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Abstract

To accommodate the exponential growth of Web traffic, Content Distribution Networks (CDN) have been designed and deployed to

distribute content to different cache servers, and to transparently and dynamically redirect user requests to the cache servers according to the

latest network and server status. Server selection therefore is vital and crucial to both the functionality and performance of any CDN systems.

An appropriate server should be selected by taking estimated user location, measured round-trip time, and advertised server load into

account. However, it is unlikely to obtain accurate and timely inputs of these parameters in practice, so that the effectiveness and efficiency of

CDN cannot be fully achieved by traditional means. In this paper, a novel CDN server selection scheme using fuzzy inference is proposed.

The scheme selects appropriate servers based on partial round-trip time measurements and historical server load information, and it can be

implemented generically wherever the decision is made. It is shown that the fuzzy inference-based scheme is inherently capable of handling

multiple decision inputs efficiently, tolerable to measurement noise and errors, and able to deal with network dynamics. Simulation results

demonstrate that, compared with other server selection schemes, the proposed scheme can achieve higher resource utilization, provide better

user-perceived Quality of Service (QoS), and efficiently deal with network dynamics.

q 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Content Distribution Networks (CDN) and Web caching

have attracted intensive attention in recent years [1] because

of their capabilities of alleviating the heavy burden

sustained by many popular client–server Internet appli-

cations. By introducing CDN cache servers or Web proxy

servers between an origin server and its users (or clients),

CDN and Web caching can avoid server overload, reduce

network traffic, and improve user-perceived online experi-

ence considerably. This gives network and service providers

a great incentive to quickly adopt and deploy CDN and Web

caching in a competitive market.

Compared with Web caching where the proxy server

assigned for a user is almost static, CDN has the flexibility to
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choose a good cache server transparently for an individual

user request according to the latest network and server

status. When a cache server fails or under-performs, or its

network path becomes unavailable or congested, CDN has

the capability of dynamically redirecting or offloading

requests to other cache servers. It is worth mentioning that

CDN and Web caching can work together harmonically. For

example, requests from neighboring users can first be

aggregated at a nearby proxy server; if a proxy cache miss

occurs, the regenerated request is handled by a CDN cache

server. Server selection therefore is vital and critical to both

the functionality and performance of any CDN-related

systems, and selection schemes should be designed carefully

to balance the trade-off between the introduced overhead

and possible performance gains. This task becomes more

complicated when such a scheme needs to be transparent to

end users and adaptive to network and server dynamics. The

transparency is achieved by out-of-band Domain Name

System (DNS) resolution, in-band HTTP redirection, or

other means. The selection adaptivity should consider the

following factors: (i) user–server proximity in a CDN;
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(ii) server load; or (iii) network connectivity between user

and server [2]. Intuitively, CDN chooses a nearby, lightly

loaded, and reachable cache server for a user request. In

addition, the server selection should meet the following

criteria: (i) appropriate from user’s viewpoint, since the

selection is made by CDN remotely; (ii) lightweight in terms

of extra overhead introduced at both CDN and user sides;

(iii) easy to develop, evaluate, and deploy. However, the

existing Internet infrastructure offers little help for CDN

server selection. Both users and servers are only identified

by their IP addresses, which have very weak correlation with

their actual location in geographical or network space.

Server load is difficult to measure and update when there is a

large number of servers distributed across the network. The

packet-switching nature and traffic dynamics over the

Internet make an accurate measurement of network

connectivity between user and server almost infeasible.

Moreover, it is still unclear how to synthesize server load

and network connectivity, which are usually measured

separately with different metrics in practice.

There are several CDN server selection schemes that are

based on a deterministic decision process. For instance, a

server is chosen for a user request since the server is the

closest one (e.g. hosted in a nearby city or sharing the longest

IP address prefix with the user), or is the least loaded one

(e.g. with the highest capacity or lowest number of active

requests), or has the best network connectivity (e.g. with the

smallest router hop count or round-trip time, rtt, from the

user). However, many practical issues prevent the effective-

ness and efficiency of these deterministic server selection

schemes. First, it is very difficult, if not impossible, to obtain

an accurate measurement of these decision inputs (e.g.

server load, rtt, and so on) in a timely manner. Second, even

if a relatively accurate measurement is available, it may not

offer enough granularity for comparison (e.g. client–server

router hop count tends to cluster in a narrow range). In fact,

the measurement on server load and network connectivity

contains considerable noise or even errors. Although some

sophisticated deterministic schemes can consider multiple

metrics by assigning a weight to each of them beforehand

[3], such a static approach cannot deal with network

dynamics effectively and efficiently. Overall, the challenge

in this context is how to make an appropriate decision based

on multiple, inaccurate, and inconsistent inputs. In addition,

the decision process may become location-dependent, since

each decision maker only has a local view of the global

network. This fact may further complicate the implemen-

tation of a deterministic scheme.

In this paper, we propose a fuzzy inference-based scheme

for CDN server selection. The proposed scheme has the

following features: (i) inherently capable of handling

multiple decision inputs efficiently, no matter whether

these inputs are implicitly or explicitly related; (ii)

intrinsically tolerable to noise and errors in these measured

decision inputs—it can also perform reasonably well even

when some of these inputs are temporarily unavailable;
(iii) highly adaptive to network and server dynamics when

compared with other schemes using static weights for

different metrics; (iv) generically implementable with

independent trainings for individual decision makers to

build their inference rule-bases. Moreover, a well-trained

inference engine is less vulnerable to system oscillation

(also know as herd effect in distributed systems, e.g. when a

server is known lightly loaded, it quickly becomes over-

whelmed by all redirected requests due to a deterministic

server selection scheme).

Our contributions in this paper are twofold. First, we

present an architecture and component design of a fuzzy

inference-based scheme for CDN server selection, and a

technique to choose some CDN system parameters properly

to ensure resource utilization and user-perceived QoS

satisfying design criteria and specifications. Second, we

demonstrate the viability of the proposed scheme through

simulation results and confirm that it offers superior

performance over other traditional schemes. It is also

shown that the proposed scheme incurs low overhead and is

more scalable.

The remainder of this paper is organized as follows. In

Section 2, we present a brief overview of dynamic CDN

server selection, including a conceptual model, decision

criteria, and related work. In Section 3, we present a fuzzy

inference-based server selection scheme, including its sys-

tem architecture, fuzzy rule-base, parameter selection, and

performance analysis. An extensive performance evaluation

is given in Section 4, which includes the simulation setting,

system training, and performance comparisons with existing

schemes. Section 5 offers further discussions on the proposed

scheme and its extensions, and Section 6 gives concluding

remarks and directions for future work.
2. Dynamic server selection in content distribution
networks

In this section, we first formulate a conceptual role-based

model for CDN server selection to facilitate our design and

evaluation. We then discuss the decision criteria and their

characteristics in practice that discourage a deterministic

decision process. Related work is also reviewed.

2.1. CDN server selection

Fig. 1 depicts a role-basedmodel of CDN server selection,

where five roles are identified. CDN cache servers and their

users are represented by S and U, respectively. R is a

reference for users and is visible to a decisionmaker (D) or its

prober (P). Probers collect decision inputs for the decision

maker. R can be in the finest granularity, i.e. one R for each

user in HTTP redirection, or in a much coarser granularity,

e.g. a group of neighboring users sharing the same R in DNS

resolution. Probers and decision maker are responsible for

getting server and network status, locating user requests, and
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determining which server will be used to serve a particular

user request. In practice, probers, decision maker and servers

are owned and maintained by the CDN provider, while users

and R are in user premise and not under the control of any

CDN provider.
2.2. Server selection criteria

To make a selection, the decision maker should know the

location of a user and the latest network and server status. In

the Internet context, a decision maker can only obtain the IP

address of R by extracting the source address from the

packets sent by R. To infer the location of R, the decision

maker has to rely on other assistance such as reverse DNS

resolution, address ownership lookup, Autonomous System

(AS) number, or address prefix in Border Gateway Protocol

(BGP) routing table. The host names in country-code top-

level domain (ccTLD) usually can give a good hint on their

geographical location, but this approach is less effective for

names in generic top-level domain (gTLD). Moreover,

reverse resolution often fails because either the database is

unmaintained or inaccessible for external queries. IP

address allocation authorities (i.e. ARIN, RIPE and

APNIC) offer ownership record lookup services (e.g.

WHOIS) for allocated addresses. However, for many large

ISPs and organizations, a single block of IP addresses can

spread throughout the Internet worldwide. AS number and

BGP prefix usually can give better proximity in terms of

network routing reachability. But even the longest BGP

prefix is insufficient to infer user location and assess user–

server proximity precisely. Although IP address allocation

changes slowly when compared with network and server

dynamics, any changes in network topology (e.g. when new

links are added or existing links are decommissioned) may

also change user location in network space.

On the other hand, the decision maker or prober has to

measure individual network path and cache server period-

ically, and then to make prediction on network and server

status. Since there are thousands of cache servers distributed

across the Internet, it is impractical to have a very frequent

measurement per server; otherwise, these measurements
impose considerable network and server overhead (i.e. the

measured or predicted server status known to the decision

maker actually is not the current status at individual

servers). Similarly, it is impractical to probe for network

connectivity from all cache servers to a particular user.

Since network status changes quickly, such measurements

have to be done regularly. Therefore, only a small number

of probers (compared with the large number of servers) can

measure the latest network connectivity.

Synthesizing network status and server status that are

measured separately with different metrics is another

challenge. Usually, network connectivity is measured in

terms of available bandwidth, hop count, and rtt; server

status is measured in terms of available processor, memory,

and I/O capacity. These two sets of measurement metrics are

not fully compatible to each other. Moreover, the server

selection made by CDN should be reasonably satisfactory

from user’s viewpoint. In CDN, user-perceived quality of

experience can be highly characterized by the click-to-

display latency, i.e. the time that users have to wait for a

requested object to complete download from the server and

to appear in web browser.

2.3. Related work

CDN and Web caching are two active research topics in

recent years [1,4]. In this subsection, we focus on location

estimation and server selection schemes, and refer to some

surveys and the references therein on other related techniques

such as active or passive Internet measurement [4].

Locating or clustering a user identified by an IP address

in geographical or network space is of great interest to many

service providers. For instance, an e-business application

can customize itself for customers from different countries

with different currencies. The proposed DNS LOC [5]

record can specify the geographical location in latitude and

longitude of an IP address. But normally it requires manual

configuration and is more appropriate for servers instead of

users. There are several commercial and proprietary

geographical mapping services available, which are based

on the information from reverse DNS resolution, address

allocation lookup, and ISP address survey; however,

nowadays they still cannot provide a satisfactory mapping

success rate and accuracy.

Locating an IP address in network space is even more

challenging. An alternative strategy is to cluster IP addresses

[6,7] with respect to their AS number, BGP prefix, or local

DNS server. For instance, IP addresses sharing the longest

BGP prefix suggest strong network proximity. But unless

there is one cache server in each cluster, this approach

cannot estimate the inter-cluster proximity properly. It is

also possible to assess the proximity of two IP addresses by

correlating router/AS path or round-trip time to these two

addresses from a probing point; however, the correlation is

found not to be strong enough to make a consistent

assessment over the heterogeneous Internet.



Table 1

Notations

Symbol Description

rtti Measured round trip time from prober i to a given user

sldn Advertised workload of a CDN cache server n

ln Likelihood of a request being served by server n

mX Degree of being in a fuzzy set X

Uri
Fuzzy term set of rtti, iZ1,2,.,M when there are M probers

Usn
Fuzzy term set of sldn

Ur Input fuzzy term set of the fuzzy inference engine

Ul Fuzzy term set of ln
Rik Fuzzy set in Uri

of the kth fuzzy inference rule

Sk Fuzzy set in Usn
of the kth fuzzy inference rule

Lk Fuzzy set in Ul of the kth fuzzy inference rule

Iik Input region for rtti of the kth rule in the fuzzy inference

engine

Ik Input region for sldn of the kth rule in the fuzzy inference

engine

Ok Output region of the kth rule in the fuzzy inference engine

Qk Weight degree assigned to the kth rule in the fuzzy inference

engine

Ut Server utilization

L Network load

Ns Number of total CDN servers

PB User request blocking rate

PD User request dropping rate

td User click-to-display latency

ts The time duration of a request staying in the serving server

Bs Number of logical servers (e.g. httpd processes) in a physical

server

m Service rate of each CDN server

L Total user request rate

r Total traffic intensity, rZl/Nsm

PI Server load probing interval
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Global Networking Positioning (GNP) [8] is an attempt

to use multiple reference points to locate an IP address in

network space. It adopts a coordinate-based approach

similar to that used in GPS. GNP first locates a few

known landmarks, and then locates a given IP address by its

relative distances to these landmarks. With the coordinates

of two IP addresses, the network distance between them can

be derived. But without the geometry triangulation like the

one in GPS, GNP unavoidably requires a higher dimen-

sional space or more landmarks, which involves higher

computational overhead.

Internet Distance Map (IDMap) [9] is another attempt to

provide network distance service between any two IP

addresses with the assistance of tracers. Tracers measure the

distance among them in a proactive manner. When a source

wants to obtain the network distance to a destination, the

source first contacts a nearby tracer; then IDMap locates the

nearest tracer for the destination. With the inter-tracer

distance information maintained by IDMap, a measurement

of distance between the source or destination to the nearest

tracer can be used to derive the source–destination distance

accordingly. IDMap requires an infrastructure of tracers,

which is not available yet. IDMap also suffers directional

relative errors, e.g. a direct network path from source to

destination may be shorter than that to any tracer.

Some server selection schemes are developed for users

instead of CDN providers (see [10] and the references

therein), and they usually consider hop count [11] or rtt [12].

SPAND [13] is located near users and passively monitors

user-perceived performance. Themeasured data will be used

for future server selections. The approach is inadequate for

CDN since CDN providers have no access to user premise;

i.e. even passive monitoring is infeasible. Application or

IPv6 anycast is another approach that shifts the responsi-

bility for server selection from users. In application anycast

[14], cache servers share the same anycast domain name

(ADN). An additional local ADN server is required to

determine the performance metrics associated with a list of

servers sharing the same ADN. The query processes are

similar to those in the hierarchical DNS system; i.e. the local

ADN server chooses an appropriate server from the server

list. However, both application and IPv6 anycast schemes

require a major infrastructure upgrade, as well as the extra

resolve servers or routers that are close to users. On the

contrary, a good CDN server selection scheme should be

able to transparently and dynamically redirect user requests,

and it should be easily deployed and efficiently maintained

by CDN providers, not end users.

Other sophisticated server selection schemes, e.g. those

employed by Cisco Distributed Director [3] (DD), can make

decisions according to multiple metrics. DD probes server

load and calculatesAS hops between users and servers. Static

weights are assigned to each metric. However, with such

a static configuration, it is very difficult to efficiently utilize

network resources in a highly dynamic network. There are

other server or peer selection schemes. For example, [15]
adopts a decision tree-based approach to gradually switching

among different peers and finally settling down with the one

considered best, when users exchange large objects in peer-

to-peer file-sharing systems. However, in our context, a user

request is atomic and only short-lived (e.g. requesting an

HTML page), and CDN providers have to assign the request

to a server proactively without switching servers.
3. A fuzzy inference-based server selection scheme

In this section, we first present the architecture and

component design of the proposed fuzzy inference-based

server selection scheme. We then focus on the inference

rule-base design, followed by a thorough analysis on how to

choose system parameters and derive performance bounds.

Table 1 lists some symbols used in the rest of this paper and

their descriptions, respectively.

3.1. Fuzzy inference system design

Fig. 2 illustrates an example CDN system, where cache

servers (S) are scattered in four timezones. Server load and

network distance are two major decision inputs in this

system. We study the aggregated user-perceived perform-

ance represented by one reference point R; i.e. all users that
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share the same R will be treated as an aggregated U. In each

timezone, there is a limited number of probers (P) that

actively measure their network distance in rtt to requesting

users. Probers also periodically probe server load, in terms

of number of active requests. The measured network and

server status will be made available to a decision maker (D)

that is driven by a fuzzy inference engine. Once a decision

for a user request is made by the decision maker, the server

assignment will be conveyed back to users.

Here, CDN servers only report the number of active

requests that they have, not when these requests will be

completed. This is due to the fact that many requests involve

dynamic objects and their sizes cannot be determined

beforehand. Also, many OS-related overheads such as task

scheduling, memory paging, and I/O access can add extra

uncertainty. In addition, the decision maker does not have

the latest status on all servers, since servers only report their

status periodically. Therefore, only the number of active

requests reported by a server in the last report is available to

the decision maker. Similarly, not all servers can have the

network distance measurement to a requesting user. Due to

the limited number of active measurements for a request, the

measured rtt may contain considerable noise caused by

network dynamics. Moreover, some users may be inaccess-

ible for external probings, e.g. blocked by firewalls. In this

case, P either provides no measurement for this requesting

user, or only gives the best effort estimate such as a partial

rtt if the probe is bounced by firewall. Therefore, only a

small number of rtts to a requesting user are available to the

decision maker.

In a deterministic selection system, the decision maker

has to answer ‘for a particular request, which server is

chosen?’ To this end, the decision maker has to quantize the

measured server load and network distance precisely and to

choose a server with the least load or shortest distance

numerically. These measurements may be inaccurate and

behind the actual changes. This is one of the main reasons

that a deterministic system cannot perform properly with

these constraints. In addition, a least loaded server may not

have the shortest distance, and vice versa.

On the contrary, in a fuzzy inference-based system, the

decision maker only needs to answer ‘for a particular

request, what is the likelihood li for server Si to serve this

request?’ Assume there are N servers under consideration
and at most M probers available. The fuzzy system takes an

(NCM)-dimension vector input of network and server status

measurements and produces an N-dimension vector output

of server assignment likelihood. In our design, we consider

an (MC1)-input-1-output system for each server, since the

design is generic and each system can be trained

independently. Fig. 3 shows the block diagram of the

proposed fuzzy inference system. For server n, its server

load and M network distance measurements are first

fuzzified with linguistic variables in fuzzy set Ur, which is

the input term set of the fuzzy inference engine. For each

measurement, unlike being treated quantitatively in a

deterministic system, it is mapped to the fuzzy set Ur with

a certain degree. Through a fuzzy inference engine driven

by inference rules, the scalar output is mapped to another

fuzzy set Ul, which is the term set of server likelihood. The

defuzzifier eventually converts the qualitative assessment

into a quantitative decision.

3.2. Inference rule base

The designed system employs a knowledge base,

consisting of trained fuzzy inference rules, and an

appropriate inference engine, to estimate the likelihood of

a request that is served by a specific server, according to the

measured network distance and server load. The inference

system is capable of utilizing knowledge elicited from

human operators, which is expressed in natural language,

and its cardinal element is a linguistic variable [16].

Network distance and server load are two types of inputs

of the proposed inference engine. Let linguistic variable rtti,

iZ1,2,.,M, represent the rtt measurement from prober Pi

to a given user; then the corresponding universe of discourse

is the set of all possible rtt levels. We choose the term set of

rtti, denoted by Uri
, to contain the following elements: very

close (VC), close (C), not faraway (NF), faraway (F), and

very faraway (VF). Let linguistic variable sldn represent the

server load measurement of server n; then the corresponding

universe is the set of all possible server load (sld) levels. We

choose the term set of sldn, denoted by Usn, to be the set

containing the following elements: slightly loaded (SL),

lightly loaded (LL), loaded (L), heavily loaded (HL), and

extremely loaded (EL).

On the other hand, server likelihood is the output of the

proposed inference engine. Let linguistic variable ln be

the likelihood of a request served by server n with the range

of [0,1]. We choose the term set of ln, denoted by Ul, to be
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the set containing the following element: very unlikely

(VU), unlikely (UL), uncertain (UC), likely (L), and very

likely (VL). The numbers of total terms in Uri, Usn, and Ul

are chosen carefully to achieve a balance between complex-

ity and performance. The membership functions of the

fuzzy inference inputs (M rtt and 1 sld measurements) and

output (server likelihood) depend on the actual network and

server dynamics.

In the fuzzifier shown in Fig. 3, each specific value of the

measured rtti is mapped to fuzzy setU1
ri
with degree m1

xi
ðrttiÞ,

to fuzzy set U2
ri
with degree m2

xi
ðrttiÞ, and so on, where UJ

ri
is

the name of the Jth term or fuzzy set value in Uri
. Each

specific value of the measured server load sldn is mapped to

fuzzy set U1
sn

with degree m1
yðsldnÞ, to fuzzy set U2

sn
with

degree m2
yðsldnÞ, and so on, where UL

sn
is the name of the Lth

term or fuzzy set value in Usn
.

The fuzzy rules describe the fuzzy-logic relationship

between network and server measurements and server

likelihood. The kth rule has the following format:

Rk: IF (rtt0 is R0k) and . and (rttM is RMk) and (sldn is Sk)

THEN (ln is Lk),

where kZ1,2,.,K, and K is the number of rules, ðrtt0;.;

rttM ; sldnÞ2Ur0
!/!UrM

!Usn
ZUr and ln2Uln

ZUl

are linguistic variables, Rik, Sk and Lk are fuzzy sets in Uri
,

USn
and U1n

respectively.

In the fuzzy inference engine, the product inference

engine is employed to combine the fuzzy rules into a

mapping from fuzzy sets in Ur to fuzzy set in Ul, or

Given Fact: (rtt0 is ~R0) and . and (rttM is ~RM) and

(sldn is ~Sn)
Consequence: (ln is ~Ln),

where ~Ri, ~Sn and ~Ln are linguistic terms for rtti, sldn and ln,

respectively.

The fuzzy rule-base is created by a training data set that

consists of measured input–output pairs. To avoid tedious

field trials, the training data can be generated by computer.

The table-lookup approach is employed to generate IF–

THEN rules. The degree assigned to rule k, denoted byQk, is

calculated by using the following product operation

Qk Zmk

YM
iZ0

mIik
ðrttiÞmIk

ðsldnÞmOk
ðlnÞ; (1)

where Iik denotes the input region of rule k for rtti, Ik denotes

the input region for sldn, Ok denotes the output region for ln,

mIik
ðrttiÞ is the degree of rtti in Iik obtained from the

membership functions, mIk(sldn) is the degree of sldn in Ik,

mOk
(ln) is the degree of ln in Ok, and mk, which is between 0

and 1, is the degree assigned by human operators.

The defuzzifier performs a mapping from fuzzy set

Ln2Ul to a crisp point ln. Among the commonly used

strategies, the center average defuzzification method yields

a superior result [17]. Let ~ln denote the estimation
(generated by the fuzzy inference system at time tn) of the

likelihood ln. The formula for the estimation at the

defuzzifier output is

~ln Z

PK
kZ1

�Qk

QM
jZ1 mIjk

ðrttjÞmIk
ðsldnÞ�lkPK

kZ1
�Qk

QM
jZ1 mIjk

ðrttjÞmIk
ðsldnÞ

; (2)

where �lk is the center output region value of rule k, and �Qk is

the degree (normalized to 1) of rule k.

The robustness of fuzzy inference systems and

approaches to designing stable fuzzy control systems have

been discussed in [18]. Stability of closed-loop systems with

fuzzy logic controllers has been investigated in [19]. In

general, robust fuzzy control is an open problem. The

potential performance oscillations can be reduced or

eliminated if the probing frequency is relatively high

when compared with the system dynamics, e.g. the variation

of request arrival rate.

3.3. System performance analysis

3.3.1. Selecting system parameters

It is important to choose system parameters properly to

ensure system performance and user-perceived QoS

satisfying design criteria and specifications. Here, system

efficiency is measured by server utilization (Ut) and network

load (L). In CDN, Ns servers are dedicated for service

provisioning. From service provider’s viewpoint, it is

desirable to maximize Ut and minimize Ns. L is the product

of bandwidth consumed by and distance traveled by

conveyed traffic. From network provider’s viewpoint,

serving a request at the nearest server can minimize L. On

the other hand, user-perceived QoS is measured in request

blocking rate (PB), average click-to-display latency (td), and

request dropping rate (PD). In CDN, each cache server (S)

has a known service rate (m) and a configurable number (Bs)

of maximum logical servers (e.g. httpd processes). If a

server already has Bs active requests, the newly arrived

request will be blocked (we omit a small listen( ) queue in

TCP/IP protocol stack). When experiencing an excessive

latency, users may cancel their requests (e.g. pressing the

stop button in their browsers), and it is counted as a request

dropping event.

Given the total request volume (L) and service rate (m) of

a server, a system designer needs to make the following

decisions: (i) how many servers (Ns) deployed? (ii) how

many server processes (Bs) supported per physical server

(we use httpd process as an example)? (iii) how exactly

requests being served? iv) where to locate these servers?

The last question should take both network topology and

request pattern into account, and is beyond the scope of this

paper. For (iii), there are two possible serving schemes. One

is a serial scheme: the requests are buffered in a virtual

queue and served with FIFO discipline. Once a request is

being served, its httpd process gets the full service rate of m.

The other is a parallel scheme: if there are k(1%k%Bs)
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active httpd processes, each of them can get a service rate of

m/k equally. Both the serial and parallel schemes have their

own pros and cons. Generally speaking, if the variance of

the size distribution of requested objects is large, the parallel

scheme has better performance in terms of average latency,

and vice versa. Since a large percentage of web objects are

text-only of a few kilobytes, while few objects contain

multimedia content and have a large variance of size, an

exponentially distributed object size is acceptable in this

context. In Appendix A, we show that when the size of

requested objects follows an exponential distribution, both

parallel and serial schemes are equivalent in terms of

request blocking rate and average latency. Here, we use the

serial scheme with an exponential object size for analysis

purpose. The results can be applied to the parallel scheme

accordingly.

To obtain an optimal Ns and Bs, we formulate an

optimization problem with the constraint of a bounded PD,

since a dropped request not only wastes shared system

resources but also brings bad user experience. From the

viewpoint of CDN providers and users, our goal is to

minimize the cost (utility) function

C Z c1Ns Cc2E½td�Cc3PB: (3)

Here, we assume that the cost to purchase and maintain

cache servers is proportional to Ns. The cis are the

coefficients that link the CDN investment and user QoS

measure.

A larger Bs can reduce PB, but it also increases E[td] and

PD when the request intensity r, i.e. L/(mNs), increases. To

bound PD, Bs must be bounded. When a request arrives at a

server with q requests buffered in the queue, the probability

of the new request staying in the server for more than t time

units is

PrftsO tjQZ qgZ
XqK1

iZ0

expðKmtÞðmtÞi

i!
;

where ts is the delay at the server. Let t*s be the maximum

tolerable delay at the server. Bs can be set as the maximum q

such that PrfTsOT *
s jQZqg!P*

D, where P*
D is the

maximum tolerable PD. Since the service time for each

request is i.i.d. with mean 1/m and variance 1/m2, the sum of

service time for q requests can be approximated by a

Gaussian random variable with mean q/m and variance q/m2.

Thus

Bs Z maxðqÞ : Q
T�
s Kq=mffiffiffi

q
p

=m

� �
!P�

D; qO0

� �
; (4)

where Q($) is defined as

QðxÞZ

ðN
x

1ffiffiffiffiffi
2x

p exp K
y
ffiffiffiffi
2p

p

2

 !
dy:

Since the user population is large and the probability of a

user requesting an object in a small interval is small, the
aggregated request traffic can be modeled as a Poisson

process with rate L. The blocking probability PB can be

calculated as

PB Z
rBs ð1KrÞ

1KrBsC1
: (5)

The average time for a request staying with a server,

including queuing delay and processing time, is

E½ts�Z
1

1Kr
C

Bsr
Bs

1KrBs

� ��
m: (6)

Hence, the average user experienced latency, E[td], is

E½td�Z
1

1Kr
C

Bsr
Bs

1KrBs

� ��
mCxE½rtt�; (7)

where xE[rtt] is x rounds of network-related overhead in rtt

for a request. Here, we adopt xZ2 by taking into account

both TCP connection establishment and HTTP request–

reply transaction. Substituting (5) and (7) into (3), we can

determine the optimal Ns for a CDN system.
3.3.2. Deriving performance benchmark

We derive system performance bounds, which can be

used as a benchmark to compare the performance of

different schemes, and to identify the performance margin

for future improvement. The benchmark scheme randomly

distributes arrival requests to all servers uniformly. With

this scheme, the minimum blocking rate (PB)min, minimum

average latency at server (E[ts])min, and maximum server

utilization (Ut)max are

ðPBÞmin Z
ð1KrÞrBs

1KrBsC1
; (8)

ðE½ts�Þmin Z
rð1KrNs KNsr

Ns ð1KrÞÞ

mð1KrÞ
; (9)

ðUtÞmax Z
ð1KrNs Þr

1KrNsC1
: (10)

The benchmark scheme (i.e. a random selection scheme)

may choose a faraway server even when a closer server is

available, which increases network load. Alternatively, we

can select servers uniformly within the same timezone

where requests originate. However, when the request pattern

is uneven, the inzone scheme may block requests in a busy

zone while servers in other zones are available. An ideal

server selection scheme should choose server appropriately,

so that PB and E[td] are close to those of the uniform scheme

no matter whether the request pattern is even or uneven, and

the network load is close to that of the inzone scheme if the

request pattern is even.
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4. Performance evaluation

4.1. Simulation topology and parameters

To compare and evaluate the performance of the

proposed fuzzy inference-based server selection scheme

with existing schemes, extensive simulations have been

performed. The network topology used in our simulation is

the same as that shown in Fig. 2. Twelve CDN cache servers

(S) with the same service rate are equally located in four

timezones, and there is one prober (P) in each zone. The

probers collect the number of active httpd processes from all

servers every PI seconds. When a user initiates a request, the

rtts between all probers and this requesting user are

measured.

Since users may be located anywhere, the network

distance measured by rtt between user and server is

randomly distributed in practice. In the simulation, if a

user and a server are in the same zone, their rtt is truncated-

normally distributed between 5 and 50 ms, with mean 10 ms

and standard deviation 10 ms; if the user and the server are k

(kZ1–3) zones away, their rtt is truncated-normally

distributed between 10k and 100k ms, with mean 50k ms

and standard deviation 20k ms.

All servers have the same processing power and the size

of requested objects is exponentially distributed, so the

service time is exponentially distributed with a mean of

200 ms. Each server can have at most 18 active httpd

processes, so that even when the traffic intensity is larger

than 1 (i.e. each server always has a full queue), the

dropping rate PD will be less than 5% if user can tolerate at

most 5 s latency, or PD will be less than 0.3% if user can

tolerate 6 s latency, according to our analysis in (4).

At some time instances, different zones can have different

and uneven request patterns. For example, at 9 a.m. EST,

the request arrival in Eastern timezone is much more

intensive than that in Pacific timezone. To examine the

system performance in a wide spectrum of network

scenarios, simulations are performed with traffic intensity

increasing from 10% to 90% for both even and uneven

request patterns.

4.2. Simulated fuzzy system

Before presenting the simulation results, we first show

how the fuzzy inference system is trained and tuned. After

four probers are chosen, the designed system takes four rtt

measurements from four probers and the load history at a

specific server to estimate the likelihood that a request is

served by this server.

For the type of membership functions, it is necessary to

take into account both the computational efficiency and

adaption easiness of the fuzzy inference system. Gaussian,

triangular and trapezoidal functions are the most commonly

used membership functions. Here, we choose the Gaussian

membership function since it can better reflect the nature of
the network and server load status in a CDN. With the

Gaussian function, the degree mIjk(rttj) and mIk(sldn) in (1)

can be expressed as

mIjk
ðrttjÞZ exp K

rttj Krttjk

srjk

 !2 !
; (11)

mIk
ðsldnÞZ exp K

sldn Ksldk

ssk

� �2
 !

; (12)

where rttjk, s
r
jk, sldk, and ssk are adjustable parameters for

each Gaussian function.

Substituting (11) and (12) into (1), the estimate at the

defuzzifier output is

~ln Z

P
k
�Qk

Q
j exp K

rttjKrtt jk
sr
jk

� �2� �
exp K sldnKsldk

ss
k

� �2� �
�lk

P
k
�Qk

Q
j exp K

rttjKrtt jk
sr
jk

� �2� �
exp K sldnKsldk

ss
k

� �2� � :

(13)

The initial center values for elements inUlð�lkÞ are 0, 0.25,
0.50, 0.75, and 1.0, respectively. In order to determine rtt jk
and srjk, the possible rtts are divided into five ranges, and the

initial values of rttjk and srjk are determined based on the

mean and variance of the rtt in each range, denoted,

respectively, as rttjk(0) and srjk(0). The initial values of sldk

and ssk, denoted as sldk(0) and ssk(0), respectively, are set

in a similar way. To obtain the initial fuzzy inference rules,

10,000 requests are generated by computer. During training

process, it is assumed that the object size and rtts from user

to all servers are readily available, so that the decision can

be made based on the accurate click-to-display latency td.

When there is a request, the decision of which server is

selected is based on the value of tds for a user w.r.t. all

servers. All tds are sorted and the likelihood values are

assigned as follows: the server with the minimum td is

assigned as VL; the servers with the second and third

minimum tds are assigned as L; the servers with fourth to

sixth minimum tds are assigned as UC; the servers with

seventh to ninth minimum tds are assigned as UL, and the

servers with the three maximum tds are assigned as VU.

After the initial fuzzy inference rules have been generated,

the total number of fuzzy rules K is known. In order to

determine the optimal fuzzy inference rules, the back

propagation training method, which is an iterative gradient

algorithm, is employed to train the fuzzy system, i.e. given a

set of training input–output sequences (rttj, sldn, ln), jZ1–4,

the parameters in (13) are adjusted so that the decision error

at step m

errðmÞZ
1

2
ð~ln K lnÞ

2 (14)

can be minimized. Since ~ln is a function of rttjk, s
r
jk, sldk, s

s
k

and �lk, the optimization problem becomes the one by

training the parameters rttjk, s
r
jk, sldk, s

s
k, and

�lk to minimize
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err(m). At each step, the gradient of err(m) with respect to

the adjusted parameter is calculated by differentiating err(m)

with respect to the concerned parameter, then the parameter

is adjusted based on the gradient value.

Let

zk Z
Y4
jZ1

exp K
rttj Krtt jk

srjk

 !2 !
exp K

sldn Ksldk

srk

� �2
 !

;

bZ
XK
kZ1

zk; cZ
XK
kZ1

ð~lkzkÞ; then ~ln Z c=b:

To adjust ~lk, we use

~lkðmÞZ ~lkðmK1ÞKa
verrðmÞ

v�lk
; (15)

where a is a positive real-valued constant step-size.

Using the chain rule, we have

verrðmÞ

v~lk
Z ð~ln K lnÞ

v~ln
vc

vc

v�lk
Z ð~ln K lnÞ

1

b
zk: (16)

Hence, the algorithm to adjust �lk is

�lkðmÞZ �lkðmK1ÞKað~ln K lnÞ
1

b
zk; (17)

where nZ1,2,.,N. Similarly, we can obtain the algorithms

to adjust rttjk, s
r
jk, sldk, and ssk, where nZ1,2,., jZ1, 2, 3,

4, and kZ1,2,.,K.

After the parameters of rttjk, s
r
jk, sldk, s

s
k and

�lk have been
adjusted with these algorithms, the fuzzy inference rules can

be further tuned according to the adjusted values of

parameters and the same dataset which is used to generate

the initial fuzzy inference rules.

Fig. 4(a) and (b) shows the final membership functions of

rtti and sldn, respectively. After the training process, the

center values of the elements in Ul, �lk, are set to 0, 0.233,

0.489, 0.762, and 1.0.
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Fig. 4. Membership functions of (a)
4.3. Performance comparison

The performance of the designed fuzzy inference scheme

is compared with three other schemes: (i) random, randomly

selecting from all servers with equal likelihood; (ii) inzone,

randomly selecting from all servers in the zone where the

prober has the least rtt to the user; (iii) static setting,

randomly selecting from three servers with the least

estimated response time, i.e. sldn!E[ts]Cx!rttn, where x

is the weight of rtt, sldn is the advertised load of server n,

and rttn is the measured rtt between the user and the prober

that is in the same zone as server n. If x is too large, it is very

likely to overload servers in congested zones when some

faraway servers are idle; if x is too small, it is very likely to

choose a faraway server while some nearby servers are just

lightly loaded. x is set to 2 in our simulation. In addition, all

schemes employ a certain degree of randomization to

mitigate the oscillation problem.

The system performance comparison includes request

blocking rate PB and average network load L. Since L is

proportional to the rtt for a given request, the average

serving rtt is chosen to represent L. User-perceived QoS is

measured by the average click-to-display latency �td and

request dropping rate PD. Simulation results are presented in

Section 4.3.1 when requests are evenly distributed across

the network, and in Section 4.3.2 when requests are

unevenly distributed in different zones, respectively. The

measurement overheads of different schemes are compared

in Section 4.3.4.

4.3.1. Even request pattern

When requests are evenly generated in the network, for

the random and inzone schemes, the request arrival rates for

each server are similar. Therefore, their blocking rates, PBs,

should be similar, and the schemes are also the optimal

schemes in terms of blocking rate when the decision maker

has no status information of each server. Fig. 5 shows PB (in

y-axis) for all schemes when the traffic intensity r (x-axis) is
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increasing from 0.1 to 0.9. In the simulation, the probers

update server status every PIZ1 s. The figure shows that

all schemes have no request blocking until rZ0.7. When

rZ0.9, the blocking rates for the random and inzone

schemes are around 2.5%, and the blocking for the static

setting and fuzzy schemes are around 1.5% and 0.5%,

respectively. With the same historical server load infor-

mation and partial rtt measurements, the blocking rate for

the fuzzy scheme is much lower than that for the static

setting scheme, since the fuzzy system can intelligently give

a higher priority to server load metric when the arrival traffic

becomes heavier.

Fig. 6 shows the average network load (in terms of rtt),

which is normalized to the load of the random scheme, w.r.t.

traffic intensity. The average network loads of the random

and inzone schemes remain constant, which give the upper

and lower bounds, respectively. The network loads of the

static setting and fuzzy schemes approach the lower bound

when the traffic intensity is low, and increase when there are

more requests, which is a desired behavior. When requests
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Fig. 6. Normalized average network load with even request pattern

(PIZ1 s).
become intensive, they make a trade-off between blocking

rate and network load, by intentionally choosing some

faraway servers when nearby servers are very busy. As

shown in Fig. 6, the load of the fuzzy scheme is constantly

smaller than that of the static setting scheme. Since the zone

information of the user is unavailable, the decision maker

has to estimate the user location based on the measured rtt

between the user and all probers. The estimation may not be

accurate since, in network space, a user may be quite close

to one prober, but not that close to any server in the same

zone. Since the fuzzy scheme is intrinsically tolerable to

measurement noise and errors, it can achieve a lower

blocking rate and smaller network load than the static

scheme simultaneously.

Fig. 7 shows the average of user perceived latency in

seconds. User perceived latency has two components: the rtt

between the user and the server, and the delay at the server.

When the traffic intensity is light, the latency is dominated

by rtt; when requests become intensive, the latency is

dominated by the delay at the server. Therefore, the average

latency for the inzone scheme is the optimal one when the

request intensity is small, but it increases faster than the

random scheme when there are more requests, and they

meet when rZ0.9. The performance of the fuzzy scheme is

very respectful, which approaches the lower bound when the

traffic intensity is light, and the latency increases much

slower than all the other schemes and remains the lowest all

time. In other words, the fuzzy scheme can provide better

QoS no matter whether the traffic intensity is low or high.

4.3.2. Uneven request pattern

In this set of simulations, the request arrival ratio from

Eastern (zone 1) toPacific timezone (zone 4) is 0.4:0.3:0.2:0.1.

Under this scenario, the performance of the random scheme is

rarely affected. However, as shown in Fig. 8, blocking occurs

for the inzone scheme when rR0.6, and its blocking rate is

around 9% when rZ0.9. Since the traffic intensity in Eastern

timezone equals 0.4r/0.25, it exceeds 1 when rR0.625, and
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equals 1.6 when rZ0.9. Similarly, the traffic intensity in

Central timezone reaches 1 when rZ5/6. Therefore, it is not

surprising to see the severe blocking ratewith uneven requests

for the inzone scheme as shown Fig. 8. Also, the average

latency of the inzone scheme increases quickly and exceeds

that of the random schemewhen rR0.6, Fig. 10. The network

loads for the inzone and random schemes remain almost

unchanged, as shown in Fig. 9, since they do not consider the

dynamics of arrival traffic when making decisions. On the

other hand, the fuzzy scheme still has the least blocking rate

and average latency among all schemes. Its average network

load slightly increases since it directs some requests from

eastern zones to the servers in western zones to alleviate the

congestion. Therefore, the fuzzy scheme is very robust with

different traffic patterns.
4.3.3. Dropping rate

When BsZ18 and maximum tolerable latency is 5 s, the

request dropping rate for all schemes are negligible for an even
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Fig. 9. Normalized average network load with uneven request pattern

(PIZ1 s).
request pattern: there is no dropping for the fuzzy scheme;

the other three schemes have less than 0.5% dropping when

rZ0.9. For uneven scenarios, the dropping rate for inzone

scheme is the highest: around 1% unblocked requests dropped

when rZ0.9 since the server load in eastern zones exceed 1

with the inzone scheme. Nevertheless, all dropping rates are

less than the designed bound derived in Section 4.1. In other

words, the dropping rate is guaranteed when Bs is appro-

priately chosen according to our analysis in (4).
4.3.4. Measurement overhead comparison

Both the fuzzy and static setting schemes require server

load information which is probed periodically. The frequent

probing itself may produce a considerable amount of extra

traffic which is the overhead of these schemes. On the other

hand, the larger the probing interval PI is, the less accurate

the load information is; therefore, it is quite difficult to

select a server appropriately. Fig. 11 shows the blocking rate

of these two schemes when the probing intervals are 1 and

2 s, respectively. With the probing frequency halved to 0.5
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per second, the blocking becomes very severe for the static

setting scheme, which blocks 13% of the requests when rZ
0.9. For the fuzzy scheme with the same probing frequency,

the blocking rate is only 3.6% when rZ0.9. Since in our

simulated system, each server can serve 10 requests in 2 s on

the average, the server load information 2 s ago may be

drastically different from the current situation. The static

scheme fails to deal with such error-prone inputs, while the

fuzzy scheme can perform reasonably well. Fig. 12 shows

the average latency of the fuzzy scheme is still much smaller

than that of the static setting scheme. The network loads

with these two schemes are almost unchanged, which is not

presented here due to the limited space. In summary, the

fuzzy scheme is quite robust with inaccurate load

information and can tolerate a larger PI.
5. Further discussions

Through the analysis in Section 3 and evaluation in

Section 4, we have shown that the deficiencies of the

deterministic schemes for CDN server selection are due to

the fact that they strongly rely on the measurement inputs,

which, however, are inaccurate and inconsistent in reality.

Also, the static setting cannot deal with network dynamics

efficiently. The proposed fuzzy inference-based scheme, as

demonstrated in Section 4.3, is intrinsically robust and

efficient with multiple, inaccurate, and inconsistent

measurement inputs, and is adaptive to different network

scenarios. This fact suggests that fuzzy inference is a viable

approach to improve the system performance and user-

perceived QoS in existing CDN systems. Instead of pushing

the envelope of measurement accuracy on server load and

network connectivity, alternatively, we can adopt a more

adaptive and responsive fuzzy inference-based server

selection scheme. Moreover, the fuzzy inference-based

scheme imposes less measurement overhead (lower PI)

while achieving satisfactory performance.
Although our simulation is based on a simplified CDN

system and parameter set, these issues only affect the

training process of the fuzzy rule-base, and the fuzzy

inference-based scheme still has its intrinsic advantages.

With a properly designed membership function, the fuzzy

scheme can achieve better performances on any general

network topology and server placement. Since our system

considers both server load and network connectivity, it can

avoid the embarrassing situation (e.g. a least loaded server is

unreachable or a nearest server is overloaded) where only

server or network status is considered. Due to its embedded

simplicity, the fuzzy scheme can take more inputs (e.g. user

location) into account to handle more network and server

dynamics, e.g. link up or down, request surge, etc.

The proposed scheme is also scalable to a very large

CDN system. It only requires a small number of probers,

and only collects server status at a lower frequency. It can

also work in a hierarchical server selection system. For

example, with regard to user location in network space, the

proposed scheme can first identify one or a few appropriate

server groups by one decision maker with a coarse

membership function, and then zoom in a specific server

by another decision maker with a fine-grained inference

rule-base. This strategy not only further reduces the

computational complexity, but also allows a certain degree

of randomization among servers that are within a group and

appear similar to requesting users. This feature can avoid the

system oscillation in the case when a server is known to be

the least loaded a moment ago will be soon overwhelmed by

all requests redirected by a deterministic scheme.
6. Conclusions

In this paper, we have presented a fuzzy inference-based

scheme for CDN server selection. By appropriately

interpreting partial measurements of network connectivity

and historical information of server load, the scheme can

achieve higher resource utilization and provide better user-

perceived QoS with less measurement overhead, due to its

intrinsic capability of dealing with multiple, inaccurate, and

inconsistent decision inputs. For future research,we intend to

develop a hierarchical inference engine with multiple

cooperative decision makers. We are also interested in

introducing other metrics such as pricing for inter-CDN

server selection when a service is offered by multiple service

and delivery providers. Given the demonstrated functionality

and performance advantages, we will continue to explore the

fuzzy inference-based approaches in these contexts.
Appendix A. Serial vs. parallel serving schemes

Without loss of generality, let a physical server S have a

fixed capacity r bps. The size of requested objects is

exponentially distributed with mean m bits. The arrival of
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Fig. A1. M/M/1/Bs Markov chain.
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requests is a Poisson process with the arrival rate l requests

per second. There are at most Bs requests being served

simultaneously by S. The system is in state i if the number of

active requests in S is i. The steady state probability of

system in state i is denoted by pi. Denote ts as the time a

request staying with the server, i.e. the time duration from a

request arriving at the server to the whole requested object

being transmitted.

A.1. Serial scheme

The serial system is a typical M/M/1/Bs queuing system,

as shown in Fig. A1. In a nonzero state, the service rate, m,

equals r/m. The state transition rate from iK1 to i is l, and

that from i to iK1 is m, where iZ1,2,.,Bs. The blocking

probability, PB, equals pBs
Z ðð1KrÞrBs Þ=ð1KrBsC1Þ, where

rZl/m.

In state i, the average delay of a request is i/m. Therefore,

the mean of ts in the serial system is

E½ts�Z
XBs

iZ1

pii

ð1Kp0Þr=m
: (A.1)
A.2. Parallel scheme

In the parallel system, the state transitions can also be

described by an Markov chain with arrival rate l.

In state i, there are i httpd processes and each of them has

a service rate miZm/iZr/(m!i), where iZ1,2,.,Bs. Since

the size of requested objects satisfies (memoryless)

exponential distribution, at any time instance, the size of

the remaining unserved objects still satisfies the same

exponential distribution. Therefore, the expected service

time of each remaining object is exponentially distributed

with mean m!i/r. Among i remaining objects which are i.i.

d., the service time of the smallest one is exponentially

distributed with mean ðm!i=rÞ=iZm=r. Thus, the state

transition rate from i to iK1 is r/mZm. Therefore, the

Markov chain for the parallel system is exactly the same as

that for the serial system, as shown in Fig. A1, and the

steady state probability pi and blocking probability PBZpBs

are the same for both systems.
Since ts equals the inverse of service rate of an

httpd process, the expected value of ts can be calculated as

follows

E½ts�ZE½1=m0�Z
1

1Kp0

XBs

iZ1

pi
mi

Z
XBs

iZ1

pii

ð1Kp0Þr=m
;

(A.2)

where m 0 is the service rate of an httpd process. Comparing

(A.1) and (A.2), both systems have the same average ts.
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