
www.elsevier.com/locate/comcom

Computer Communications 29 (2006) 3425–3444
Cross-layer application-specific wireless sensor network design
with single-channel CSMA MAC over sense-sleep trees

Rick W. Ha, Pin-Han Ho, X. Sherman Shen *

Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ont., Canada N2L 3G1

Available online 10 March 2006
Abstract

Because of their pervasiveness and autonomy in operation, mesh-based wireless sensor networks (WSNs) are an ideal candidate in
offering sustained monitoring functions at reasonable cost over a wide area. However, devising an energy-efficient, cost-effective, and
reliable communication strategy for WSNs requires tight collaboration of all of the sublayers, which introduces new technical challenges
in the areas of data, network and power management. This paper proposes a cross-layer sleep scheduling-based organizational approach,
called Sense-Sleep Trees (SS-Trees), that aims to harmonize the various engineering issues and provides a method of increasing moni-
toring coverage and operational lifetime of mesh-based WSNs engaged in wide-area surveillance applications. An iterative algorithmic
approach is suggested to determine the feasible SS-Tree structures to achieve such design goals. Based on the computed SS-Trees, opti-
mal sleep schedules and traffic engineering measures can be devised to balance sensing requirements, network communication con-
straints, and energy efficiency. For channel access, a simple single-channel CSMA MAC with implicit acknowledgements (IACKs) is
selected to complement SS-Tree implementation because of its flexibility and adaptability in face of the unique operational characteristics
of WSNs.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Wireless sensor networks; Sleep scheduling; Cross-layer design; Medium access control; CSMA; Implicit acknowledgements
1. Introduction

Recent technological advances in wireless sensor net-
works (WSNs) [1–3] give inspiration to the development
of a new breed of surveillance systems that can offer addi-
tional capability and flexibility over existing options for
monitoring a wide range of physical phenomena at reason-
able cost. The emphasis on energy efficiency is paramount
in WSN design because each sensor node is equipped with
only a finite amount of battery supply. Aside from avoiding
the use of energy-inefficient and complex hardware compo-
nents, extra energy savings can be achieved through aggres-
sive power management strategies in devising adaptive
0140-3664/$ - see front matter � 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.comcom.2006.01.019

* Corresponding author. Tel.: +1 519 886 4567x2691; fax: +1 519 746
3077.

E-mail addresses: rwkha@bbcr.uwaterloo.ca (R.W. Ha), pinhan@
bbcr.uwaterloo.ca (P.-H. Ho), xshen@bbcr.uwaterloo.ca (X.S. Shen).
sleep schedules to minimize the amount of energy lost to
needless transceiver idle listening [4–6].

While the main implication of sleep scheduling in the
MAC layer is the shortening of the time the radio trans-
ceiver is engaged in idle listening, incidences of overhearing
can also greatly be reduced as nodes in sleep mode are no
longer eavesdropping on the wireless medium. For routing
algorithms, however, link table entries will expire prema-
turely if an intermediate node sleeps and shuts off all links
to its neighbors without prior notification, thus forcing fre-
quent recomputation of routing paths [7]. In addition, net-
work maintenance functions such as neighborhood
discovery and time synchronization must also operate
within the short time frame that the transceiver is active,
thereby competing for bandwidth and processing power.
In the application layer, real-time data reporting functions
are subject to constant and debilitating routing path break-
ages due to sleeping nodes. Because of these far-reaching

mailto:rwkha@bbcr.uwaterloo.ca
mailto:pinhan@ bbcr.uwaterloo.ca
mailto:pinhan@ bbcr.uwaterloo.ca
mailto:xshen@bbcr.uwaterloo.ca

3426 R.W. Ha et al. / Computer Communications 29 (2006) 3425–3444
effects, a cross-layer perspective should be taken in devising
sleep schedules to collectively tackle the inter-layer issues.

Besides sleep scheduling, the other primary method in
minimizing energy wastage is to reduce the amount of data
traffic traversing the WSN. The obvious way is to limit the
amount of sensing data generated by the nodes through
issuing less data requests from the data sink to individual
nodes for request-driven data, raising the event reporting
threshold for event-driven data, and decreasing data
reporting frequency for timer-driven data. Another way
to reduce overall data traffic is to implement data aggrega-
tion and duplicate suppression schemes to compact similar
data packets. On the other hand, energy savings can also be
achieved by reducing the amount of control overhead in
node addressing, MAC signaling, routing procedures and
network maintenance. In any case, such data reduction
measures would significantly limit both monitoring capa-
bility and network management flexibility of WSNs.

In addition to energy efficiency, another important issue
to consider in WSN design is the cost of sensor nodes. Giv-
en a WSN can contain thousands of nodes or more, any
increase in per unit cost, no matter how minute, would
be magnified into a substantial overall cost due to the large
number of nodes deployed, which would make WSNs an
expensive technology in comparison with other more
affordable alternatives and thereby diminishes their eco-
nomic appeal. Therefore, the prospective WSN design calls
for a bare-bones approach in component selection where
only the most essential capabilities will be offered.

Given the many WSN design considerations, the real
engineering challenge henceforth is to devise a comprehen-
sive yet manageable network organization and communi-
cation paradigm that can harmonize the various design
criteria without creating significant conflicts in optimiza-
tion objectives. This paper concentrates solely on the appli-
cation of WSNs in wide-area surveillance applications, and
it is organized in the following manner. First, Section 2
explores issues regarding sleep scheduling and presents a
new organizational methodology, called Sense-Sleep Trees
(SS-Trees), that aims to maximize energy efficiency in WSN
design. Next, operational stages of the SS-Tree scheme are
described in Section 3. An iterative algorithmic approach
for computing SS-Trees is suggested in Section 4. Section
5 discusses cross-layer sleep scheduling issues and devises
a thorough solution to satisfy MAC, routing and applica-
tion requirements for steady-state WSN operations. Evalu-
ation on the validity and effectiveness of the proposed
cross-layer SS-Tree scheme are provided in Sections 6
and 7. Finally, Section 8 offers some concluding remarks
and outlook for future research.

2. Sleep scheduling issues and the SS-tree concept

Unlike other types of communication networks, WSNs
are characterized by a simple and stable traffic flow pattern,
where data is unilaterally streamed from the sensor nodes
to the data sink with occasional data requests and network
control packets disseminating downstream. So a legitimate
approach to organize WSNs is to network all the nodes
with a large spanning tree structure that is rooted at the
data sink to minimize uplink and downlink communication
costs. Forwarding messages in a shortest path spanning
tree has the advantage of locating a lowest cost path
between each of the nodes and the data sink, which enables
minimum cost forwarding and source routing to perform
effectively [8,9]. Also, junction points are ideal locations
for performing data aggregation and in-network processing
to reduce the data traffic traveling upstream. Clustering is
the best known example of utilizing the tree structure for
WSN formulation [10,11], though it requires higher nodal
density for proper cluster formation. The star topology is
also an example of a tree structure where all of the nodes
are leaves connected to the data sink via one hop, which
of course cannot be applied to all types of WSN topologies.
A linear chain, which is used in chain-based routing proto-
cols [12,13], is a special case of a tree where the number of
descendents per node is 1. For the envisioned wide-area
surveillance WSN, the spanning tree structure will be based
on the underlying mesh network and no explicit clustering
procedure will be pursued because of the lower network den-
sity and shorter communication range. However, relying on
existing shortest path or minimum-weight spanning tree
algorithms may not be adequate since the resultant spanning
tree and routing paths have to negotiate around the unique
WSN operational constraints such as large nodal population
and ultra-low communication duty cycle (i.e., <1%).

Because sleep scheduling is an integral part of the pro-
posed WSN design, compatibility issues of spanning tree
management and sleep scheduling should be investigated
with prudence. Random sleep scheduling is not recom-
mended because it will exert a detrimental effect on net-
work connectivity and topology control efficiency under
an ultra-low duty cycle. On the other hand, while imple-
menting a global sleep schedule for all of the nodes would
be relatively uncomplicated on a spanning tree structure, a
network-wide communication blackout exists during the
long sleep periods where none of the nodes would be active
for packet forwarding. This lull in communication will
adversely impact the effectiveness and temporal sensitivity
of monitoring.

One way to shorten the communication blackout period
while maintaining the percentage of sleep time is via form-
ing a spanning tree with the maximum number of leaves
such that the non-leaf nodes, often referred to as the dom-
inant set, form a virtual backbone [14]. Groups of leaf
nodes can be turned on and off successively to provide
interleaved coverage while minimizing energy usage
through regular sleep scheduling. The main concern with
this approach is that it requires the non-leaf nodes to
remain in active mode for longer periods of time to accom-
modate the varying sleep schedules of the leaf nodes, there-
by depleting their battery reserves much sooner.

Thus far, a sleeping node has been viewed simply as a
service void in the WSN that disrupts the ability to forward

R.W. Ha et al. / Computer Communications 29 (2006) 3425–3444 3427
data packets from neighboring nodes. Yet a sleeping node
also ceases to exert radio interference in the wireless chan-
nel, which reduces incidences of overhearing and packet
collision. Also, a sleeping node removes itself from the
active data exchanges, thereby simplifying the WSN topol-
ogy and making routing procedures less complicated.
Therefore, as long as sleep scheduling is implemented in
a controlled manner, the benefits of topology simplification
can be realized without sacrificing connectivity or sensing
capabilities.

The following example describes the principal concepts
in using coordinated sleep scheduling for topology simpli-
fication. Fig. 1(a) shows a simple WSN with a data sink
and nine nodes arranged in a square grid pattern. Suppose
that a spanning tree with three branches is logically over-
laid on top of the original topology, and all nine nodes fol-
low the same global sleep schedule, as shown in Figs. 1(b)
and (c), respectively. Then during the active period, consid-
erable amounts of overhearing and packet collisions, repre-
sented as the dashed lines in Fig. 1(b), will occur amongst
neighboring node, while none of the nodes will be capable
of communicating during the sleep period.

Now suppose that the nine nodes are divided two groups
of 3 and 6, respectively, in the manner shown in Fig. 1(d),
where each group follows its own sleep schedule such that
the active periods of each group alternate, as illustrated in
Fig. 1(e). Instead of partitioning the WSN into separate
sleep regions, the nodes of each group are arranged to form
a tree rooted at the data sink with much sparser branches
such that nodes on separate branches cannot communicate
with one another. As a result, each node now has much
fewer neighbors than those on the logical tree depicted in
Fig. 1(b). Therefore, theoretically even with the use of only
a single wireless channel, incidences of packet collisions
from channel corruption will be drastically reduced. Also
since the potential sources of overhearing are limited to just
two neighbors instead of up to eight in the previous case,
fewer overheard packets will be extraneously processed
and less energy will be consumed. Since the nodes on each
Data Sink

SS-Tree 1

Data Sink

SS-Tree 2

DatData Sink

a

d

b

Fig. 1. SS-Tree concept. (a) WSN topology. (b) Logical spanning tree overlay
schedules.
tree share the same sensing and sleeping cycle, the tree itself
is named as Sense-Sleep Tree, or SS-Tree for short.

Besides achieving energy savings from simplifying the
WSN topology, notice that in Fig. 1(d) the sleeping nodes,
colored as white, are strategically located beside at least
one branch of the other SS-Tree. As mentioned before,
although the nodes turn off their radio transceivers when
they enter sleep periods, they do remain on alert for signs
of abnormality or emergency events in the meantime.
Those nodes residing on the active SS-Tree during an active
period can be viewed as the virtual backbone that links the
adjacent nodes that have their transceivers turned off.
However, since different SS-Trees rotate in time as the
communication backbone, they avoid overburdening any
set of nodes from being the sole virtual backbone. There-
fore, SS-Trees allow the nodes to increase monitoring sensi-

tivity (i.e., greater number of event reporting windows) for
emergency events that generate event-driven data without
altering the communication duty cycle or reporting fre-
quencies on timer-driven data.

Despite this performance advantage for SS-Trees, there
exist several issues to be considered regarding its implemen-
tation. For example, at least 100 distinct adjacent active
paths with correctly interleaved sleep schedules at 1% com-
munication duty cycle are needed to provide continuous
real-time event reporting coverage for a single node. While
this may not feasible due to limited nodal density and high
SS-Tree computation complexity, even having just a few
active paths per sensor node would be enough to enhance
event reporting capability tremendously. Intuition suggests
that the number of SS-Trees to be computed has to be less
than the average nodal degree of the WSN topology, but
finding the exact relationship between a given WSN topol-
ogy and the number of SS-Trees is beyond the scope of this
paper and is left as future work.

Fig. 2(a) shows the same basic WSN topology as that
used in Fig. 1, but the nine nodes are now arranged into
three distinctly colored SS-Trees operating under the same
low communication duty cycle with the sleep schedules
Time

Active

Off

Off

Active

Active

Off

Off

Active

SS-Tree
1

SS-Tree
2

Time

Off Active Off ActiveAll
Nodes

a Sink

c

e

. (c) Global sleep schedule. (d) SS-Tree configuration. (e) Interleaved sleep

Data Sink

SS-Tree 1

SS-Tree 2

SS-Tree 3

Time

SS-Tree 1

SS-Tree 2

SS-Tree 3

SS-Tree 1

SS-Tree 2

SS-Tree 3

Time

a

b

c

Fig. 2. Impact of SS-Tree on communication duty cycle and event-driven
data reporting. (a) SS-Tree assignment. (b) Staggered sleep schedules. (c)
Event reporting windows.

Active

Network
Initialization

Sleep Failure
Recovery

Neighborhood
Update

Hibernation

Fig. 3. WSN operational stages with SS-Trees.

3428 R.W. Ha et al. / Computer Communications 29 (2006) 3425–3444
arranged in a staggered manner, as shown in Fig. 2(b).
With SS-Tree 1 and SS-Tree 3 serving as active paths dur-
ing their respective active periods, SS-Tree 2 is able to
increase its monitoring sensitivity by 3 times, as demon-
strated in Fig. 2(c). On the other hand in the same figure,
SS-Tree 2 acts as active paths during its active period for
the other two trees to increase their monitoring sensitivity
by two times, though the event reporting windows are
not equally distributed in time. In between the event
reporting windows, the sensor nodes have the option to
reduce the sampling rate or even turn off their sensing unit
during the communication blackout periods to further
minimize energy consumption.

While SS-Trees can provide extended monitoring cover-
age for event-driven data for about the same amount of
energy, one minor drawback is that timer-driven data can-
not be simultaneously gathered from all SS-Trees since
each follows its own sleep schedule and only one SS-Tree
may be active at any given time. For surveillance applica-
tions though, the impact of having unsynchronized period-
ic reports of ambient conditions and operational status of
sensor nodes is far less significant than experiencing any
delays in alerting the data sink of urgent events. Therefore,
besides requiring the WSN application to tolerate a higher
delay in timer-driven data reporting, event-driven data is to
be given a higher priority in packet delivery that allows it
to be expedited to the data sink on the minimum cost path
when both types of data are injected into a SS-Tree during
the active period.

3. SS-Tree operational stages

Fig. 3 shows the complete operational stages throughout
the WSN’s life cycle using SS-Trees. Soon after initial nod-
al deployment, the WSN will enter the Network Initializa-

tion stage, which allows the data sink to gather network
connectivity information from individual sensor nodes,
compute the SS-Trees, and disseminate the sleep schedules
to every sensor node. The sensor nodes will then alternate
between Active and Sleep stages for the majority of their
lifetime in providing constant physical monitoring and per-
forming the necessary data reporting tasks. During pro-
longed periods when sensing services are not needed, the
entire WSN would enter Hibernation mode to conserve
the maximum amount of battery power. To preserve net-
work integrity, sensor nodes need to undergo the Neighbor-

hood Update process periodically for keeping informed of
any status changes of adjacent nodes in sleep schedules
or hardware failure. Finally, sensor nodes and the data sink
will enact the Failure Recovery procedures in case node fail-
ures are detected. The following paragraphs will further
explain the operational dynamics in each of the stages.

To realize the benefits of SS-Trees, it is important to
devise an efficient method for determining and disseminat-
ing the sleep schedule to all of the nodes during the Net-

work Initialization stage. Distributed approaches for sleep
schedule computation offer better scalability and robust-
ness against single point of failure [4,5]. However, because
of the need to adapt to different monitoring sensitivity
requirements in response to varying environmental condi-
tions, the optimal sleep schedules should be prepared by
the data sink or the more powerful processing center since
they are most sophisticated to handle scheduling decisions
in a global manner. With direct source routing and efficient
broadcast trees, any rescheduling commands issued by the
data sink can be delivered to nodes swiftly. Also, since the

R.W. Ha et al. / Computer Communications 29 (2006) 3425–3444 3429
data sink possesses global knowledge of network connec-
tivity and link costs, the same sleep schedule can be
assigned to nodes located on the same routing path, there-
by ensuring a green light for packet delivery all through the
path during active periods and guaranteeing the minimal
end-to-end propagation delay.

During the Sleep state, the sensor node shuts down the
radio transceiver to conserve power, thereby excluding it
from intra-WSN communication. However, other hard-
ware components such as the processor and the sensing
unit can remain active to allow the sensor node to monitor
the surrounding area for signs of abnormalities. In case an
emergency situation arises, the sensor node which sensed
the abnormality will search its neighborhood sleep schedul-
ing list and find out which nodes are scheduled to be active
next. When that active period commences, the sensor node
will turn on its transceiver and sends a notification message
to the active neighbor. That neighbor will in turn forward
the urgent message to the data sink through the active
SS-Tree.

When the WSN is expected to undergo an extended peri-
od of inactivity, the entire sensor node population should
enter Hibernation state by shutting off all hardware compo-
nents except for a tiny low-power wakeup timer. While the
nodes will gain a few months of rest during hibernation,
they should periodically wake up to participate in global
synchronization sessions to minimize clock drifts. These
sessions are also ideal for notifying the nodes of any chang-
es to the hibernation schedule, as well as to detect any
changes to the network topology from nodal failure or
newly added nodes.

Given the ultra-low communication cycle, sensor nodes
will spend only a tiny fraction of their lifetime in the Active

state. Nonetheless, it is the most important state with
respect to the overall operation of the WSN where all the
necessary data reporting and network maintenance tasks
are performed within this short time span. In order to com-
plete all packet transmission and forwarding activities
within a single short active period, the data reporting pro-
cess should also be carefully choreographed instead of let-
ting the nodes transmit packets at will to further reduce
management overhead. In addition, data aggregation and
duplicate suppression will be enforced so that the process-
ing load will be distributed as evenly as possible along rout-
ing paths and across the sensor field to prevent premature
battery depletion. Such issues related to the sensing appli-
cation requirements will be discussed later in Section 5.

A potential issue with SS-Trees is their vulnerability
toward nodal failures since any failed intermediate node
will instantly sever the end-to-end path on the spanning
tree. Since each sensor node does not keep the full network
connectivity information, it is difficult to route around the
failed nodes via some distributed algorithm alone. Also, the
Failure Recovery process is further complicated by the fact
that neighboring nodes often cannot reach each other dur-
ing steady state operations as they belong to separate SS-
Trees with different sleep schedules. Therefore, in order
to recover from nodal failures without merely resorting
to classic flooding, it is important to let neighboring nodes
be aware of each other’s sleep schedule through exchanging
local information during Neighborhood Update sessions
from time to time. Whenever a node senses an upstream
breakage on its SS-Tree branch, it can refer to the stored
neighborhood sleep schedules and reconnect to the data
sink via the next neighboring node that is scheduled to
become active. More importantly, the data sink would
assume a central role in permanently repairing SS-Trees
with the help of the global connectivity and sleep schedul-
ing information it possesses. Such neighborhood update
and failure recovery issues are beyond the scope of this
paper and they will be instead delegated as part of the
ongoing research work on SS-Trees.

4. SS-tree computation

Since SS-Tree is a novel concept in WSN organiza-
tion and management, issues such as sleep schedule
determination, data dissemination dynamics, neighbor-
hood discovery process, and failure recovery procedures
remain to be explored. However, the core problem for
realizing the SS-Tree concept is the actual determination
of how the sensor nodes can assigned to a fixed number
of SS-Trees on a given WSN topology. With multiple
SS-Trees coexisting in a WSN comes the possibility of
tree overlapping, where a selected number of sensor
nodes may have to belong to multiple SS-Trees to main-
tain tree connectivity. Such nodes, called shared nodes,
need to follow multiple sleep schedules since each SS-
Tree maintains its own sleep schedule. Therefore, the
shared nodes constitute the weak points of the network
where they will deplete their batteries much sooner than
the rest of the WSN population. Since no existing tree
computation algorithm or general approach has been
suggested regarding SS-Trees, the following formal defi-
nition of the SS-Tree problem will address the various
objectives described thus far.

Symbols - Let:

V – set of all sensor nodes plus the data sink
E – set of all bidirectional links between nodes in V

K – set of all SS-Trees
s – symbol representing the data sink in V

Problem Definition: Given an undirected connected
graph G = (V,E) with node s denoted as the data sink,
form jKj connected subgraphs (SS-Trees), all rooted at
node s, with the following main objectives:

1. Minimize the number of shared nodes (i.e., nodes
belonging to multiple SS-Trees).

2. Minimize the number of co-SS-Tree neighbors of each
node.

3. Minimize the cost of forwarding messages between the
data sink and each node.

3430 R.W. Ha et al. / Computer Communications 29 (2006) 3425–3444
Since the presence of shared nodes on SS-Trees has the
most adverse impact on the expected lifetime of a given
WSN, it becomes the top priority in the proposed compu-
tation approaches. For the second objective, each node
should preferably be adjacent to the maximum number of
neighbors that reside on other SS-Trees in order to take
advantage of a larger number of available event reporting
windows. Also, specifying a smaller number of co-SS-Tree
neighbors per node would decrease the amount of over-
hearing interference produced. The third objective requires
that all nodes on each SS-Tree should reside on the mini-
mal cost path to the data sink, where the cost can be inter-
preted in terms of energy usage, transmission distance or
hop count.

The objective of the proposed SS-Tree computation
algorithm is to offer a fast approach to compute SS-Trees
while balancing the three objectives outlined in the problem
definition. The algorithm follows a greedy depth-first
approach that constructs SS-Trees from the bottom-up
on a branch-by-branch basis. The general idea is to con-
struct the SS-Trees based on the underlying shortest path
tree rooted at the data sink as determined by Dijkstra’s
algorithm. The SS-Tree computation algorithm proceeds
in a number of iterations, where in each iteration an end-
to-end minimum cost path is appended to one of the SS-
Trees. At the start of the algorithm, all the nodes in the
WSN topology are deemed unselected, and each path is
built starting from the node with the highest path cost
and uses as many unselected nodes as possible along the
way. Each iteration is then divided into a number of steps,
where in each step the path grows by one hop by adding a
single unselected upstream node belonging to the next low-
est hop level to the currently selected set of nodes. For
picking the ideal unselected upstream node among multiple
candidates, the selection criteria favor those with the fewest
number of neighbors in an effort to reduce the number of
shared nodes in future iterations. If no unselected upstream
a

c

Fig. 4. Successive iterations in SS-Tree computation. (a) Iter
node is available for selection, then a node is picked from
those that were already selected, which carries the risk of
creating a shared node if the selected node belongs to a dif-
ferent SS-Tree. Path construction for a given SS-Tree in the
current iteration stops when either the data sink or a select-
ed upstream node belonging to the same SS-Tree is
reached.

Across the WSN topology, two constructed paths are
said to be adjacent if all of the vertices on one path are
adjacent to at least one vertex on the other path, and vice
versa. If each path is assigned to a different SS-Tree, then
the nodes on both paths will enjoy the advantages of
increased sensing duty cycle and added protection from
nodal failures. However, suppose in every iteration the
algorithm constructs the paths by selecting candidates from
the same pool of unselected nodes, then it would be very
difficult to maintain path adjacency among different SS-
Trees because the constructed paths can crisscross each
other in an unordered fashion. An intuitive approach to
maximize path adjacency is to construct a path from the
set of nodes that are neighbors to the nodes belonging to
a different SS-Tree.

To illustrate this idea, Fig. 4 shows the successive itera-
tions in computing 2 SS-Trees for a 25-node square grid
WSN, where path cost of each node is represented by its
hop count to the data sink. Here, the nodes colored in solid
black and solid white represent that they are selected for
SS-Tree 1 and SS-Tree 2, respectively, whereas nodes col-
ored in solid grey indicate they are shared nodes, which
means they belong to both SS-Tree 1 and SS-Tree 2. For
example, after a path is constructed for SS-Tree 1 in
Fig. 4(a), all of the selected nodes’ neighbors, which are
colored in vertical stripes pattern, become the set of candi-
date nodes, or candidate set, from which the next path for
SS-Tree 2 is based upon. Subsequently when a path is con-
structed for SS-Tree 2 in Fig. 4(b), all of its selected nodes’
neighbors will form the candidate set for SS-Tree 1, which
b

d

ation 1. (b) Iteration 2. (c) Iteration 3. (d) Final results.

R.W. Ha et al. / Computer Communications 29 (2006) 3425–3444 3431
are colored in horizontal stripes. The path construction
process continues until every node is selected, and the final
SS-Tree configuration is shown in Fig. 4(d).

The psuedocode for computing k SS-Trees on a given
WSN topology is shown below, where the algorithm is
divided into the main program and two subroutines:

Input: An adjacency list or matrix describing the com-
plete WSN topology, where each node is aware of its hop
count to the data sink.

Output: jKj sets, each named SSk for k = [1..jKj], where
each set contains the nodes that belong to each of the SS-
Trees.

Variables: SSk – selected set for SS-Tree k, SCk – candi-
date set for SS-Tree k, SU – unselected set.

Initialization: SU ‹ V � s, SSk ‹ s, SCk ‹ NULL, for
"k 2 K

Program COMPUTE_SST

1. while ðjSU j þ
P

k2K jSCkjÞ > 0 do

2. if
P

k2K jSCkj ¼ 0
3. run MAKE_NEW_PATH
4. end if
5. for k counts from 1 to jKj
6. if (jSCkj > 0)
7. run MAKE_SSTk_PATH
8. end if

9. end for

10. end while

Subroutine MAKE_NEW_PATH

1. if (jSUj = 0)
2. exit subroutine

3. end if

4. i ‹ select a node in SU with the maximum path
cost

5. while (true) do

6. search in SU for an upstream neighbor of node I
7. if such a node can be selected
8. i ‹ newly selected node
9. else

10. for k counts from 1 to jKj
11. search in SSk for an upstream neighbor of

node I

12. if such a node is found in SSk

13. move all previously selected nodes from SU

to SSk

14. move all unselected peer and upstream
neighbors of the selected nodes from SU to
SCj for "j 2 K, j „ k

15. exit subroutine

16. end if

17. end for

18. end if
19. end while

Subroutine MAKE_SSTk_PATH
1. if (jSCkj = 0)
2. exit subroutine

3. end if

4. i ‹ select a node in SCk with the maximum path cost
5. while (true) do

6. search for an upstream neighbor of node i
7. if such a node can be selected in SCk

8. i ‹ selected node
9. remove node i from SCk

10. else if such a node can be selected in SSk

11. place all the previously selected nodes to SSk

12. move all unselected peer and upstream neighbors
of the selected nodes from SU to SCj for "j 2 K,
j „ k

13. exit subroutine

14. else if such a node can be selected in SU

15. i ‹ selected nodes
16. remove node i from SU

17. else if such a node can be selected in SCj for "j 2 K,
j „ k

18. i ‹ selected node
19. remove node i from SCj

20. else if such a node can be selected in SSj for "j 2 K,
j „ k

21. i ‹ selected node
22. end if

23. end while

In the iterative algorithm, all of the neighbors of a given
node need to be searched after it has been selected for a
particular SS-Tree (e.g., Line six of both subroutines
MAKE_NEW_PATH and MAKE_SSTk_ PATH). So
for a given WSN and assuming the WSN topology is imple-
mented using adjacency lists, the worst case running time
of the SS-Tree computation algorithm is in the order of
O(jVj jDmaxj), where Dmax denotes the maximum degree
per node in the WSN topology. Otherwise, the running
time complexity could reach O(jVj2) if an adjacency matrix
is used. Similarly, the memory requirement for running this
algorithm is in the order of O(jVj jDmaxj) when using adja-
cency lists, O(jVj2) for adjacency matrices.

5. SS-tree operational specifics and sleep scheduling

After SS-Trees are computed, the next major task is to
determine an optimal sleep schedule that maximizes energy
efficiency. Because of the phenomenally high transmission
latency when using sleep schedules with short active period
duration that only permits data to travel over one or a few
hops per active period, the use of longer active periods is
preferred so that all of the packet exchanges can be com-
pleted within fewer cycles for a given duty cycle. Further-
more, if all of the end-to-end data exchanges between the
data sink and the nodes can be completed within a single
active period, then network control functions such as time
synchronization and sleep schedule updates can be imple-
mented with less difficulty. While longer active period

TG1
Packet Forwarding

via CSMA (TPP)

Time

Active Period

TG2

Sleep PeriodSleep Period

Fig. 5. Organization of active periods.

Node 3 Node 2 Node 1

TG2TPPTG1

TPP TG2TG1

TG2TPPTG1

Time

Active Period Sleep PeriodSleep Period

A B C D

Node 3

Node 2

Node 1

a

b

Fig. 6. Coordinated sleep scheduling for multihop routing paths. (a)
Routing path configuration. (b) Sleep schedules and packet transmission
timing.

3432 R.W. Ha et al. / Computer Communications 29 (2006) 3425–3444
lengths have the additional advantage of requiring less
stringent time synchronization requirements, they will
increase the amount of sleep time between two consecutive
active periods, which in turn affects how often sensing
applications can generate their data. Therefore, it is imper-
ative to determine an upper bound of active period dura-
tion in order to balance the low communication duty
cycle, monitoring sensitivity, and end-to-end packet
transmissions.

5.1. Network layer routing

Since periodic link state updates for all of the sensor
nodes are very expensive in terms of energy usage for large
WSNs, a more energy-efficient packet delivery solution is
preferred where different routing strategies may be
employed to exploit the asymmetric upstream and down-
stream WSN traffic patterns. The proposed SS-Tree design
streamlines the routing procedures by restricting individual
sensor nodes to only maintain local connectivity informa-
tion of its immediate 1-hop neighbors, whereas the data
sink is given the sole right to compute the global network
connectivity map from the link state information gathered
from the sensor nodes.

Without the availability of global link state information
nor geographical location through onboard GPS or radio
ranging techniques due to the high costs involved, sensor
nodes will rely on minimum cost forwarding [16] for send-
ing packets to the data sink via its SS-Tree. Through local-
ly exchanged connectivity information, each sensor node
becomes aware of the cost of forwarding data packets, usu-
ally its hop count to the data sink, via each of its neighbors.
On the other hand, the data sink can use source routing
[17] for all types of downstream traffic, namely unicast,
multicast, and broadcast, where the routing path is to be
explicitly listed in the packet header. However, because
of the potentially high header size for long end-to-end
paths, source routing should be reserved only for special
occasions such as network initialization and failure
recovery. For more energy-efficient downstream dissemina-
tion, SS-Trees, which are essentially spanning tree
structures, can be adapted for multicast and broadcast
communications.

Since accurate time synchronization cannot be guaran-
teed in large WSNs, guard bands should buffer each active
period to compensate for potential clock drifts along the
entire path, as shown in Fig. 5. The first guard band,
TG1, compensates for common time synchronization errors
amongst sensor nodes, clock drifts occurred during the pre-
ceding sleep period, and hardware switching times. After
TG1, the necessary packet forwarding activities would com-
mence and should be completed within a length of TPP,
where the exact packet exchange sequencing will be dis-
cussed in Section 5.2. The second guard band, TG2,
accounts for timing overshoots of the packet forwarding
period due to packet collisions and other unexpected
events. Since TG1 is deterministic in nature as it depends
on hardware selection and synchronization method, it
would very much be predictable and likely to be the short-
est in duration out of the three active period partitions.
Both TPP and TG2 depend on monitoring requirements,
traffic patterns, processing overhead, and network topolo-
gy, which makes calculating the perfect timing allocation
for active periods difficult because of the high variability
of the different factors. Therefore, the active period should
be given a more liberal share of time in the initial sleep
schedule and its length is to be adjusted dynamically in
response to ongoing network performance measurements
such as round-trip time and packet collision rate.

Fig. 6(b) illustrates a timing example for coordinating
sleep schedules for a 3-hop routing path shown in
Fig. 6(a), where the arrows at the bottom indicate potential
transmission times at Node 3 for packets destined to Node
1 via Node 2. Arrows A and D are definitely dreadful tim-
ing choices for packet transmission because they reside in
times when all of the nodes are asleep. Then around the
start of a particular active period, all three nodes will wake
up at roughly, but not exactly, the same time because of
imperfections in time synchronization and clock drifts hap-
pened in the previous sleep period. The optimal transmis-
sion window occurs around arrow B, where all the nodes

R.W. Ha et al. / Computer Communications 29 (2006) 3425–3444 3433
have entered the active period and the packet should have
enough time to traverse the two hops within TPP as shown
by the slanted dashed lines, assuming the assorted trans-
mission delays are much shorter than the active period
duration. Since arrow C begins transmission at the latter
part of the active period, its delivery cannot be guaranteed
within a single active period even with the extra buffering of
TG2. Therefore, the packet may have to be intermediately
cached at Node 2 and forwarded to Node 1 at the next
active period, which may be many minutes away. On the
other hand, if sporadic packet losses can be tolerated,
Node 2 can discard the packet at the end of the active peri-
od if it cannot be delivered to Node 1 in time, thereby cut-
ting down energy usage. To prevent packet losses of this
type, an accurate assessment of TPP and TG2 as well as
careful data traffic coordination in response to sleep sched-
ules should be implemented.

5.2. Sensing requirements and traffic engineering

As briefly mentioned earlier, the nature of WSN data
generation can be classified into three types: request-driven,
event-driven, and timer-driven. For request-driven data
reporting, a request is generated by the processing center
to query specific nodes within the WSN for interested data
[18]. Upon receiving the request packet, the sensor nodes
would reply with the necessary data. Although the request
and data exchange is simple, the extra overhead in execut-
ing the query can be significant in terms of energy con-
sumption. If environmental data is to be recorded in
regular intervals, then a better approach is to let the partic-
ipating sensor nodes generate uplink data reports at times
indicated by a timer without waiting for any query requests
from the processing center. Timer-driven data reporting
achieves limited energy savings by eliminating the need
for downlink request notifications, but uncoordinated
uplink message forwarding could offset any gains as peri-
odic bursts of packets are concentrated within a short time
frame, thus potentially causing excessive bit collisions and
buffer overflows. Therefore, further energy savings are
guaranteed only if meticulous nodal coordination in mes-
sage forwarding can be established.

For WSNs engaging in surveillance applications, the pri-
mary objective is to trigger alarms whenever interested
events are detected. Similar to timer-driven cases, event-
driven data reporting does not require any request packets
to initiate message forwarding. Given that very few mes-
sages would be generated by a subset of the entire sensor
node population, the likelihood of energy wastage as a
result of collisions and other adverse traffic effects is thus
minimized. However, maintaining the real-time nature of
event-driven data reporting implies that all of the sensor
nodes should be constantly monitoring the wireless channel
for incoming packets, which entails significant energy
expenditure.

Since the objective of WSN applications is to oversee all
sensor nodes cooperating together to execute common data
reporting tasks instead of cater to thousands of terminals
with individual QoS guarantees as in other types of net-
works such as the Internet and wireless LANs, more flexi-
bility and control exist in manipulating application
requirements and data flow patterns to suit dynamic oper-
ational situations. For example, in order to reduce hop-by-
hop transmission time, each data reporting packet can
shrink in size by formatting data types to represent Bool-
ean answers (e.g., Is ambient temperature above
30 �C? fi yes/no) rather than absolute values (e.g., What
is the ambient temperature? fi 25.75 �C). Besides speeding
up data transmission, a smaller packet size would not
require segmentation and reassembly services in lower lay-
ers, as well as decreases the instances of buffer overflow at
intermediate nodes and reduces packet loss as a result.

In addition to compact query formats, aggressive data
aggregation and duplicate suppression will be used for
reducing unnecessary data packet exchanges. For example,
suppose that each sensor node is required to report their
circuitry well-being to the data sink every so often, where
a positive response would indicate the node is alive and
operational. Instead of generating separate packets, nodes
on the same routing path can collectively rely on a single
seed reply packet and transmit the same copy upstream,
starting from the node furthest away from the data sink.
If the node is experiencing no operational problems, then
it will simply forward the incoming seed reply packet to
its immediate upstream neighbor on the routing path with-
out altering the packet’s contents. Since the data sink pos-
sesses the global connectivity knowledge, receiving this
single positive response packet would show that all the
nodes along that path are faring well. Again, the SS-Tree
structure would be ideal for performing in-network pro-
cessing, and some timing coordination in data generation
such as timer-driven data reporting would be very helpful
in achieving efficient data aggregation and duplicate
suppression.

While timer-driven data reporting is favored because of
its simplicity and periodicity, event-driven and request-
driven types should also be accommodated within the traf-
fic engineering framework. In fact, WSNs for surveillance
applications should give a high priority to event-driven
data such as intrusion detection and abnormal data read-
ings such that their deliveries can be expedited to the data
sink with high fidelity at minimal packet loss. In contrast,
occasional losses of periodic data readings and hardware
status reports, though also undesired, would not seriously
jeopardize surveillance capabilities. Still, such packet
losses, regardless of request or timer-driven nature, do
signify possible nodal failures or traffic load imbalance that
require the immediate attention of the data sink for
network modifications or repairs.

In face of aggressive data aggregation and duplicate sup-
pression in the proposed WSN design, providing end-to-
end ACKs in the transport layer by the data sink for regu-
lar data reporting packets is rather unnecessary, especially
under an ultra-low communication duty cycle. Also, buffer

3434 R.W. Ha et al. / Computer Communications 29 (2006) 3425–3444
overflow, the common culprit in causing packet loss in the
Internet, is deemed virtually non-existent in the envisioned
WSNs because of small packet size and low traffic volume,
thereby drastically diminishes the role of end-to-end
ACKs. Therefore, energy expenditure can be further
reduced by advocating the use of hop-by-hop ACKs in
the MAC layer instead of end-to-end ACKs in the trans-
port layer. However, hop-by-hop ACKs cannot always
guarantee packet delivery success because a packet will
get stranded on an intermediate node due to the premature
expiration of the active period or a path blockage from
nodal failures upstream. To limit energy use and to simpli-
fy the recovery process, packets with low priority such as
periodic sensor readings and hardware status reports will
be discarded, while high priority packets such as intrusion
alert messages will be cached and forwarded to the data
sink at the next available active period. If the processing
center indeed wishes to obtain the data contained in the
discarded packets, it can always reissue data requests to
the corresponding sensor nodes. Given the assertion of
meticulous sleep schedule planning and the low probability
of nodal failures occurred during the short active period,
such blatant packet discards will likely be uncommon.

Using low-rate communications, each active period
could last up to several seconds or more to let packets pass
through the entire path without obstruction, which implies
that the temporal separation of active periods will be much
longer, perhaps 15 min or more, in order to maintain the
low communication duty cycle. Consequently, data reports
for environmental monitoring and network maintenance
cannot be generated at high frequencies, and some delay
will need to be tolerated between report generation by
the sensor nodes and actual reception at the data sink. Sim-
ilarly, event-driven data packets indicating emergency
events during the sleep period will be forwarded to the data
sink at the first available active period with high priority
either via the node’s SS-Tree or that of neighboring nodes.
Fig. 7 shows those events triggers not coinciding with
active periods are to be relegated to the next available
transmission slot, thereby introducing the need of buffering
at the involved sensor nodes and some overall reporting
delay. Apparently, there exists a trade-off between provid-
ing timely notifications of emergency events and extending
overall system lifetime.
Event Triggers

Sleep Schedule

Time

Active

Sleep

Fig. 7. Delays in event-driven reporting due to sleep scheduling.
Unlike event-driven data reporting, the reporting fre-
quency of timer-driven types can be preset so that it coin-
cides with each active period, depending on application
requirements. After every node along a routing path wakes
up at the start of each active period, intuitively the node
with the highest hop count would automatically send a seed
reply packet to initiate the data aggregation and duplicate
suppression processing along the path. However, since the
WSN may encounter unexpected nodal failures, experience
considerable clock drifts, or detect new sensor node addi-
tions during the long sleep periods, the first task the sensor
nodes should perform at the start of the active period is to
assess any changes in the neighborhood topology and to
keep each other’s onboard clock in sync. Still, even the sim-
ple act of exchanging Hello and Sync messages with neigh-
bors will occupy a sizable portion of the active period, not
to mention the possibility of further delays due to packet
collisions with legitimate data packets and other control
traffic.

To better streamline the active period initialization pro-
cess, the data sink should assume a much more involved
role in coordinating topology maintenance and time syn-
chronization functions, and the following example illus-
trates the proposed approach in doing so. After the start
of the active period, the data sink should send a network
probing packet called a token down every routing path to
detect any link breakages, as shown in Fig. 8(a). At the tree
junction points, the token will be broadcast to all down-
stream nodes, effectively splitting the single token into mul-
tiple copies to be pushed down each branch. When a node
cannot reach its immediate downstream neighbor to for-
ward the token, this would indicate a nodal failure has
occurred due to depleted battery, hardware malfunction,
off-sync sleep scheduling, or worsened radio conditions.
The node should then instantly report back the failure dis-
covery to the data sink, where the appropriate recovery
procedures will be undertaken but are beyond the scope
of this paper. Otherwise if every node is functioning prop-
erly, then the nodes at the fringes of the network will trans-
mit back seed reply packets right after they receive the
tokens, as in Fig. 8(b), where upstream and junction nodes
will perform traffic merging and in-network processing on
Data Sink Data Sink

Seed

Seed
Seed

Token

Token

Token

a b

Fig. 8. Push–pull traffic sequencing for control and data packets in active
period. (a) Downstream token. (b) Upstream seed reply.

R.W. Ha et al. / Computer Communications 29 (2006) 3425–3444 3435
the seed reply packets. Similarly, since time synchroniza-
tion packets have to be periodically distributed throughout
the WSN to offset clock drifts, they can be combined with
the tokens to minimize transmission overhead, and the
resultant packet size will be very short for accelerated for-
warding and processing as they only contain a small packet
header and a global timestamp. The act of sending the
tokens downstream and the subsequent response of the
seed reply packets will be referred to as the push–pull traffic
sequencing.

In addition to accommodating control packets for fail-
ure detection and time synchronization, push–pull traffic
sequencing can certainly incorporate other control message
types, such as data requests, link state updates, low battery
notification, and sleep schedule updates, with slight proce-
dural changes. Normally during steady state operations,
these control messages are to be mixed in with upstream
data reporting traffic to contend for limited bandwidth dur-
ing the short active periods. Since these control packets are
vital in maintaining monitoring capabilities and network
connectivity, any transmission delay or packet loss should
be minimized or avoided if possible. For example, a sleep
schedule update packet would become stale and useless if
its delivery is bogged down by packet collisions and chan-
nel access delays. To minimize delays, data requests and
sleep schedule updates can be piggy-backed or even incor-
porated into the token packets as well at the start of the
active period. Although this may increase transmission
and processing overhead if these additional control mes-
sages are not intended for a broadcast or multicast audi-
ence, their infrequency in generation deftly offsets the
negative effects. Similarly, infrequent uplink control mes-
sages such as link state updates and low battery notifica-
tion as well as timer-driven and request-driven data
packets can also latch onto the seed reply packet and be
sent upstream as a data packet burst for maximum commu-
nication efficiency.

Fig. 9 shows the partitioning of the TPP portion of the
active period into two phases, where each part has enough
time allocated for the push–pull traffic sequencing to tra-
verse end-to-end on the longest routing path in either
downstream or upstream direction, with the exact timing
demarcation of the two halves not explicitly defined. The
push–pull traffic sequencing begins when the data sink
sends the token downstream TG1 seconds after the start
of the active period. The direction of traffic flow on the
Time

TG1

Push Phase
(Data Requests/

Control Messages)

Active PerioSleep Period

Downstream

Fig. 9. Active period time slot partition
SS-Tree reverses sometime in between when the fringe
nodes receive the tokens and respond with the seed reply
packets. Hopefully all of the data reporting activities can
be completed before the active period encroaches into the
TG2 buffering area. The advantage of having downstream
control and data request traffic preceding upstream data
reporting and status update traffic is that the former can
always verify entire path is free of node failures via for-
warding tokens, thereby performing data forwarding and
network maintenance simultaneously. Also, since the
simultaneous convergence of unorganized downstream
and upstream traffic over the WSN will inevitably raise
the likelihood of packet collisions, allowing the packet traf-
fic to only flow in one direction during a particular time
slot would greatly alleviate the packet collision problem,
though the improvement may come at the expense of
potential channel under-utilization, which is of lesser prior-
ity in WSN design.

On the other hand, the use of push–pull traffic sequenc-
ing makes timer-driven data reporting behaving much like
request-driven data reporting running on a regular sche-
dule. Instead of letting sensor nodes spontaneously trans-
mit data packets according to a predetermined timer, the
tokens transmitted by the data sink in the push phase act
as data requests to solicit the data reporting packets to
be sent upstream in the pull phase, which happens period-
ically according to the sleep schedule. While timer-driven
data reporting incurs fewer messaging overhead because
of its periodicity and the absence of downlink control mes-
sages, keep in mind that other network control aspects such
as routing path integrity, time synchronization, and sleep
scheduling have to be accounted for in the overall design.
As a result, a compromise is reached to incorporate data
reporting tasks and network maintenance functions into
the push–pull traffic sequencing model, where both will
adhere to a periodic sleep schedule but with the timer-
driven data generation spontaneity notion removed.

With respect to end-to-end delivery reliability in face of
premature ending of the active period, lost downstream
control packets can always be resent by the data sink if
no seed reply has been received. However, for sleep sche-
dule updates, since some packet loss would cause nodes
on the same routing path to lose partial connectivity, nodes
involved in updating sleep schedules will not enact upon
them until the nodes themselves receive the seed reply from
downstream to confirm the receipt of updated sleep sched-
Pull Phase
(Data Reports/

Status Updates)
TG2

d Sleep Period

Upstream

ing for push–pull traffic sequencing.

Preparation
Channel
Access

Transmission Propagation Reception Processing

Sender Channel Receiver

Fig. 10. Sources of delay in packet delivery over wireless link.

3436 R.W. Ha et al. / Computer Communications 29 (2006) 3425–3444
ules of downstream peers. On the other hand, upstream
control messages will need to be cached in intermediate
nodes if they cannot be delivered within a single active peri-
od since no upstream end-to-end transport mechanism is to
be implemented. Nevertheless, to prevent packet loss from
happening at all, the active period should be allocated with
plenty of time to let every packet to be delivered within a
single active period.

5.3. Medium access control and sleep scheduling

Due to the extra messaging overhead in maintaining
accurate time synchronization and managing channel
assignment in face of the low communication duty cycle
and hardware cost restrictions, single-channel unslotted
CSMA is preferred over contentionless methods such as
FDMA, TDMA, and CDMA for channel access during
active periods of the sleep schedule because of its simplici-
ty, greater scalability, and looser time synchronization
requirements. While the RTS/CTS mechanism in CSMA/
CA is effective in preventing the hidden node problem dur-
ing channel contention, it increases the overall end-to-end
propagation delay which in turn affects the monitoring
sensitivity, especially when the length of data reporting
packets is less than RTS packets [15]. Because of the long
end-to-end propagation delay and the low volume of traffic
in the envisioned WSN for wide-area surveillance, steady
state data exchanges can bypass the RTS/CTS handshake
as traffic management techniques discussed in Section 5.2
effectively reduces packet collisions through streamlining
overall data traffic flows.

Putting all of the cross-layer considerations described in
Sections 5.1 and 5.2 together, the timing components that
constitute a single active period shown in Fig. 5 can be deter-
mined. Assuming the duration of the active period, TAP, is
the same for each SS-Tree, then TAP can be represented by

T AP ¼ T G1 þ T PP þ T G2; ð1Þ

where TG1 accounts for clock drifts, time synchronization
errors and hardware switching times, TPP deals with time
expended during push–pull traffic sequencing, and TG2 buf-
fers the any timing overshoots. For standard crystal oscil-
lators with well-known time synchronization methods, TG1

is largely deterministic. On the other hand, TPP can be
approximated according to round-trip time calculations
at the data sink during the Network Initialization phase
such that

T PP ffi maxi2V ðRTTiÞ; ð2Þ
where RTTi is the round-trip time recorded for node i on
its respective SS-Tree. Due to the use of downstream flood-
ing and upstream minimum cost forwarding over a large
and dense WSN, the initially collected RTT values may
not reflect a concise round-trip time measurement since it
includes delays caused by random back-off timers and
packet collisions. This timing inaccuracy will affect how
TG2 is determined because the purpose of TG2 is to com-
pensate for all the abnormalities during push–pull traffic
sequencing such that packet loss due to premature comple-
tion of the active period can be minimized. While a longer
TG2 will certainly diminish the chances of encountering
timing overshoots, it will reduce monitoring sensitivity
such that the event reporting windows will appear less fre-
quently for adjacent SS-Trees. On the other hand, constant
fine-tuning of the sleep schedule through issuing sleep sche-
dule update packets downstream would produce high mes-
saging overhead, thereby consuming considerable amounts
of energy. Therefore, empirical LRTT measurement data
should be complemented with some mathematical guide-
lines for calibrating the timing allocation of TPP and TG2.
The ultimate goal is to minimize TAP in order to increase
the monitoring sensitivity while ensuring push–pull traffic
sequencing and event reporting can be accomplished within
a single active period.

To produce a rough mathematical estimate of TPP, a
routing path of Nh hops is first subdivided into single hops,
where the sources of delay in packet delivery over each hop
are further decomposed into individual components, as
shown in Fig. 10 [19]. In a 1-hop transmission, the delay
components are:

• Preparation: Before actually sending the packet, some
time is spent by the sender in handling software com-
mands and setting hardware interrupts for data prepara-
tion. Its nature is highly variable as it depends on the type
of Operating System (OS) software, packet type, and
packet size.

• Channel access: Since no RTS/CTS scheme is to be used
because of its high messaging overhead and drastic
increase in end-to-end delays, this component can be
much reduced as the node instantly gains access to the
wireless channel, assuming no ensuing packet collisions.
On the other hand, channel contention introduces some
variability in the time used, which increases along with
the number of immediate neighbors.

• Transmission: This largely deterministic component con-
cerns the time needed to transmit every bit of the packet
through the sender’s radio transceiver, which can be esti-
mated using radio speed and packet size.

• Propagation: This deals with the minute amount of time
needed for each bit to traverse the wireless link from
sender to receiver, which is negligible in comparison to
other delay components.

• Reception: This refers to the time spent in receiving every
bit from the wireless channel and reconstructing the
packet for further processing, which is also mainly deter-
ministic as it depends on radio speed and packet size.

R.W. Ha et al. / Computer Communications 29 (2006) 3425–3444 3437
• Processing: After the validity of the received packet has
been verified, the processor will decode the packet infor-
mation and decide on appropriate actions. This last tim-
ing attribute is highly variable as it depends on the
packet type and the software commands executed dur-
ing processing.

Even though uncertainties exist in the choice of proces-
sor, OS software and radio components to be implemented
on the sensor nodes, the control or data packets (C/D
packets) traversing the WSN are likely to be extremely
short (<10 bytes) in order to minimize preparation, trans-
mission, reception, and processing delays. The short C/D
packet size, along with topology simplification through
SS-Trees and aggressive traffic engineering, also helps to
drastically reduce the likelihood of packet collisions. On
the other hand, for an SS-Tree whose branches are shaped
in the form of linear chains, the cause of packet loss is
mostly due to channel errors during the push–pull traffic
sequencing.

Fig. 11(b) demonstrates the timing sequence of a simple
Control/Data (C/D) packet exchange along a multihop 3-
node chain shown in Fig. 11(a), where a data-acknowledge-
ment-timeout mechanism ensures safe packet delivery in
face of poor radio channel conditions. Due to the open
wireless medium, the dotted arrows indicate overhearing
by adjacent nodes of packets not intended for them. When
a corrupted C/D packet is received by Node 3, as shown in
Fig. 11(c), no ACK will be sent back to Node 2. As a result,
another copy of the C/D packet is transmitted by Node 2
after a timeout period. Summarizing all of the associated
delays shown in Fig. 10 for analyzing timing delays in
Fig. 11, let the total time for processing and delivering each
C/D packet be TCD, the total time for processing and deliv-
Fig. 11. C/D packet delivery delay analysis over multihop links. (a) Networ
diagram of a successful delivery with one retransmission.
ering a single ACK be TACK, and the duration of each
timeout period be TTO. If there is no packet loss present,
then the time to complete the exchange over Nh hops on
a linear chain, Th, can be simply referred to as

T h ¼ N hðT CD þ T ACKÞ. ð3Þ
When packet corruption occurs, the receiver will not gener-
ate an ACK and the sender would automatically retransmit
the same C/D packet after a random timeout with mean
value of TTO. To analyze the impact of packet corruption
on end-to-end propagation delay, let the generalized packet
delivery success rate is p. Then the probability that the C/D
packet transmission will be successful on the jth try can be
represented as a simple geometric distribution. The expect-
ed number of tries before a successful delivery, E, can
therefore be given by

E ¼
X1
j¼1

jð1� pÞj�1p ¼ 1

p
. ð4Þ

Factoring in parameters TCD, TACK, and TTO and assum-
ing zero correlation of packet delivery success rate for con-
secutive hops, the expected duration of each C/D packet
delivery, EPD, is

EPD ¼
2T CD þ T TO

p
� T TO � T CD þ T ACK. ð5Þ

For a regular push–pull traffic sequencing exchange with a
downstream token and an upstream seed reply, suppose
both types of packets are equally sized and require the sim-
ilar preparation and processing time. Then the estimated
RTT on a path of Nh hops, RTTh, is

RRTh ¼ 2Nh
2T CD þ T TO

p
� T TO � T CD þ T ACK

� �
. ð6Þ
k configuration. (b) Timing diagram of a successful delivery. (c) Timing

Control/Data

Control/Data

ACK

Time

Control/Data

ACK

ACK

Collisions
Control/Data

Interference

Node 3

Node 2

Node 1

Node 4

Node 3

Node 2Node 1

Node 4a

b

Fig. 13. Effects of packet collision at SS-Tree junction point. (a) Network
configuration. (b) Timing diagram.

3438 R.W. Ha et al. / Computer Communications 29 (2006) 3425–3444
While any lost C/D packets can be easily recovered after a
timeout, the retransmission mechanism will not be effective
in an open multihop environment if each timeout period is
too short to combat ACK packet losses. Fig. 12 shows how
a single ACK packet loss at point A can trigger future
packet collisions with the absence of the RTS/CTS mecha-
nism. After Node 1 fails to receive an ACK from Node 2
for the correctly received C/D packet, it will retransmit
another copy of the C/D packet after a short timeout at
point B in which it also has to wait for a clear channel
through carrier sensing. On the other hand, Node 2 has al-
ready forwarded the C/D packet to Node 3, where the cor-
responding ACK is replied at point C. Without using the
inefficient RTS/ CTS mechanism to prevent the notorious
hidden node problem, the retransmitted copy of the C/D
packet will collide with the incoming ACK reply from
Node 3, thus wasting the entire packet exchange sequence.
Therefore, in order to prevent such circumstances from
happening on a linear chain, the timeout period TTO has
to be at least

T TO P T CD þ 2T ACK. ð7Þ
Another concern with the open wireless medium is that
additional care has to be taken when passing tokens and
other packets downstream across SS-Tree junction points
to bypass the hidden node problem. Figs. 13(a) and (b)
respectively show a simple SS-Tree junction configuration
and its corresponding timing diagram where a C/D packet
originated at Node 1 will be broadcast at junction Node 2
to its downstream descendants Nodes 3 and 4. Afterwards,
Nodes 3 and 4 will forward the C/D packet to their respec-
tive downstream descendents. Without any coordination in
the acknowledgement sequence and assuming both Nodes
3 and 4 cannot detect each other through carrier sensing,
the ACK packets from Nodes 3 and 4 would collide at
Node 2. Since Node 2 subsequently cannot confirm if the
C/D packet deliveries were successful or not, it has to re-
broadcast the same packet after a timeout, thereby con-
suming more energy and creating even more potential
collisions. Other than to minimize the number of junction
points on the SS-Trees or resort to expensive RTS/CTS
mechanism, solutions such as separating the C/D packet
broadcasts into unicast links and introducing random tim-
ers for ACK replies are worth exploring further, though
Control/Data

Control/Data

Control/Data

ACK

Time

Node 3

Node 2

Node 1

ACK

Timeout TTO

Collision

B

C

A

Packet Loss

Fig. 12. Impact of ACK losses in face of short timeout periods over
multihop links.
they may also increase propagation delay and control over-
head without completely eliminating the hidden node
problem.

Since the combination of wireless medium openness and
multihop communications introduce the unpleasant effect
of hidden terminal problem that will eventually lead to a
decrease in monitoring sensitivity through the lengthening
of active periods, it would be conducive to explore other
approaches to expedite the push–pull traffic sequencing
mechanism while maintaining hop-by-hop packet acknowl-
edgements. One way is to implement implicit acknowledge-

ments (IACKs), where an overheard data packet also acts
as an acknowledgement when it is being forward along a
path. Fig. 14 shows an example of mixing IACKs and
explicit acknowledgements (EACKs) when passing a single
C/D packet along the same short chain as in Fig. 11(a).
After Node 1 passes the C/D packet to Node 2, Node 2
in turn will directly forward it to Node 3 without sending
an EACK. Because of the open wireless medium, Node 1
will overhear the C/D packet sent to Node 3, thereby indi-
rectly acknowledging its safe arrival earlier at Node 2.
Time

Control/Data

Control/Data

Node 3

Node 2

Node 1

Implicit ACK (IACK)

ACK

Explicit ACK (EACK)

Fig. 14. Use of implicit ACK (IACK) and explicit ACK (EACK).

R.W. Ha et al. / Computer Communications 29 (2006) 3425–3444 3439
On the other hand, Node 3 will need to send an EACK
back to Node 2 because it is at the end of the routing path
and has no other neighbor to send the C/D packet to.

Both IACK/EACK modes can be explicitly set by tog-
gling a particular control bit in the C/D packet header by
the sender, and the receiver of the packet will respond
accordingly. However, the decision to use either ACK
mode also depends on routing path topology and applica-
tion requirements, hence involving yet another kind of
cross-layer considerations. In fact, instances where EACK
must be used is when the C/D packet reaches the end of a
routing path like the previous example, when the C/D
packet has already been forwarded to the next hop, and
when the packet is traveling through a junction point on
the SS-Tree in the upstream direction where the parent
needs to wait and perform data aggregation on incoming
packets collected from different branches. Fig. 15 describes
the second case on the same topology as in Fig. 11(a). Ini-
tially, Node 1 did not receive the initial IACK and retrans-
mits after a timeout. Since the C/D packet has already been
successfully passed from Node 2 to Node 3, Node 2
responds to the retransmitted C/D packet by an EACK
back to Node 1.

To simplify the process of message passing over SS-Tree
junction points, the upstream sender will treat the wireless
multicast situation as multiple unicast links. Fig. 16 shows
its operation on the same topology as in Fig. 11(a), but
only this time Node 3 replies Node 2 with an EACK
because it is made to have no downstream descendents to
forward to. On the other hand, Node 4 acknowledges the
C/D packet with an IACK back to Node 2.
Time

Node 3

Node 2

Node 1

Fig. 15. Interchange of IACK and EACK in face of packet loss.

Time

Control/Data

Node 3

Node 2

Node 1

Node 4

Control/Data

Control/Data

Control/Data

ACK

EACK IACK

Fig. 16. Timing diagram of mixed IACK and EACK use at SS-Tree
junction.
With mixed use of IACKs and EACKs, the time to com-
plete the push–pull exchange over Nh linear hops, T 0h, can
be reduced to

T 0h ¼ N hT CD. ð8Þ
Similarly, the estimated RTT on a linear path of h hops
with IACKs, RRT0h, becomes

RRT0h ¼ 2ðNh � 1Þ 2T CD þ T TO

p
� T TO � T CD

� �

þ 2ðT CD þ T ACKÞ. ð9Þ

To prevent the disruptive effects a corrupted IACK can
cause in multihop communications, a new timeout value,
T 0TO, is defined to be

T 0TO P 2T CD. ð10Þ
Comparing Eqs. (7) and (10) shows the IACK mechanism
would work better in reducing the time dwelled in push–
pull traffic sequencing when the size of C/D packets is com-
parable to that of EACKs, which can be achieved through
data reduction and data aggregation schemes mentioned
earlier.

Since the traffic flow is light and coordinated during
push–pull traffic sequencing, the likelihood of collision
between IACKs and other packets is low. Still, with the
introduction of spontaneous event-driven data to the
push–pull traffic sequencing stream come increased chances
of packet collisions and timing overshoots that exceed the
TPP period. To reduce the effects of event-driven data
and random channel errors that can invalidate the IACKs,
the original sender needs to only decode the first few bytes
or just the header portion of the IACK and accept as legit-
imate packet acknowledgement when C/D packets are
long. Nevertheless, both factors will affect the determina-
tion of the packet delivery success rate p. The exact deriva-
tion of p will also depend on the underlying wireless
channel model assumptions, and this will be delegated as
part of future work.

6. Performance evaluation – SS-tree computation

The proposed iterative algorithmic approach for com-
puting SS-Trees is coded into ANSI C programming lan-
guage and is tested by running simulation cases on a Dell
Precision 450 machine with two 2.8 GHz Pentium 4 Xeon
processors and 1 GB RAM. The preliminary SS-Tree com-
putation results were performed under the following
assumptions:

1. Two types of WSN topology are used: 8-neighbor
square grid (8-N, see Fig. 1a) and 4-neighbor planar
square grid (4-N). The number of nodes per grid edge
ranges from 3 to 15 (i.e., the number of nodes in the
WSN is the square of the number of nodes per grid
edge). Further research into SS-Trees will consider
the more practical cases of random and pseudoran-
dom distributions of nodes.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

3 4 5 6 7 8 9 10 11 12 13 14 15
Number of nodes per grid edge

P
ro

po
rt

io
n

of
 p

ro
te

ct
ed

 n
od

es

 4-N, 2-SST 4-N, 3-SST 4-N, 4-SST
 8-N, 2-SST 8-N, 3-SST 8-N, 4-SST

Fig. 18. Proportion of nodes protected in the test cases.

3440 R.W. Ha et al. / Computer Communications 29 (2006) 3425–3444
2. The number of SS-Trees to be computed on each test
topology ranges from 2 to 4 (2-SST–4-SST).

3. The data sink is represented as a node located at or near
the center of the grid. Specifically, given n is the number
of nodes per grid edge, then the coordinates of the data
sink is (0.5n, 0.5n) if n is even, (0.5(n + 1), 0.5(n + 1))
otherwise.

4. The link cost between adjacent nodes is 1, which implies
that the total shortest path cost from each node to the
data sink is simply its hop count.

6.1. Integrity of computated SS-trees

To evaluate the effectiveness of the iterative algorithm,
several types of metrics are collected from the computed
SS-Tree configurations on the first attempt in the different
test cases and then presented into graphical form for easier
comparison. In terms of computation speed, the iterative
algorithm arrives at SS-Tree computation results at a very
quick pace, typically in less than 1 s for all of the test cases.
As an unpleasant trade-off for achieving faster solution
times, however, the algorithm produces a considerable
number of shared nodes. Fig. 17 shows the number of
shared nodes computed in the different test cases using
the iterative algorithm. In all of the test cases, the number
of shared nodes computed increases more or less in a linear
trend corresponding with the number of nodes per grid
edge. The slight deviations along the linear trend can be
attributed to the shifting of the data sink’s coordinates in
response to odd/even changes of the number of nodes per
grid edge in individual test cases. Out of all test scenarios,
cases with a 8-neighbor grid and 4 SS-Trees (8-N 4-SST)
produce the most shared nodes, while scenarios with 2
SS-Trees (both 4-N 2-SST and 8-N 2-SST) generated the
fewest shared nodes on average.

Another measure of how well SS-Trees are computed is
the number of protected nodes, which refers to nodes with
at least one non-co-SS-Tree neighbor. This measure is
important as it indicates how large the event reporting win-
dow of each node will be and how well nodes can recover
from failures with help from such non-co-SS-Tree neigh-
0

5

10

15

20

25

30

3 4 5 6 7 8 9 10 11 12 13 14 15

Number of nodes per grid edge

N
um

be
r

of
 s

ha
re

d
no

de
s

 4-N, 2-SST 4-N, 3-SST 4-N, 4-SST

 8-N, 2-SST 8-N, 3-SST 8-N, 4-SST

Fig. 17. Number of shared nodes computed in the test cases.
bors. Despite the large number of shared nodes computed,
the iterative algorithm does enhance the degree of neigh-
bor-to-neighbor protection and therefore, increase the
capabilities for event reporting and failure recovery of each
node. Fig. 18 shows the proportion of nodes protected in
each case, and all of the test cases achieved 100% node pro-
tection except for a couple of instances.

If a protected node is adjacent to neighbors that sepa-
rately belong to all other SS-Trees, then this node is
deemed fully protected, which means it possesses the most
frequent event reporting window and it receives the maxi-
mum protection from neighbors during failure recovery.
Fig. 19 shows the proportion of fully protected nodes in
each test case. For a given topology, the degree of full pro-
tection decreases as the number of SS-Trees to be comput-
ed increases. On the other hand for a fixed number of
SS-Trees, an increase in network density would also
increase the degree of full protection. Cases of 8-N 2-SST
configuration all achieved 100% protection, though at the
expense of each node having multiple co-SS-Tree neigh-
bors. This will lead to increased overhearing and packet
collisions during steady state WSN operations. Notwith-
standing WSN topologies with small number of nodes,
degree of full protection remains quite stable or even
increases along with the increase in nodal population. This
is especially true for test cases with higher number of
SS-Trees, where a larger and denser WSN topology permits
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

3 4 5 6 7 8 9 10 11 12 13 14 15
Number of nodes per grid edge

P
ro

po
rt

io
n

of
 fu

lly
 p

ro
te

ct
ed

 n
od

es 4-N, 2-SST 4-N, 3-SST 4-N, 4-SST
 8-N, 2-SST 8-N, 3-SST 8-N, 4-SST

Fig. 19. Proportion of nodes fully protected in the test cases.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

3 4 5 6 7 8 9 10 11 12 13 14 15

Number of nodes per grid edge

E
xp

ec
te

d
lif

et
im

e
in

cr
ea

se

 4-N, 2-SST 4-N, 3-SST 4-N, 4-SST

 8-N, 2-SST 8-N, 3-SST 8-N, 4-SST

Fig. 20. Expected WSN lifetime increase through SS-Trees.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

3 4 5 6 7 8 9 10 11 12 13 14 15
Number of nodes per grid edge

E
ne

rg
y

ut
ili

za
tio

n

 4-N, 2-SST 4-N, 3-SST 4-N, 4-SST

 8-N, 2-SST 8-N, 3-SST 8-N, 4-SST

Fig. 21. Energy utilization of the WSN nodes before end of operation.

R.W. Ha et al. / Computer Communications 29 (2006) 3425–3444 3441
better SS-Tree construction. On the other hand, smaller
topologies give less leeway in allowing multiple SS-Trees
to become neighbors to a particular node. Again, careful
design consideration should be given when balancing the
optimal nodal deployment strategy, sensing requirements,
wireless communication range and the number of SS-Trees
involved.

6.2. WSN lifetime increase and energy utilization

To evaluate the expected lifetime of a given WSN topol-
ogy, the standard approach is to first construct a number of
SS-Trees and then generate simulated traffic over the net-
work and measure the energy consumption until network
connectivity is no longer sustainable or the sensing cover-
age becomes inadequate due to nodal failures. However,
because of the complexity in building a suitable MAC-level
simulation environment that can model system lifetime
changes lasting several years for thousands of nodes,
detailed packet transactions for message exchanges over
the wireless medium cannot be simulated at this time.
While a precise measure of the expected WSN lifetime is
not yet available, a rough estimation can still be obtained
through relating the expected lifetime to the number of
times, or rounds, the iterative SS-Tree computation algo-
rithm can be run consecutively over a given topology.
The logic behind this is that after all the shared nodes have
drained their batteries, the data sink will have to recompute
the SS-Trees based on the revised WSN topology with the
shared nodes removed, thereby extending the WSN life-
time. This SS-Tree recomputation process continues until
less than 50% of all nodes remain connected to the data
sink, which is the benchmark for evaluating the expected
operational lifetime of a particular WSN.

Simulations on determining the expected operational
lifetime and other related performance metrics of a given
WSN are based the following idealized assumptions:

1. Every node begins operation with the same amount of
battery power.

2. Battery depletion is the only cause for nodal failures.
3. The energy cost in recomputing SS-Trees is negligible

compared to that incurred during normal WSN
operations.

4. Because of efficient data aggregation and duplicate sup-
pression procedures, the energy depletion rate for all
nodes across the WSN is approximately the same.

If no shared nodes were ever computed on a given WSN,
then theoretically the expected operational lifetime of the
WSN is equal to the product of its normal operational life-
time under a particular duty cycle and the number of SS-
Trees involved. Therefore, for test cases with four SS-Trees
computed, the upper bound on expected lifetime becomes
four times that of cases without using SS-Trees. Fig. 20
shows the expected increase in WSN operational lifetime,
and from the numerical results it can be seen that denser
topologies and a higher number of SS-Trees will generally
extend WSN lifetime longer. Still, only tiny WSNs (i.e.,
3 · 3 to 4 · 4) are able to achieve the theoretical limit of
expected lifetime since their SS-Tree configurations do
not contain any shared nodes. On the other hand, a few
cases do not yield any lifetime extension at all because
the WSN topology becomes prematurely disconnected
below the 50%-threshold in the first round of SS-Tree com-
putation by shared nodes that appear at the right places,
which leaves the rest of the nodal population with plenty
of battery power left to waste. In fact, shared nodes that
are concentrated at a close path distance to the data sink
will lead to a shorter expected lifetime since they expedite
the occurrence of topology disconnection.

Another useful metric for evaluating the effectiveness of
the SS-Tree computation algorithm is energy utilization,
which measures the total amount of energy expended
across the WSN versus the total amount initial energy giv-
en to every node. Fig. 21 shows the degree of energy utili-
zation occurred in the test scenarios, and again small
WSNs are able to achieve maximum energy utilization
since their SS-Tree configurations do not contain any
shared nodes. On the other hand, the test scenario 8-N
2-SST is able to attain over 90% energy utilization in addi-
tion to excelling in extending WSN operational lifetime.
Future research work using full-scale WSN data traffic sim-
ulations will verify this combination’s prowess in comput-
ing SS-Trees by taking into account MAC-level effects
such as overhearing and packet collisions as well as other
degradation effects.

0

10

20

30

40

50

60

70

80

2 3 4 5 6 7 8 9 10
Number of hops

R
T

T
h

(g
en

er
al

iz
ed

 ti
m

e
un

its
)

Sim p = 0.9 Analysis p = 0.9
Sim p = 0.95 Analysis p = 0.95
Sim p = 0.99 Analysis p = 0.99

Fig. 22. Packet loss effects in EACK only scheme.

0

10

20

30

40

50

60

2 3 4 5 6 7 8 9 10
Number of hops

R
T

T
h
' (

ge
ne

ra
liz

ed
 ti

m
e

un
its

)

Sim p = 0.9 Analysis p = 0.9
Sim p = 0.95 Analysis p = 0.95
Sim p = 0.99 Analysis p = 0.99

Fig. 23. Packet loss effects in IACK/EACK scheme.

0

20

40

60

80

100

120

140

160

2 3 4 5 6 7 8 9 10

Number of hops

R
T

T
h
 (

ge
ne

ra
liz

ed
 ti

m
e

un
its

) Sim Tcd = 5 Analysis Tcd = 5
Sim Tcd = 2 Analysis Tcd = 2
Sim Tcd = 1 Analysis Tcd = 1

Fig. 24. Effects of packet length variations in EACK only scheme.

100

120

140

 ti
m

e
un

its
) Sim Tcd = 5 Analysis Tcd = 5

Sim Tcd = 2 Analysis Tcd = 2
Sim Tcd = 1 Analysis Tcd = 1

3442 R.W. Ha et al. / Computer Communications 29 (2006) 3425–3444
7. Performance evaluation – Sleep scheduling

The performance evaluation for sleep scheduling with
respect to MAC dynamics is conducted on the same
machine in Section 6 using a custom-built discrete event
simulator written in ANSI C. By forgoing existing wireless
network simulator choices (e.g., ns2, Glomosim,
Omnet++, Qualnet, etc.), more flexibility can be achieved
in manipulating traffic generation and MAC-layer signal-
ing to better portray the cross-layer SS-Tree approach.
Comparison is to be made between the normal MAC
acknowledgement procedures without RTS/CTS and the
proposed combined IACK/EACK approach described in
Section 5.3 for minimizing the time used in end-to-end
push–pull traffic sequencing under different WSN operat-
ing conditions. Table 1 shows the parameters to be used
in the performance evaluation, whose definitions were giv-
en in Section 5.3.

For simplification, the WSN topology used for perfor-
mance evaluation is assumed to be a linear path with no
junction points, where the hop count is determined by
parameter Nh in each test case. RTT measurements are to
be taken at the data sink, which is at one end of the linear
path, for the amount of time to execute pull–pull traffic
sequencing from end to end. Each test case is run 10 times
in Monte Carlo style and final results are taken as the aver-
age of all recorded data. Simulation data are in turn com-
pared with analytical results obtained from computing Eqs.
(6) and (9). Given the various transceiver choices and oper-
ational requirements in WSN design, generalized time units
are used in time measurements for better independence
from actual data rate and packet size. For example, time
to send a C/D packet, TCD, is given as 1, 2, or 5 time units,
which can be easily converted to metric units for a given
modulation scheme and packet length. Timeout values
for EACK and IACK schemes, TTO and T 0TO, are equal
to the values given in Eqs. (7) and (10), respectively.

7.1. Packet loss effects

The following test cases demonstrate the effects in vary-
ing p while TCD is fixed at 2. The selected values of p of
0.99, 0.95 and 0.9 are adequate for simulating wireless
channel conditions with bit error rates from 10-3 to 10�6

given that very short packets are passed within the WSN.
Figs. 22 and 23 show how different p values affect the even-
tual RTT measurements in EACK only and IACK/EACK
schemes, respectively, where the dotted and solid lines
Table 1
Parameters for sleep scheduling performance evaluation

Parameter Range

Nh 2–10
TCD 1, 2 and 5
TACK 1
T TO=T 0TO See Eqs. (7) and (10)
p 0.9, 0.95 and 0.99

0

20

40

60

80

2 3 4 5 6 7 8 9 10
Number of hops

R
T

T
h
' (

ge
ne

ra
liz

ed

Fig. 25. Effects of packet length variations in IACK/EACK scheme.

R.W. Ha et al. / Computer Communications 29 (2006) 3425–3444 3443
denote analytical and simulation results, respectively. Sim-
ulation data figures adhere well to the linear profiles of the
analytical results in all test cases with less than 3% differ-
ence except for the EACK only scheme at p = 0.9, where
the deviation is over 10%. A closer inspection on the actual
packet exchange log revealed that more frequent instances
of corrupt ACK packet at p = 0.9 created havoc in the
MAC signaling as noted in Fig. 12, thus leading to timing
prolongation and uncertainties in the eventual RTT
measurements.

In both schemes, RTT measurements increase along with
packet losses because of the extra time spent recovering
from packet losses. However, when compared to the EACK
only scheme, the IACK/EACK scheme achieved an over
25% reduction in the time required for running push–pull
traffic sequencing for all p values, thereby increasing moni-
toring sensitivity through scheduling shorter and more fre-
quent active periods for each SS-Tree. Conversely, the
amount of time used in the active period for the EACK
scheme can remain the same, but the extra 25% of time
can be designated as the TG2 portion of the active period
as depicted in Fig. 9 and Eq. (1) for better protection against
all the abnormalities and timing overshoots during push–
pull traffic sequencing, as well as increasing the available
time to safely deliver event-driven data to the data sink.

7.2. Packet length variations

Previously, a 2:1 relationship is assumed in the time used
for processing and delivering ACK and C/D packets.
Therefore, it would be helpful to investigate the effects on
RTT measurements with respect to changes to this ratio.
The following test cases study the effects in changing TCD

(i.e. the length of C/D packets) with p fixed at 0.95 and
TACK set at 1, and the results are shown in Figs. 24 and
25 for both acknowledgement schemes, respectively. TCD

takes on values of 1, 2, and 5, and its relationship to TACK

will determine how much control information and data can
be incorporated into C/D packets without affecting active
period scheduling and monitoring sensitivity.

From both Figs. 24 and 25, it is apparent that RTT mea-
surements increase at a faster rate as TCD becomes greater.
The reasoning is that since the timeout value TTO increases
along with TCD, any increase of TCD will put double pres-
sure to increase the RTT values. On the other hand,
increasing TCD will diminish the performance advantage
achieved by the IACK/EACK scheme as its main feature
of reduction in explicit ACK use become a lesser factor
in influencing RTT values when C/D packets get longer.
Specifically, the timing reduction of using the IACK/
EACK scheme is nearly 40% over the EACK only
approach when TCD = 1, whereas is the same performance
metric drops to about 25% for TCD = 2 and then further to
only about 12% for TCD = 5. Therefore, WSN designers
using SS-Trees need to keep in mind of the ramifications
of trading off C/D packet size for sleep scheduling and
monitoring sensitivity.
8. Conclusions and future work

This paper discussed a number of cross-layer design
issues that are pertinent to the implementation of a mesh-
based wireless sensor network for wide-area surveillance
applications. In light of the constraining effects of an
ultra-low communication duty cycle in the range of 1%, a
sleep scheduling-based organizational approach called SS-
Trees is suggested to minimize energy usage while provid-
ing sufficient monitoring capabilities. An iterative algo-
rithm based on a greedy depth-first bottom-up approach
is proposed to tackle the core problem of determining
how the sensor nodes can assigned to a fixed number of
SS-Trees on a given WSN topology. An MAC-layer implic-
it acknowledgement scheme is suggested to maximize mon-
itoring sensitivity in the subsequent sleep scheduling.
Performance evaluation has shown that the proposed
approach is capable of computing SS-Trees that adhere
to the original goals, albeit to various degrees. Specifically,
the iterative algorithm approach returns a solution quickly
with excellent inter-node protection, but it produces a high-
er number of shared nodes. On the other hand, sleep sched-
uling is better served when combined with the IACK/
EACK scheme at the MAC layer and the push–pull traffic
sequencing concept because of their better adaptation to
the application-specific multihop WSN environment.

In the next stage of research, the existing approach for
computing SS-Trees and sleep schedules will be applied
over a larger variety of network configurations and more
realistic wireless channel models for further performance
improvements. In addition, the following list of issues will
be explored:

1. For a given random topology, what is the maximum
number of SS-Trees that can be constructed to minimize
the number of shared nodes?

2. For a given number of nodes, what is the optimal
method of deployment that ensures 100% coverage of
the subject area while maximizing the number of avail-
able SS-Trees with minimum number of shared nodes?

3. What are the suitable neighborhood discovery and fail-
ure recovery strategies for the SS-Tree design?

References

[1] C.-Y. Chong, S.P. Kumar, Sensor Networks: Evolution, Opportuni-
ties, and Challenges, Proc. IEEE 91 (8) (2003) 1247–1256.

[2] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, A survey on
wireless sensor networks, IEEE Commun. Mag. 40 (8) (2002) 102–114.

[3] G.J. Pottie, W.J. Kaiser, Wireless integrated network sensors,
Commun. ACM 43 (5) (2000) 51–58.

[4] W. Ye, J. Heidemann, D. Estrin, An energy-efficient MAC protocol for
wireless sensor networks, Proc. IEEE INFOCOM 3 (2002) 1567–1576.

[5] T. van Dam, K. Langendoen, An adaptive energy-efficient MAC
protocol for wireless sensor networks, Proc. ACM SenSys’03 (2003)
171–180.

[6] M.L. Sichitiu, Cross-layer scheduling for power efficiency in wireless
sensor networks, Proc. IEEE INFOCOM (2004).

3444 R.W. Ha et al. / Computer Communications 29 (2006) 3425–3444
[7] C.-F. Hsin, M. Liu, Network coverage using low duty-cycled sensors:
random and coordinated sleep algorithms, Proc. ACM IPSN (2004)
433–442.

[8] A. Boukerche, X. Cheng, J. Linus, Energy-aware data-centric routing
in microsensor networks, Proc. ACM MSWiM’03 (2003) 42–49.

[9] U. Cetintemel, A. Flinders, Y. Sun, Power-efficient data dissemina-
tion in wireless sensor networks, Proc. ACM MobiDE’03 (2003).

[10] W.B. Heinzelman, A.P. Chandrakasan, H. Balakrishnan, An appli-
cation-specific protocol architecture for wireless microsensor net-
works, IEEE Trans. Wireless Commun. 1 (4) (2002) 660–669.

[11] A. Manjeshwar, D. Agrawal, TEEN: a routing protocol for enhanced
efficiency in wireless sensor networks, in: Proceedings of the Interna-
tional Parallel and Distributed Processing Symposium, 2001, pp. 2009–
2015.

[12] S. Lindsey, C. Raghavendra, K.M. Sivalingam, Data gathering
algorithms in sensor networks using energy metrics, IEEE Trans.
Parallel Distributed Syst. 13 (9) (2002) 924–935.

[13] K. Du, J. Wu, D. Zhou, Chain-based protocols for data broadcasting
and gathering in the sensor networks, Proc. Int. Parallel Distributed
Proc. Sym. (2003).

[14] P.-J. Wan, K.M. Alzoubi, O. Frieder, Distributed Construction of
Connected Dominating Set in Wireless Ad Hoc Networks, Mobile
Networks and Applications, Vol. 9, Kluwer Academic Publishers,
2004, pp. 141–149, issue 2.

[15] ANSI/IEEE Std. 802.11 1999 Edition, Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifi-
cations, IEEE, Piscataway, NJ, 1999.

[16] F. Ye, A. Chen, S. Liu, L. Zhang, A scalable solution to minimum
cost forwarding in large sensor networks, in: Proceedings of the
Seventh Annual International Conference on Computer Communi-
cations and Networks, 2001, pp. 304–309.

[17] C.E. Perkins, E.M. Royer, S.R. Das, M.H. Marina, Performance
comparison of two on-demand routing protocols for ad hoc
networks, IEEE Pers. Commun. Mag. 8 (1) (2001) 16–28.

[18] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, F. Silva,
Directed diffusion for wireless sensor networking, IEEE/ACM Trans.
Networking 11 (1) (2003) 2–16.

[19] S. Ganeriwal, R. Kumar, M.B. Srivastava, Timing-sync protocol for
sensor networks, Proc. ACM SenSys’03 (2003) 138–149.

Rick W. Ha received his B.A.Sc. in Computer
Engineering and M.A.Sc. in Electrical and
Computer Engineering in 2000 and 2002,
respectively, from University of Waterloo, Can-
ada, where he is currently pursuing his Ph.D.
degree. His research interests include cross-layer
design of wireless ad hoc and sensor networks.
Professor Pin-Han Ho received his B.Sc. and
M.Sc. Degree from the Electrical and Computer
Engineering Department of National Taiwan
University in 1993 and 1995, respectively. He
started his Ph.D. study in the year 2000 at
Queen’s University, Canada, focusing on optical
communications systems, survivable networking,
and QoS routing problems. He finished his Ph.D.
in 2002, and joined the Electrical and Computer
Engineering Department of University of
Waterloo, Canada, as an Assistant Professor in

the same year. Professor Ho is the first author of more than 40 refereed
technical papers and book chapters, and the co-author of a book on

optical networking and survivability. He is a recipient of Early Researcher
Award (ERA) in 2005.

Xuemin (Sherman) Shen received his B.Sc. degree
(1982) from Dalian Maritime University (China)
and his M.Sc. (1987) and Ph.D. degrees (1990)
from Rutgers University, New Jersey (USA), all
in Electrical Engineering. From September 1990
to September 1993, he was first with the Howard
University, Washington D.C., and then the Uni-
versity of Alberta, Edmonton (Canada). Since
October 1993, he has been with the Department
of Electrical and Computer Engineering, Uni-
versity of Waterloo, Canada, where he is a Pro-

fessor and the Associate Chair for Graduate Studies. Dr. Shen’s research
focuses on mobility and resource management in interconnected wireless/

wireline networks, UWB wireless communications systems, wireless
security, and ad hoc and sensor networks. He is a coauthor of two books,
and has published more than 200 papers and book chapters in wireless
communications and networks, control and filtering. Dr. Shen was the
Technical Program Co-Chair for IEEE Globecom’03 Symposium on Next
Generation Networks and Internet, ISPAN’04, IEEE Broadnets’05,
QShine’05, IEEE WirelessCom, and is the Special Track Chair of 2005
IFIP Networking Conference. He serves as the Associate Editor for IEEE
Transactions on Wireless Communications; IEEE Transactions on
Vehicular Technology; ACM/Wireless Networks; Computer Networks;
Wireless Communications and Mobile Computing (Wiley); and Interna-
tional Journal of Computers and Applications. He also serves as Guest
Editor for IEEE JSAC, IEEE Transactions Vehicular Technology, IEEE
Wireless Communications, and IEEE Communications Magazine.
Dr. Shen received the Outstanding Performance Award from the
University of Waterloo in 2004, the Premier’s Research Excellence Award
(PREA) from the Province of Ontario, Canada for demonstrated excellence
of scientific and academic contributions in 2003, and the Distinguished
Performance Award from the Faculty of Engineering, University of
Waterloo, for outstanding contribution in teaching, scholarship and service
in 2002. Dr. Shen is a registered Professional Engineer of Ontario, Canada.

	Cross-layer application-specific wireless sensor network design with single-channel CSMA MAC over sense-sleep trees
	Introduction
	Sleep scheduling issues and the SS-tree concept
	SS-Tree operational stages
	SS-tree computation
	SS-tree operational specifics and sleep scheduling
	Network layer routing
	Sensing requirements and traffic engineering
	Medium access control and sleep scheduling

	Performance evaluation - SS-tree computation
	Integrity of computated SS-trees
	WSN lifetime increase and energy utilization

	Performance evaluation - Sleep scheduling
	Packet loss effects
	Packet length variations

	Conclusions and future work
	References

