, t — 1p), then

t

X5, (1) = AgyXoy + for (1, Xy1) +f heo,(t — 5, X5, (5))ds, (5.9)

fo
and fort > 1y

t
Yoo (1) = (Agy, — €0y D) Yo, (1) + fry (8, xp)e 20710 / hay(t — 5, x(s))e ™2~ ds
fo
t

= (Ao, — €0, ) Yo, (1) + Joy (1, Y1) + f Ty (t — 5, y(5))ds. (5.10)

fo
Let @;‘2 (t, to) be a matrix and satisfy
0 * *
Eqﬁgz(t, 5) = (Ao, — €5, 1) P, (2, 5)
@:2 (s,8)=1.
Then || 8, (1, 5)|| < Mg,e2~%2)(=0) ‘and the solution y, (1) of (5.10) is
t t s
Yoo (1) = D*(2, 10) Yo, (10) +/ D*(t, 5) fo, (5, Yops)ds +/ / PX(t, )y (s — 0, ¥5,(0))dOds.
o Y1y

T

Thus

A

t
¥, O] < Mo, [ Yerpgg lePo2 ~¢0) 7100 4 / M, e =) =S| £0 (5, o) I ds
fo

t S
+ / f Moelor=o) 9o (5 — 0, v, (6))d60ds
o Y1y

< My, [nym||e“oz‘€az><"’°> + / t 20207 £ (13055 1) 11 Yoy 1 ds
- ~ 1o
+ / [ el ) =] (s g, ||ygz<e)||)||y02<9>||d9ds}
=: P;;(t), t> 1.
Let
* >
For () = {%jz(ﬁ)y’@oll, io_—ti’ <t <.

Then Py, () > |yo,®Il, t = to — T and

~ t~
Py (1) < (ko = €0y) Py (1) + Mo, |:f02(||P021”)”P021“ +/ hoy(t — 0, Poy(6)) Ps, (9)d9} .
1

0

Using a similar approach, we can obtain Py, () < || Py, || and thus
Yo, DIl = Poy (1) < Moy 1Yot ll-
Then
1oy (D] < Mo [ Xy 1“2~ (5.11)
Combining (5.7) and (5.11) and Theorem 3.1, we have

ko (1)
@I < Ixpl [T Mot exp{ D €0k, (0T = D €070y () + Y €070y (1) ¢ -

0 EN; o1ER] o1ER] €Ny

By Theorem 3.2, we can obtain the results of this theorem. The proof is complete. [
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Theorem 5.2. Assume that (A1), (A2) hold and
(i) there exist J}:n € K| and Egl e C[R?, Ri], by, = 0 and Egz € C[R+, Ry] such that Egl (s,-) € Ky for any

s € Ry and
I for ) = For (eIl L o (1 X0 < i i, 3
o) (& — 5, XD < hoy (£ = s, Ix () DX oy (1 — 5, X (DI < hoy (1 = $)lIx ()5

(i) Jeq,, €oy, ¥ > 0 such that

00
€0, T Mal fal (r)eeglr + Mal / hal (s, r)eealsds < )\01 ,
0

o0
Aoy + Mo, boy + My, / he,(s)e“2%ds < €, .
0

Then switched delay systems (5.1) are
(1) stable, if AT > 0, such that
ke InMg, + Y €qke (DT + Y €5y Te, (1)
0; €N} o1ER 0rENRY

Z €51 oy ()

o1eR]

<1, t>T (5.12)

and
S ke () InMg, + Y. €5ko (DT + Y. €6,70, (1)

. 0 EN; o1eR orEeR
lim sup —— L A =1; (5.13)
t—00 Z eﬂlndl(t)

O'|€N]

(2) locally exponentially stable, if
Z k(Tl' (t) ln M(Tl' + Z G(T] ko'l (t)f + Z e(fzno'z(t)

. ;i €R o1ER oreN
lim sup —— Sl ke <1 (5.14)
t—00 Z €5 Tq (1)
O'|€N]

The proof is similar to that of Theorem 5.1.

Asin Remark 1, in Theorems 5.1 and 5.2, (5.2)—(5.4) and (5.12)—(5.14) are actually switching laws which guarantee
the switched delay system (5.1) to be stable or locally exponentially stable. We give an example to show how to design
switching laws for the switched delay systems.

Example 5.1. Consider nonlinear switched delay systems

t
xX'(@)=Aix + fi(t, x;) +/ hi(t —s,x(s)ds, i=1,2 (5.15)

0]

where x = (x1, x2)7 € R2,

- 0 —2(t—s) 3
Al:[—? _15} f1<f7x0=[ } hl(l—S,x(S))z[e 0x2(s)],

Xt —1)
1 — t—s
n=[g 1] e =[3RE D] me-sxer =[50

With Theorem 5.2, we have 1} = —4, 1, = 2; FdxdD = lxl? by = L hi(t — s, x(s)) = e 20-9|x(s) 2,
hy(ty=¢".Taket =1, =1/2,e=T7/2, M =My =1,r = 1.
Then,

~ S
61+M1f1(r)e€1T+M1/ hi(s,r)e¥ds <4 = Aq,
0

)
A+ Moby + Mz/ ha(s)e™2°ds < 7/2 = €.
0
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The switching laws are:

(S1)* 71 (1) = ki (1) + Tma(¢) and lim sup, , o, SOFT@ _

(1)
. ki (D+7
(S2)* limsup,_, o 1(’3:(17;2(’) <1

By Theorem 5.2,

e if we choose switching law (S1)*, then the switched delay system

t

xX'(t) = Aix(t) + fi(t, x1) +/ hi(t — s, x(s))ds, (5.16)

fo
wherei = 1,2,0 < t(r) < 1, is stable;
o if we choose switching law (S;)*, then the switched delay system (5.16) is locally exponentially stable.

Remark 2. (a) If » = oo in Theorems 5.1 and 5.2, then the results are globally exponential stability.

(b) If in some oth subsystem, A5, is not large enough to satisfy the condition (ii) in Theorems 5.1 and 5.2, we can
consider it as a o subsystem and use a similar approach to discuss switching laws so that the switched delay
system is stable.

(c) If R;, = {1} and f,, = 0, i.e., the switched system is composed by a stable delay system and some unstable
non-delay systems, then we can obtain some more simple criteria.

Corollary 5.1. Assume that all the conditions of Theorems 5.1 or 5.2 hold except fgz = 0 and ¥y = {1}. Then
switched system (5.1) is
(1) stable, if AT > 0, such that

Z ko’,' (t) In MO,' + Z EGZJTUZ(t)

0, €R; 0rERy
<1, =T
Z €51 oy ()
616N1
and
Z k(ri () In M(ri + Z 6(727'[(72(1‘)
lim sup oieN o2ch =1
t—00 Z €5 7Tg @) '
(T]ER]
(2) locally exponentially stable, if
Z ka; (t) ln MO’,‘ + Z Eﬂznaz(t)
lim sup o 2ER2 <1
t—00 Z €5 oy (1)
01X

6. Conclusion

We have studied some stability properties of linear and nonlinear switched delay systems consisting of both stable
and unstable subsystems. Some switching laws have been developed, which show that if the average of total activation
time of unstable subsystems is relatively small compared with that of stable subsystems, then global exponential
stability for linear switched delay systems, and local exponential stability for nonlinear switched delay systems can
be guaranteed. In the interests of brevity, only single delay is studied in this paper, but it can be extended to the case
with multiple delays.
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