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Abstract— We are interested in providing a media-on-demand
streaming service to a large population of clients using a peer-
to-peer approach. Since the demands of different clients are
asynchronous and the contents of clients’ buffers are con-
tinuously changing, finding partners with expected data and
collaborating with them for future content delivery are very
important and challenging problems. In this paper, we propose a
generic buffer-assisted search (BAS) scheme to improve partner
search efficiency by reducing the size of index overlay. We have
also developed a novel scheduling algorithm based on deadline-
aware network coding (DNC) to fully exploit network resources
by dynamically adjusting the coding window size. Extensive
simulation results demonstrate that BAS can provide a faster
response time with less control cost than the existing search
methods, and DNC improves the network capacity utilization
and provides high streaming quality under different network
conditions.

Index Terms— Peer-to-peer, Media-on-Demand (MoD), buffer-
assisted search, deadline-aware network coding.

I. INTRODUCTION

W ITH the widespread deployment of broadband access,
Media-on-Demand (MoD) streaming on the Internet is

recently receiving increasing attention. In an MoD streaming
service, music and movies can be delivered to asynchronous
users with low delay and VCR-like operation support (e.g.,
pause, fast-forward, and fast-rewind). However, it is a big
challenge to provide streaming to a large population of clients
due to the limited server capacity and little deployment of
IP multicast [17]. Peer-to-peer (P2P) technology is one of the
more promising solutions for providing streaming service over
large-scale Internet users [4, 5, 7, 8, 13, 14, 20, 21, 23, 24].

Fig. 1 depicts the general framework of a typical P2P-
based MoD system. In such a system, cooperative peers1 are
organized into an overlay network via unicast tunnels. The
streaming content is split into a sequence of segments, each
of which is a smallest playable unit, and the server distributes
these segments among clients of asynchronous demands. Each
client caches a limited number of segments around its current
play offset, which is the in-sequence index of the playing
segment. The client exchanges its available segments with
partners, who have close play offset and thus can provide the
expected data with high probability. The users in the MoD
system need to search for such partners, when joining or
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1User, client, peer and node are used interchangeably in this paper.

taking a VCR operations. Since the users request the service
asynchronously, and the contents buffered in one peer are
continuously changing, an additional index structure is needed
for the partner search upon peer joins or VCR operations.
Without losing generality, we assume all peers have identical
playing speed, so their partner relationship will not change
unless they leave, fail, or take VCR-jump. After locating
the partners, the user collaborates with them to schedule
the data transmission and exchange the content. Therefore,
partner search and multi-partner scheduling are the two main
components in the P2P-based MoD system. It is noticed that
the users form two types of overlay networks in the MoD
system: the index overlay for partner search and the data
overlay for media transmission. To avoid confusion, the term
“index neighbor” denotes the neighbors in the index overlay,
while “data neighbor” or “partner” represents the neighbors
in the data overlay.

It is very challenging to develop an efficient partner search
structure among a large population of collaborative peers.
Due to scalability concerns, the search overlay should have a
distributed structure with sub-linear search efficiency. Today,
some distributed structures have been proposed with logarith-
mic search efficiency, for example, AVL tree [23], distributed
hash table (DHT) [21], and skip-list [20]. In these structures,
all peers are sorted by the play offset and maintained in the
index overlay. However, indexing all the peers incurs a non-
trivial maintenance overhead, especially considering the big
insertion, deletion, and rebalancing cost due to frequent VCR
interaction and dynamic node joining or leaving in P2P-based
MoD systems.

Multi-partner scheduling is another challenging task. Tradi-
tional cooperative scheduling schemes, such as smallest-delay
algorithm [8] and pull-based gossip algorithm [22, 23], assign
requests to partners based on the local neighborhood informa-
tion, for example, content in the local buffer and the available
bandwidth among partners. These schemes suffer from inef-
ficient use of network resources in large and heterogeneous
populations (we elaborate on the details in Section II.B).
Some recently proposed schemes leverage network coding to
improve the throughput utilization and facilitate the design
of an optimal solution for static file download applications
[10, 15]. With network coding, each peer (including the
server) performs a linear combination on available segments
and relays the combined segments to the neighbors. When a
node receives enough linearly independent combinations, the
original media can be reconstructed. However, it is difficult to
apply network coding to the MoD system. First, since media
play starts before all segments are downloaded, some segments
may miss the playback deadline before being decoded, which
causes severe performance degradation. Second, the peers
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Fig. 1. Typical P2P-based MoD system.

have limited buffer capacity and maintain different parts of
segments, so it is difficult for collaboration among partners
due to the different ranges of encoded segments they own.

In this paper, we propose a novel P2P-based MoD system,
where Buffer Assisted Search (BAS) structure and Deadline-
aware Network Coding (DNC) scheduling are introduced to
address the above challenges. As mentioned above, each client
in an MoD system maintains a certain content buffer, it can
be observed that there is buffer overlapping among different
nodes, and removing the nodes whose buffer range is fully
covered by other nodes does not reduce the total buffer
coverage of the search structure. Therefore, we introduce BAS
structure to exploit this buffer coverage redundancy so as to
reduce the size of the index overlay. We also propose the DNC
scheme for multi-partner scheduling. Since media segments
have a play deadline, instead of encoding all available seg-
ments, the DNC scheme adjusts the coding window for each
node, which is the number of segments to be encoded, based
on its network condition and also play deadline so as to avoid
segment miss.

Fig. 2 depicts the architecture of our proposed system,
where the index overlay is used to look up partners for building
connections in the data overlay upon new node arrival or VCR-
operations. We denote the peers in the index overlay as index
peers and the others as non-index peers. Upon node departure
or failure, the system adjusts the connections in both the index
overlay and data overlay. If the departing node is an index peer,
it should find some non-index peers from its neighborhood
to cover the remaining uncovered buffer range. In the data
overlay, each peer calls DNC scheduling to exchange content
with the partners.

By indexing a small subset of peers, BAS provides constant
search efficiency and low control overhead. In addition, the
BAS structure is generic and can be implemented based on
existing data structures, for example, AVL-tree, DHT, and
skip-list. Moreover, DNC improves the network throughput
and reduces the total schedule time without missing the play
deadline in high probability.

The rest of the paper is organized as follows. The back-
ground and motivation is reviewed in Section II. Section III
presents the BAS structure. The DNC scheduling scheme
is developed in Section IV. Simulation results are given in
Section V, followed by the conclusions and future work in
Section VI.

II. BACKGROUND AND MOTIVATED SCENARIO

In this section, we briefly review the related works on MoD
service and present two concrete examples that motivate our
study.
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Fig. 3. A pruned example on an AVL tree.

There have been many application-layer solutions for MoD
streaming, for example, application-layer-multicast (ALM)
and P2P approaches. The broadband speed and massive buffer
capacity at client side make these solutions readily deployable.
These technologies have been well studied in the big-file
download and live streaming applications. Originating from
IP multicast, the ALM protocols often organize the users into
a tree structure. Due to the single-parent nature, tree-based
overlay is unbalanced and vulnerable. Thus many mesh-based
and P2P proposals exploit multi-parents to balance the load
and enhance the robustness, for example, mesh-based network
(Bullet [14]), multiple-tree overlay (Split-Stream [2]), gossip
partners (CoolStreaming [22]), as well as the schemes leverag-
ing advanced source coding techniques such as layered coding
(PALS [18]) and multiple description coding (CoopNet [16]).
Our system utilizes multi-partner-based data delivering and
targets the on-demand streaming, which handles asynchronous
requests and VCR operations.

The P2P-based MoD system consists of two key parts: 1)
partner search structure for accommodating the asynchronous
requests and; 2) collaborative data scheduling among partners.
In the following, we review the related works, respectively.

A. Partner Search

Recently a very active research area has been to develop
the efficient search schemes for P2P-based MoD services [4,
5, 7, 8, 13, 14, 20, 21, 23]. CollectCast [14] and oStream [7]
record the play progress of all the nodes in the centralized
server. Though it is simple to implement and easy to manage,
the server easily becomes overloaded in the presence of peers’
frequent joining and leaving, and VCR operations. P2Cast
[13], P2VoD [8], TAG [23], and DSL [20] logically organize
all peers into a linear, tree, or skip-list structures. Given the
play offset as the sorting key, these methods support random
search and VCR interaction in a distributed manner. Each peer
maintains a constant or logarithmic number of index neighbors
and the search is performed by tracing the index connections
hop by hop. Although some of them provide sub-linear search
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efficiency, the maintenance cost is not trivial since all peers
need to be indexed in the structure. The frequent VCR
operations and dynamic P2P environment further aggravate
this maintenance overhead.

The next question is whether it is necessary to maintain all
peers in the index structure to find all the potential partner
candidates for each search. Recent studies show that having
a small number of partners is sufficient for media streaming
[8, 13, 20, 23]. Therefore, it is possible to prune the index
structure without sacrificing the search performance. In the
MoD system, each peer has a buffer to maintain content
around its play offset and acts as a potential partner for the
peers whose play offset lies within its buffer range. If a peer’s
buffer range is fully covered by other peers, removing it from
the index structure will not cause much trouble as the peers
who use this removed peer as a partner can still find other
possible partners. Thus, in the ideal case those nodes with
redundant buffer coverage can be safely removed from the
index structure. Fig. 3 gives an example of how to illustrate
the ideal case with pruning, where the AVL tree is used as
the base structure. As shown in Fig. 3(a), P5, P6 and P7
collectively cover the playback offset range from 1 to 11, and
P1, P2, P3, and P4 are redundant. Thus after removing P1,
P2, P3, and P4, only P5, P6 and P7 are indexed while the total
buffer coverage is not affected, as shown in Fig. 3(b). We give
an idea of how to figure out which peers should be removed
to minimize the size of index overlay while maintaining the
search effectiveness in Section III.

B. Cooperative Data Scheduling

The multi-partner scheduling for P2P MoD streaming is
also difficult due to the limited bandwidth and the content
heterogeneity of partners. Many heuristics have been proposed
to address this issue, such as round robin, smallest-delay and
pull-based gossip algorithm (PGA) [8, 13, 23]. PGA first
counts the number of potential partners for each segment,
and then schedules the segments one by one in the increasing
order of this count. Among the multiple potential partners,
it selects the one with the highest available bandwidth and
enough available time (i.e., the remaining time before the
deadline). Fig. 4(a) depicts an example of PGA. The streaming
media is split into 6 segments a, b, c, d, e, and f. Peers A, B,
C and the server form partner relationship, and each link can
transfer at most one segment in one direction per time-unit.
At Time 0 (T0), peer A gets c from the server; B gets c from
the server and b from A; C gets c from the server, b from
A, and a from B. After that, at T1, T2, and T3, all the three
nodes A, B, and C have the same content and get d, e, and f,
respectively from the server. Overall, PGA consumes 4 time-
units and causes 12 traffic-units on the server. Though these
heuristics are simple, their local decisions make inefficient use
of network capacities. For example, the bandwidth among peer
A, B and C has not been utilized since T1, while the server
has to constantly provide data for the three peers.

Recently, network coding (NC) technologies have brought
fundamentally new insights to the cooperative data scheduling
problem [10, 15]. With NC, each node linearly combines all
received segments with random coefficients before forwarding

them, and the resulting encoding segment is the same in size as
a single segment excluding a few bytes for coefficients. When
the number of received combinations is no less than the size of
coding window (CW), which is the number of segments in the
combination, the media can be fully decoded with very high
probability. Since a coding segment contains the information
from multiple segments, it increases the probability of serving
requests of partners and thus improves the network throughput
utilization. Wang et al. proposed directly applying the linear
NC into MoD streaming [20]. As an example shown in Fig.
4(b), at T0, A gets a linear combination among missing
segments c, d, e, f, denoted as c∼f, from the server; B gets
b∼f from the server and b from A; C gets a∼f from the server,
a∼b from A, and a from B. At T1, A, B and C help each other
with the received coding segments. At T2, A, B and C can
recover the entire media. Overall, NC only consumes 2 time-
units and generates 6 traffic-units on the server. Though NC
improves the resource utilization, some segments may miss
the play deadline since they are not playable until the last
linear combination is obtained. For instance, at T1, A misses
c, and this problem is further aggravated when the number of
segments increases. Thus, the CW should be carefully decided
instead of simply covering all available media at each node.

A better solution to address this segment-missing issue
should consider more environmental parameters, for example,
the play deadline and available bandwidth, when deciding the
coding window. A simple and intuitive estimation of CW for
each peer is the product of the number of partners that contains
expected data and the remaining time-units before the most
urgent play deadline. Fig. 4(c) depicts the deadline-aware case
using this simple estimate. At T0, A has one partner and one
time-unit before c’s deadline, so the CW is 1 and A gets c
from the server; similarly, B’s CW is 2 and gets b∼c from the
server and b from A; C gets a∼c from the server, a∼b from A
and a from B. At T1, A continuously gets d from the server;
after recovering b and c, B has one partner, and the remaining
time units before d’s deadline is 2, so it gets d∼e from the
server; similarly C gets d∼f from the server. At T2, A, B and
C exchange their data. At T3, peer A reconstructs the original
media from a, b, c, d and d∼e, d∼f ; similarly B and C decoded
all segments. In summary, this deadline-aware solution only
uses 3 time-units and costs 6 of the server’s traffic-units.
This not only reduces the schedule time and server overhead,
but also avoids the situation where segments miss the play
deadline as in the previous NC case. However, the simple
estimation above may overvalue the CW when some partner
can not utilize the full bandwidth due to its limited content,
therefor we introduce a more elegant solution in Section IV.

In the next two sections, we describe our design schemes
BAS for search and DNC for data scheduling, respectively.

III. BUFFER-ASSISTED SEARCH OVERLAY

The objective of BAS is to maintain as few index peers as
possible for better search efficiency. In other words, we want
to minimize the search overlay size without sacrificing the
search effectiveness. We first formulate this as the minimum
buffer cover problem and present a globally optimal solution.
Concerning the scalability, we then design a distributed algo-
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Fig. 4. Pull-based Gossip, Network Coding and Deadline-aware solutions.

 

Fig. 5. Analysis of the recurrence of A(k).

rithm and show how to apply it in the overlay construction,
maintenance, and VCR operations accordingly.

A. Minimum Buffer Cover Problem and Optimal Solution

Each peer has a buffer range around its play offset and
may overlap with other peers in buffer coverage. By noticing
there is buffer coverage redundancy, BAS aims to select as
few index peers as possible without reducing search effective-
ness, that is, the total buffer coverage. The problem can be
formulated as the Minimum Buffer Cover (MBC) problem as
follows. We consider a collection C of buffers totally covering
an integer range R [1, 2, . . . , M ]2 , and every buffer is a
consecutive subrange of R. A buffer cover for R is a subset
C′ ⊆ C such that every element in R belongs to at least one
member of C′. The goal is to find the buffer cover C′ for
R with the minimal cardinality |C′|3. Note that, at any time,
every index peer should contain at least one unique number,
which is not covered by other index peers, otherwise it will
be removed from the index overlay.

MBC is a variation of the well-known NP-hard problem
called Minimum Set Cover. In MBC, each buffer set con-
tains continuous elements, so we can leverage it to design
a polynomial-time optimal solution. We divide the problem
into several sub-problems and use the dynamic programming
method to solve them. Let A(0) = Φ and A(k) be the
minimum buffer set to cover Rk[1, 2, . . . , k] for 1 ≤ k ≤ M .

2If the covering area consists of several discontinuous ranges, the problem
can be deduced into some sub-problems, each for a range and the correspond-
ing buffers.

3|C′| is the size of the set C′, and we will use | · | to denote the set size
in this paper.

Let us figure out the relationship between these sub-problems.
Obviously, the optimal solution is A(M), and |A(i)| ≤ |A(j)|
for i ≤ j. We denote the set of buffers covering k as Yk, the
smallest segment index in the buffers of Yk as mk and the
corresponding buffer containing mk as χk ∈ Yk (see Fig. 5).
When there are more than one buffer containing mk, χk is the
one with the largest buffer capacity. Assume A(i)’s are known
for 1 ≤ i ≤ k, and Theorem 1 presents how to compute A(k).

Theorem 1: A(mk − 1) ∪ χk is the MBC for Rk.
Proof: In any buffer cover A′ for Rk, there is at least one

buffer χ′ ∈ (Yk∩A′). Assume the smallest number in χ′ is m′,
then the set A′−{χ′} at least covers Rm′−1[1, 2, . . . , m′−1],
thus

|A′ − {χ′}| ≥ |A(m′ − 1)|, i.e., |A′| ≥ |A(m′ − 1)| + 1.

Recall that for mk ≤ m′, we have

|A′| ≥ |A(m′−1)|+1 ≥ |A(mk−1)|+1 = |A(mk−1)∪{χk}|.
Thus, |A(k)| ≥ |A(mk − 1) ∪ {χk}|. From the optimality of
A(k) for Rk, |A(k)| ≤ |A(mk − 1) ∪ {χk}|. Thus, we get
|A(k)| = |A(mk − 1)∪ {χk}|, and A(mk − 1)∪ {χk} is also
a MBC for Rk. �

Theorem 1 indicates the recurrence relation of A(i)’s:

A(k) =
{

Φ if k = 0,
A(mk − 1) ∪ {χk} if 1 ≤ k ≤ M .

Note that A(M) is the optimal solution to the MBC
problem. There is a trick in computing A(M). Instead of
computing all A(i)’s for i < M , we only need to trace back
from A(M) to A(0). For example, if A(i) = A(j)∪{χi}, the
computation of entries A(j+1), A(j+2), . . . , A(i−1) can be
avoided. With this observation, since each step requires O(|C|)
comparison time for mk and the number of s is O(|C′|), the
total running time is O(|C|2). If the average buffer length of
the peers is much smaller than |C| (i.e., the average buffer
length can be treated as a constant), we can further reduce the
running time by pre-assigning the buffers to their containing
numbers using O(|C|) time. Thus upon computing A(k), only
the buffers containing k are compared. Since each buffer is
compared only once, the total running time can be reduced to
O(|C|). The latter solution is described in Fig. 6.
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1: for i = 1 to M 
2:       Yi = Φ , A(M) =Φ ; 
3: for each buffer χ∈C 
4:       for each i∈χ 
5:             Yi = Yi ∪ {χ}; 
6: for (j = M; j > 0; j = sχ-1)  
7:       χ = argminχ{the smallest number sχ in χ, χ∈Yj }; 
8:       A(M) = A(M) ∪{χ}; 
 

Fig. 6. The globally optimal Dynamic Programming (DP) algorithm.

However, this optimal solution requires global information
about the buffer of all peers. This is not practical in a
large scale system. We propose a distributed algorithm that
makes decision only based on local information in the next
subsection.

B. Distributed Algorithm

The large and distributed systems require a distributed
algorithm which adjusts the index overlay based on local
information. As shown in the above sections, not all peers
need to be maintained in the index overlay. Here we design
a distributed algorithm to calculate which peers should be
indexed based only on the existing index peers plus the
newcomer, upon each new peer insertion or VCR-jump. The
basic flow is to divide the existing index peers into two
groups according to whether they overlap with the newcomer,
and then apply the dynamic programming (DP) algorithm
proposed in the above section to the newcomer plus the group
overlapping with the newcomer.

We denote the collection of buffers of existing index peers
by C′ and the newly added buffer by β. Let LAP = {α|α ∈
C′ and α overlaps with β} and UNLAP = C′ − LAP .
Assume UNLAP covers [1, . . . , i] and [j, . . . , M ]. Let LAP ′

= {α∪{i+ 1, . . . , j − 1}|α ∈ LAP} and record the mapping
between LAP and LAP ′. Let D = {β} ∪ LAP ′. The DP
algorithm is to compute the optimal solution D′ for D. Restore
the buffers in D′ according to the mapping between LAP
and LAP ′. Let C” = D′ ∪UNLAP and we prove soon that
it is the optimal solution for {β} ∪ C′. The complexity of
the distributed algorithm is determined by the DP algorithm,
which is O(|D|) = O(|LAP |), that is, the number of existing
index peers overlapping with the new peer, instead of the
system size.

Theorem 2: C” is the optimal solution for {β} ∪ C′.
Proof: Before the newly added buffer, β , joins, each buffer

in C′ contains at least one unique number, which is not
covered by other buffers in C′. Since buffer β does not
affect the unique numbers of the non-overlap buffers, they
must remain in the optimal set. Note that UNLAP covers
[1, . . . , i] and [j, . . . , M ], and the uncovered area left becomes
[i + 1, . . . , j − 1]. LAP is adjusted as LAP ′ for computing
the minimum buffer cover D′ for the uncovered range. Thus,
the union of D′ and UNLAP is the minimum buffer cover
for {β} ∪ C′. �

As more peers join the system, the same operation is applied
on C” to get C3, and then C4, C5 . . .. Similarly, Ck+1 is
the optimal solution for {β} ∪ Ck. Since the complexity of
our distributed algorithm is determined by |LAP | and Ck is

the corresponding index overlay, we study the magnitude of
|LAP | and compare Ck with the optimal solution to the global
system as follows in Lemma 3, 4, Theorem 5 and 6.

Let N = |Ck| and the buffers in Ck, denoted as
X1, X2, . . . , XN , be ordered by their left numbers. li and ri

are used to represent the left and right end number of Xi.
From the definition, we have li < lj for i < j. The symbol
Bi denotes the length of Xi, and the average length of all
buffers is B.

Lemma 3: ri < rj for i < j.
Proof: According to the definition, we have li < lj for

i < j. If ri > rj , then Xj can be fully covered by Xi,
which contradicts the assumption that every index peer should
contain at least one unique number. �

Lemma 4: li+2 − li > Bi.
Proof: Assume li+2 − li ≤ Bi, i.e., li+2 ≤ Bi + li = ri.

Thus, the range from li to ri+2 is fully covered. According
to the definition and lemma 3, we get li < li+1 and ri+1 <
ri+2, i.e., Xi+1 is fully covered by Xi and Xi+2, which is
contradicting the assumption. �

Theorem 5: N ≤ 2M/B.
Proof: Assume N is an odd integer.

M ≥ BN + lN − l1 = BN +
∑(N−1)/2

i=1
(l2i+1 − l2i−1)

> BN +
∑(N−1)/2

i=1
B2i−1 =

∑(N−1)/2

i=0
B2i+1 (1)

M > BN−1 + lN−1 − l2 = BN−1 +
∑(N−1)/2

i=2
(l2i − l2i−2)

> BN−1 +
∑(N−1)/2

i=2
B2i−2 =

∑(N−1)/2

i=1
B2i (2)

From (1) and (2), we get

2M >
∑(N−1)/2

i=0
B2i+1 +

∑(N−1)/2

i=1
B2i

=
∑N

i=1
Bi = NB, i.e. , N < 2M/B. (3)

The proof is similar when N is an even integer. �
Theorem 6: The expected size of LAP is a constant.
Proof: The overlapped buffers can be categorized into two

types: the ones left the index overlay and the ones remained
after inserting the new buffer β. From Theorem 5, the index
size is bounded by 2M/B, so β’s arrival removes at most one
buffer in the old index list on average. Lemma 4 ensures that
any buffer in the index list Xi can only overlap with Xi−1

and Xi+1. Thus on average, there are at most three overlapped
buffers found by the new buffer. �

Theorem 5 and 6 demonstrate that the distributed algorithm
consumes constant amortized time and bounds the index
overlay size within O(M/B), where M is the media length
and B is the average buffer length of the peers. If every buffer
is equal in size-B, then we get |Ck|

|OPT | ≤ 2M/B
M/B = 2, where

OPT is the globally optimal solution. Our simulation results
in Section V show that |Ck| is even closer to the optimal value.

C. Overlay Construction, Maintenance, and VCR Operations

This subsection presents how the distributed algorithm is
applicable to the index overlay to improve search efficiency.
The protocol design consists of four parts: 1) node join; 2)
node leave; 3) failure recovery; and 4) VCR-interactions. In
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this paper, we reuse the index structure implemented using
AVL tree, DHT, or skip-list, which can provide sub-linear
search efficiency. We apply BAS scheme on top of those
structures so as to reduce their index overlay size.

1) Node Join Operation: When a new client joins the over-
lay, it first looks for the closest index neighbor in O(log N)
hops. After that I partners are selected from this found peer’s
data neighbors, where I is the number of initial partners.
The selection criteria can be based on the end-to-end network
delay, available bandwidth, node workload, or a combination
of those metrics. There have been many research works on
how to use these metrics to achieve network-aware selection
and load balance [14, 21, 22], however we do not discuss
them in detail in this paper. Then the newcomer finds out
the index peers with buffer overlapping by tracing backward
and forward along the closest index peer’s predecessor and
successor. From theorem 6, the expected number of hops to
be traced is a constant. Finally the dynamic programming
algorithm is applied to the found peers plus the new peer
to figure out which peers should be pruned from the index
overlay. The expected number of nodes a new client should
contact is a constant.

2) Node Leave Operation: When a peer leaves, its neigh-
borhood in the index overlay and the data overlay should
be adjusted for system resilience. A peer scheduled to leave
notifies its neighbors, such that they can select new partners
and form new neighboring relations. If the departing peer is
in the index overlay, it first notifies its index neighbors to
rebuild the index links in each level; and then chooses the
least number of peers among the neighbors to cover the index
coverage hole left by the departing node. This hole-recover
problem can be transformed into the MBC problem. Assume
the hole left covers H = [i, . . . , j] and the set of non-index
neighbors’ buffers is denoted by NB = {β1, β2, . . . , βn}. If
we adjust NB to NB′ = {α∩{i, . . . , j}|α ∈ NB}, the hole-
recover problem is to find the minimum buffer covering from
NB′ for range H . Thus, we can apply the the MBC optimal
algorithm to compute the result of NB′ for H .

Since the number of neighbors maintained at each node
is a constant, the cost of the leave operation is constant.
Note that the leave operation does not change the index
overlay’s property: every index peer contains at least one
unique number. Thus the theorems in the last subsection still
hold because they are based on this property.

3) Failure Recovery: Different from the leave operation,
the failure recovery is detected and handled passively. Each
peer sends a heartbeat packet to its neighbors at the beginning
of each schedule round or each common default period. If the
peer does not receive any response from a neighbor in default
consecutive (e.g., 3) rounds, it considers the neighbor as failed.
The heartbeat packet is small in size, so the probability of its
loss in several consecutive rounds due to network congestion
is low.

Upon detecting a failed neighbor, the peer decides to find
one more neighbor or only depend on its current data neigh-
bors. If the number is less than the default minimum partner
number (e.g., 3), the peer will find more data neighbors from
both its two-hop data neighborhood and the index overlay. If
the failed node is an index peer, a backup-node scheme is

Fig. 7. Analysis of CW assignment problem.

applied for failure handling. We introduce one more type of
node, backup node, which acts as a backup of the index peer.
Each index peer selects a backup node from its neighbors
and notifies them the backup node. The backup node serves
to collect information from the index peer’s neighbors when
they detect the failure of index peer and decide which nodes
should rejoin. The computation is the same as the algorithm
described in the Node Leave Operation subsection.

4) VCR Operations: In general, the typical VCR opera-
tions, for example, fast-forward or rewind, can be implemented
with the combination of a leave and re-join operation. How-
ever, a common VCR operation may consist of a series of such
movements, which are not far from each other, so frequent re-
join operations are not efficient. If the index structure supports
horizontal shortcuts to other index peers with logarithmically-
increasing distances, the VCR operation can jump to the new
offset by skipping the most unnecessary nodes. DHT and skip-
list are such examples. Compared with searching from the root
node or top layer, following the horizontal shortcuts can reduce
the search cost significantly. BAS further reduces the number
of horizontal hops with a smaller index overlay.

In summary, the BAS scheme applies a distributed pruning
algorithm to existing mature index structures such that the
index overlay size is bounded within a small and stable scale
of O(M/B). A small structure ensures a fast response time
and low maintenance overhead.

IV. DEADLINE-AWARE NETWORK CODING SCHEDULING

After getting partners from the BAS overlay, a peer should
collaborate with these partners to dynamically schedule data
transmission according to their buffer content information and
network conditions. In this section, we propose a DNC based
approach for this multi-partner scheduling. We first introduce
the DNC scheme and formulate the scheduling problem using
DNC. We then present an optimal algorithm and a distributed
protocol accordingly.

A. DNC Scheme and Scheduling

As illustrated in Section II, the basic idea of DNC is
to consider the play deadline of data segments when doing
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network coding so that it can improve the network throughput
and at the same time satisfy the deadline requirement.

Assume there are k expected segments {mi} as
m1, m2, . . . , mk. A random linear coding on a w-size subset
{m′

i} (|m′
i| = w) of {mi} is a vector cj =

∑w
i=1 αjim

′
i

, where w is called the coding window, and the coefficient
vector αji is randomly generated in a finite field Fq of size
q (q is determined by certain coding scheme). If all cj are
linearly independent, once a node has a subset of cj that spans
w, it can recover the w expected segments in {m′

i} by solving
a set of linear equations. In conventional network coding, the
CW is always the same as the number of expected segments,
that is, w = k, and thus the coding range covers all expected
segments. Though a larger CW makes better utilization of
resource, it causes a higher possibility of segments being
missing upon the play deadline due to the longer waiting time
before decoding. Thus the DNC scheme tries to use as large a
CW as possible for better coding efficiency while controlling
the CW size so that no segment will miss its play deadline.

DNC estimates the CW to be the maximum number of
segments that can be retrieved from the partners before the
most urgent deadline. Thus we formulate the CW assignment
problem with DNC as follows. The segment size is assumed
to be 1 unit for simplicity. As illustrated in Fig. 7, at time t,
suppose a peer has k data segments {mi} missing in the buffer
each with a play deadline ti, i = 1, 2, . . . , k, and s partners
each with a subset of data segments Di (available or coded)
and available bandwidth between partner i and this peer is
bi, i = 1, 2, . . . , s. Then the problem is to find an assignment
A = {(i, j)} for retrieving segment j from partner i, such that
the number of received segments {m′

i} is maximized before
the most urgent deadline t1. The problem formulation is shown
in Fig. 8. We have two rules on the assignment.

1) A valid assignment means the same segment request
can not be assigned to more than one partner, since it
makes no sense in receiving multiple copies of the same
segment.

2) The number of segments assigned to each partner can
not exceed the quantity that can be provided by the
partner, that is f(i) = �bi ∗ (t1 − t)	 .

B. Max-flow based Optimal Solution

Interestingly, we found that we can construct a flow network
G = (V, E) to transform the DNC problem to the max-flow
problem. Nodes S and T are the source and sink, respectively.
Each subset Di and each element mj correspond to node Di

and node mj , respectively. The capacities of edges between
S and Di are f(i). Between Di and mj , there is an edge
with capacity 1 only if mj ∈ Di. The capacities of edges
between T and mj are all 1. Then the complexity of the node
number and edge number is |V | = s + k + 2 = O(s + k)
and |E| = s + k +

∑s
i=1 |Di| = O(s ∗ k), respectively. Fig. 9

depicts the flow network G. For a flow g in G, its flow value
is denoted as |g|, and the flow value from node x to node y
as g(x, y).

Theorem 7: If A is a valid assignment in the coding
window problem, there is a flow g in G with |g| = |{m′

i}|.
Similarly if g is a flow in G, there is a valid assignment A
with |{m′

i}| = |g|.

Fig. 8. Formulated problem statement.

Proof: For any valid assignment A = {(i, j)}, we can
construct a flow g in this way. If (i, j) ∈ A, then let
g(Di, mj) = 1. The two rules presented in the last subsection
ensure that this constructed flow g does not exceed the limits
on the edges between S and Di and those between T and
mj . Since each segment mj assigned in A corresponds to a
value-1 flow from node mj to T , we have |g| = |{m′

i}|. A
similar proof can be done for the reverse direction. �

Thus our coding window assignment problem can be
mapped to the max-flow problem in G. The max-flow solution
not only gives the size of the coding window, but also specifies
which segments should be included inside the coding range.
The max flow value is the coding window size. The coding
range includes the segments whose corresponding nodes in
G have value-1 flows to node T . Since there may be more
than one optimal solution and the max-flow algorithm does
not consider different play deadlines of the missing segments,
a post process is needed to make sure that we select the
solution with the most urgent segments. We use a k-bit data
B to measure the urgency of a solution. The highest bit of B
corresponds to the missing segment m1, and the i-th highest
bit corresponds to mi. If a solution contains mi, then the i-th
highest bit is set to 1, otherwise 0. The higher value of B, the
urgency is higher. The post process aims to find the solution
with the highest urgency.

The post process (PP) checks whether the missing segments
that are not inside the solution can replace the less urgent
segments that are inside the solution without changing the flow
value. For each of them mi, PP traces back to its preceding
nodes in G, that is, those partners containing it, and examines
whether they have value-1 flow to the nodes whose play
deadline is less urgent than mi. If there is one such node
mj , exchange mi with mj in the solution set, and change the
corresponding flows in G.

Theorem 8: (1) PP does not change the network flow value;
(2) PP guarantees that the final solution has the highest
urgency value.

Proof: Interested readers are referred to [3] for details. �
We can use the well-known max-flow algorithm to compute

the coding window w and corresponding coding elements
{m′

i}. Since the fastest known max-flow algorithm has time
complexity of O

(|V | ∗ |E| ∗ log(|V |2/|E|)) [11], the running
time for a coding window assignment is also O

(
s2k∗ log((s+

k)2/(s∗k))
)
, where k is the number of missing segments and

s is the number of partners.

C. Distributed Protocol

The distributed protocol consists of four parts: 1) full or
partial decoding; 2) determine the new coding window; 3)
request from the partners; 4) respond to the requests from
partners. Each peer uses the max-flow algorithm to calculate
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... ...

 

Fig. 9. Constructed flow network G.

 

1: for each node n in the system 
2:  if(any received combinations can be decoded) 
3:     decode and update buffer; 
4:  if(all the w expected segments in {m’i} are decoded) 
5:     recalculate the coding window w and {m’i}; 
6:  for each idle partner si with expected data in {m’i} 
7:     request length-w combinations among {m’i} from si; 
8:  if (any requests arrive) and (n contains the requested data) 
9:     responds the requests with encoded segments; 

Fig. 10. DNC scheduling algorithm.

the coding window w and corresponding coding elements
{m′

i}, and then sends this request to all the partners. After
decoding all requested segments in {m′

i}, the peer starts a new
round of computation of the coding window and corresponding
coding elements. The DNC scheduling algorithm is shown in
Fig. 10.

1) Full or partial decoding: Upon receiving new segments,
the peer examines whether the received combinations can be
decoded. If they are decodable, the segments are reconstructed
and the buffer is updated immediately. We then have to decide
whether the received segments are decodable or which are
decodable. The simplest way is to test all combinations of
the X existing segments, that is, 2X rounds of decoding.
However, this incurs exponentially-growing overhead and thus
is unfeasible. We propose a novel algorithm called Enhanced
Gaussian Elimination (EGE), which can efficiently decide
which segments can be decoded by extending the Gaussian
Elimination algorithm [1]. Due to the limited space, interested
readers are referred to our technical report [3].

2) Determine the new coding window: If the w expected
segments decided in the last schedule have been fully recov-
ered, the coding window and coding range are recomputed.

3) Request from the partners: Then the node requests
combinations spanning the w expected segments in the coding
range from each idle partner that contains unavailable data.

4) Respond to the requests from partners: Upon receiving
a request from some neighbors, the node checks whether it
is able to response an encoded segment computed from its
available segments or received encoded segments or both.
There are three cases that the node is able to provide useful
segments for the receiver (see Fig. 7). First, there are some
available segments within the requested window range, for
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example, partner 1 has the expected segments 23, 24, 25.
Second, the node has some encoded segments whose coding
range is within the requested window range, for example,
partner 2 has a coded segment 24∼25 that is within the
requested window range {23, 24, 25}. Third, there are some
encoded segments that have some portion of coding range
within the requested window range and the other portion
corresponding to available segments in the requested node,
for example, 21∼24 on partner 3.

In summary, this section studied the data scheduling among
partners. We proposed the deadline-aware network coding
scheme and a max-flow-based optimal solution. DNC ex-
ploits network coding to improve peer cooperation, and thus
increases the network throughput. Different from traditional
network coding, DNC provides a dynamic coding window for
each peer to avoid segment missing upon the play deadline.
A distributed scheduling protocol using DNC scheme was
proposed.

V. SIMULATION RESULTS

We evaluate the performance of our MoD system by com-
paring it with some existing systems.

A. Simulation Configuration

We use the Sprint ISP topology collected by Rocketfuel
engine [19] for system setup. It consists of 112 backbone
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nodes and 242 access nodes; 5 stub nodes are attached to
each access node to simulate a local area network. Thus the
network size is about 1,500. The default bandwidth settings
between two backbone nodes, a backbone and an access node,
two access nodes, two stub nodes within the same LAN are
10 Mbps, 5 Mbps, 3Mbps, and 10 Mbps, respectively.

In our simulation, the server and users are located at ran-
domly selected stub nodes. The communication path between
any two nodes follows the shortest path. The bit rate of the
streaming media is 500Kbps and its length is 2 hours. The
length of a segment is 1 second, and the default size of the user
buffer is 7.5 Mbytes, which can accommodate 120 segments,
that is, less than 2% of the entire stream. There is no user in the
system at the beginning, and users join the system following a
Poisson process with a mean inter-arrival time of 2.5 seconds.
The start offset of each user is evenly distributed between 0
and 2 hours. The users leave the system upon the end of the
video. For each set of configuration, 100 simulation runs have
been performed to mitigate the effect of randomness.

B. Search Efficiency and its Control Overhead

We first investigate the search performance for the BAS
scheme. Due to the space limitation, only the BAS using the
skip-list structure is shown in this section. We compare BAS
with the DSL [20], which also uses the skip-list structure.

Fig. 11 depicts the size of search structure for DSL and
BAS during a 10,000 sec simulation. L-BAS represents the
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Fig. 16. Start delay for PGA, NC and DNC.

case where the distributed algorithm is used, while G-BAS is
the size computed by the globally optimal algorithm. Since
DSL has to maintain the play progress of all online peers in
the MoD system, the size of DSL increases as the system
grows up with time until the system size k relatively stable
around 1,400 after 7,000 sec. In contrast, BAS only needs
to maintain less than 100 peers regardless of the magnitude
of system expansion. The curve of L-BAS is very close to
G-BAS, indicating that the performance of our distributed
algorithm is close to the optimal one.

A small size index structure generates low control overhead
and provides a fast search time. We use the number of peers
contacted (peer hops) during an operation as the metric for
controlling overhead and execution time. Fig. 12 depicts the
mean peer hops during the partner search of a node join for
both DSL and BAS. In DSL, though the number of peers
contacted during a search is logarithmic to the system size,
about 9 peer hops are required when the system size is about
1,400. In contrast, BAS requires about 5 peer hops and the
search cost is not sensitive to the system expansion, since the
size of BAS index overlay is small and stable.

Fig. 13 depicts the mean peer hops during a node leave
operation in both DSL and BAS. A node leave needs to inform
both index neighbors and data neighbors. BAS outperforms
DSL in reducing the control overhead related to the index
neighbors. Since many peers are not index peers in the BAS,
the average adjustment cost due to node leave is much smaller
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than that of DSL. This is more significant when the system
size increases. As shown in Fig. 13, the average cost for
BAS first increases, because the number of index neighbors
is increasing. When the system grows large enough, the size
of BAS overlay becomes stable. Then the average leave cost
decreases since the portion of index nodes decreases.

A VCR-jump operation consists of two steps: leave the
current neighborhood, and find the partners close to the new
play offset. The first step is similar to the common node leave,
while the second step can be implemented more efficiently
than the new node join operation if we exploit the horizontal
shortcuts supported by the skip-list. Fig. 14 depicts the peer
hops of a 30%-VCR-jump operation (jump offset is 30% of
the streaming length) in both DSL and BAS. Let “DSL-sum”
and “BAS-sum” denote the cases simply combining leave and
rejoin operation in DSL and BAS, respectively, while “DSL”
and “BAS” denote those exploiting horizontal shortcuts to
realize VCR-jump interactions. It can be seen that the VCR-
jump cost is lower than the sum of join cost and leave cost.
This demonstrates the effect of jumping from a current play
point using horizontal shortcuts. BAS outperforms DSL due to
its smaller size of index overlay, thus generating fewer control
messages and providing faster response time.

C. Streaming Quality

In the second set of our simulation, we examine the stream-
ing quality of the MoD system. The start delay, which is
the waiting time before the first playable segment is ready,
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and Segment Missing Ratio (SMR), which is the ratio of
segments that are not available upon their play deadline, are
used as the performance evaluation metrics. Three scheduling
schemes,PGA, NC and DNC, are implemented for compari-
son. In a pure NC scheme, the coding window size is set to the
default user buffer length, instead of the whole media length.

In the following simulations, some settings are changed for
simplicity. The video length is 720 seconds and the default
capacity of the user buffer can accommodate 20 segments.
Fig. 15 plots the number of online users in the system during
a 1000-sec simulation. It is seen that the system k increasing
to about 180 users during the first 720 seconds. After that, the
system size k relatively stable, since the number of new users
is close to that of the departing users.

Fig. 16 plots the start-up delay for MoD systems based
on the three scheduling methods, PGA, NC and DNC, under
the same network configuration and user setting. The start-
up delay for NC is obviously larger than those of PGA and
DNC because the first segment could not be reconstructed
until enough coded segments are received. In the dynamic
changing network, PGA may suffer from the congestion due
to the greedy and local decisions, so the start-up delay is not
stable. In contrast, the start-up delay in DNC is smaller and
more consistent because the coding window is adaptive to
the network condition and thus small upon peer arrival, and
the network throughput utilization is improved with network
coding.
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Fig. 17 plots SMRs for PGA, NC and DNC systems. We
observe SMR increased dramatically in the first 100 sec.
Since the server can serve at most 10 (5Mbps/500Kbps)
simultaneous connections and there are at most 36 (streaming-
len/buffer-size) non-overlapping online users, the users are
congested at the server side at the early stage when the
system has more than 10 non-overlapping users and there are
few users filled with segments. Compared with PGA, DNC
and NC quickly reduce the SMRs to reasonable degree due
to the power of network coding in improving the network
throughput. With the content play deadline in mind, DNC can
obtain the smallest SMR.

Fig. 18 depicts the network throughput comparison for these
three schemes. The throughput metric is the average number
of segments a peer received per second. From the figure,
the throughput of DNC and NC outperforms PGA more than
20%. The NC always get a high throughput, but due to the
changing and large coding window, many segments can not be
decoded when they required to be played and thus even though
the segments eventually can be received, some of them are
wasted. DNC leverages the throughput improvement and also
considers the deadline to change the coding window to make
as many segments decodable upon their deadline as possible.
So even though DNC gets an uncomfortable SMR at the initial
stage, it can adaptively reduce SMR into around 5% soon and
such loss can be effectively recovered by applying Forward
Error Correction (FEC) [9].

To evaluate the effect of packet loss on the network cod-
ing, we assume each link will drop the packet at a certain
probability even though there is enough available bandwidth
at the link. Fig. 19 and 20 depict the SMRs and network
throughput comparison at 3% packet loss ratio. We observe
that the performance results are similar to the previous set of
experiments. Thus, the packet loss does not affect the DNC’s
performance.

We also perform simulation for 500 and 1000 users and
similar results have been obtained [3].

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented a novel P2P MoD system,
where Buffer Assisted Search (BAS) structure and Deadline-
aware Network Coding (DNC) scheduling schemes are pro-
posed to address the two key issues of an MoD system, that
is, partner search and peer collaboration. The BAS scheme
exploits the buffer coverage redundancy to reduce the index
overlay size for constant search efficiency and low control
overhead. The BAS structure is generic and can be imple-
mented based on existing data structures, for example, AVL-
tree, DHT, and skip-list. The DNC scheme, which extends
network-coding techniques in the data exchange, adaptively
adjusts the coding window for each node based on its varying
network conditions and play deadline. DNC improves the
network throughput and reduces the total schedule time with-
out missing the play deadline at high probability. Extensive
simulation results have shown that our proposed MoD system
outperforms existing systems in both search efficiency and
streaming quality.

In the future, we plan to deploy a prototype system on
the planet-lab for a better understanding of the packet-based

content delivery in the real distributed network environment.
Moreover, in this paper, the BAS scheme deals with one-cover
problem, that is, each segment is covered by at least one index
peer. For better resilience, the multiple-cover problem is worth
further studying.
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