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Abstract

In two-tiered wireless sensor networks (WSNs), sensor nodes (SNs) are scattered in clusters, and are responsible for collecting relevant

information from designated areas and transmitting to an application node (AN) in the cluster. The AN then constructs a local-view for the

cluster by exploring correlations among information received from nearby SNs, and sends the local-view toward a base-station that creates a

global-view for the entire WSN. ANs can also relay local-views for other ANs, if the resultant network lifetime is longer. In this paper, we

want to arrange inter-AN relaying optimally, which is an important process in topology control for maximizing the topological lifetime of a

WSN with regard to a certain amount of initial energy provisioning. We first propose some criteria on relay candidates preselection, which

can considerably reduce the overhead of obtaining an optimal relaying. We then design an algorithm to serialize the parallel relay allocation,

so that each AN only needs to have one relaying AN at any time. Finally, we demonstrate the equivalency in network lifetime of the serialized

inter-AN relay schedules.

q 2005 Published by Elsevier B.V.
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1. Introduction

Wireless sensor networks (WSNs), driven by recent

advances in micro-electromechanical system (MEMS) and

short-to-medium-range radio technologies, may have a

broad and in-depth impact on many aspects of our

digitalized and connected society [1,2]. In a two-tiered

WSN, small and even tiny sensor nodes (SNs) are scattered

in clusters in the lower tier, and are responsible for

capturing, encoding, and transmitting relevant information

from designated areas. Application nodes (ANs), on the

other hand, are responsible for constructing a local-view for

the cluster by exploring correlations among information

received from nearby SNs. Then, the composite local-view

streams are sent from different ANs toward a common
UN
0140-3664/$ - see front matter q 2005 Published by Elsevier B.V.
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Ebase-station (BS) in the upper tier, where a global-view is

created for the entire WSN.

Normally, both SNs and ANs are battery-powered and

energy-constrained. Once they are deployed in field, it is

unlikely, if not impossible, to recharge them economically.

It is also very expensive for them to acquire energy from the

environment themselves. A fundamental challenge thereby

in WSNs is how to maximize network lifetime with regard

to a given sensing mission and a certain amount of initial

energy provisioning. When an SN runs out of energy, its AN

may still have the capability to construct a comprehensive

local-view with the assistance of other related SNs. If the

AN is out of energy, from the viewpoint of the BS, the

coverage for that cluster is completely lost even when some

SNs are still alive, which can jeopardize the entire mission

in many cases. Although ANs can have better energy

provisioning than SNs, they also consume energy at a much

higher rate due to the transmission of streams over greater

distances. Here, the energy constraints of ANs are our main

concern.

There are many research efforts focusing on media

access control (MAC) [3–6], multi-hop routing [7–9], and

higher layer issues for WSN and mobile ad hoc networks
Computer Communications xx (xxxx) 1–13
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(MANET) [10,11]. For example, an energy-saving MAC

scheme can conserve energy by avoiding consistent media

sensing and frequent transmission collisions; an energy-

aware routing scheme can route packets around dead nodes

or nodes that are about to run out of energy, and balance the

remaining energy of neighboring nodes. Localized flow,

error, and congestion control schemes [12,13] and domain-

specific designs [14] are also proposed for WSNs.

Nevertheless, most schemes are still within the traditional

seven-layer open systems interconnection protocol refer-

ence model.

In this paper, we follow another approach and investigate

the inter-AN relaying process in topology control, which is

designed for maximizing the topological lifetime of a WSN

by placing SNs, ANs, and BSs intelligently and by arranging

inter-AN relaying optimally. Conceptually, topology con-

trol is below the conventional seven-layer protocol stack,

and is complementary to other efforts in higher layers when

maximizing the overall network lifetime. Energy-con-

strained topology control is unique for WSNs, where the

distances between ANs and the BS, as well as those among

ANs, have a dominant impact on the power consumption of

each AN and thereby the achievable network lifetime. These

distances are considered to be optimal for a WSN when its

lifetime is maximized under the process of topology control.

Our contributions in this paper are twofold. First, we

propose some criteria for preselecting inter-AN relay

candidates. With the proposed preselection process, we

show that the overhead of obtaining an optimal relaying can

be reduced considerably. Second, we develop an algorithm

to serialize the obtained relay allocation due to its parallel

nature. The parallel inter-AN relaying implies that an AN

potentially has to send its streams to all other ANs

simultaneously, which can cause a major technical chal-

lenge to the AN transceiver design. With the proposed

serialization algorithm, we transform any parallel relaying

allocations to serialized relay schedules, so that each AN

only needs to have one relaying AN at any time. We also

show that the transform can be executed in a distributed

manner and is equivalent in terms of network lifetime;
UNCORR
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Fig. 1. A two-tiered architecture of wireless sensor ne
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therefore, the parallel optimal inter-AN relaying still

preserves its optimality after the serialization process.

The remainder of this paper is organized as follows. In

Section 2, we present the system architecture of two-tiered

WSNs, their AN power consumption and energy dissipation

models, and the definition of topological network lifetime.

We also outline a sample WSNwithout inter-AN relaying as

a baseline for numerical illustrations in the following

section. In Section 3, we first propose criteria to preselect

relay candidates, and then obtain the parallel optimal relay

allocation by formulating and solving a constrained

optimization problem. We also show the benefit of having

a preselection process. Finally, we develop a serialization

algorithm to transform the obtained parallel optimal

relaying. Section 4 offers some further discussions and

Section 5 reviews related work. Section 6 concludes this

paper with issues for future work.
2. System model
ED P
ROO2.1. Two-tiered wireless sensor networks

A two-tiered WSN, as shown in Fig. 1(a), consists of a

number of SN/AN clusters and at least one BS. In each

cluster, there are many SNs and at least one AN. SNs are

responsible for all sensing-related activities: once triggered

by an internal timer or an external event, an SN starts to

capture live information encoded by the SN and directly

transmitted to an AN in the same cluster. SNs are small, low

cost, and disposable; they can be densely deployed in a

cluster. SNs do not communicate with other SNs in the same

or other clusters, and usually are independently operated.

ANs, on the other hand, have much more responsibilities

than SNs. First, an AN receives raw data from all active SNs

in the cluster. It may also instruct SNs to be in sleep, idle, or

active state if some SNs are found to always generate

uninterested or duplicated data, thereby allowing these

SNs to be reactivated later when some existing active

SNs run out of energy. Second, the AN constructs an
AN

SN

AN

BS

(b)

tworks; (a) physical view, and (b) logical view.
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Table 1

Notations

Symbol Description

VN A set of N ANs of a WSN

ni An AN at (xi, yi) on a plane

b Base station (for notation convenience, n0Zb)

di Euclid distance from ni to b

di,j Euclid distance from ni to nj

ri(t) Data rate generated locally by ni at time t

ri If ri(t) is time-invariant

ri,j(t) Data rate relayed from ni to nj at time t

pi(t) Power consumption of ni at time t

pi If pi(t) is time-invariant

ei(t) Remaining energy of ni at time t

ei(0) Initial energy allocation of ni

li Node lifetime of ni

L Network lifetime without relaying

R Network lifetime with relaying

RCi Relay candidates set for ni

RRi Parallel relay allocation for ni

3 e(tZL) or e(tZR)

fi,j Energy quota to relay data from ni to nj for R

RSi Serialized relay schedule for ni

J. Pan et al. / Computer Communications xx (xxxx) 1–13 3
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application-specific local-view for the cluster by exploring

correlations among data generated by SNs. Excessive

redundancy in raw data can be alleviated; the fidelity of

captured information will be enhanced. Third, the AN sends

the composite stream toward a BS that creates a compre-

hensive global-view for the entire WSN. ANs can be also

involved in inter-AN relaying if such activity is system-

feasible, application-acceptable, and energy-favorable.

The two-tiered architecture of WSNs is motivated by the

latest advances in distributed signal processing and source

coding [15]. Under this architecture, the goal of lower-tier

SNs and their ANs is to gather data as effectively as

possible; upper-tier ANs and BSs are designed to move

information as efficiently as possible. As shown in Fig. 1(b),

ANs, which extract useful information and construct local-

views, are the logical bridge for these two tiers. With this

function partition, we can optimize the performance of each

tier separately, since they are designed for different

purposes and have different concerns. Practically, both

SNs and ANs are battery-powered. Although ANs can have

more initial energy, they also consume energy at a much

higher rate due to the transmission of streams to BSs that are

comparatively far away. When an SN runs out of energy, its

AN may still have the capability to construct a comprehen-

sive local-view with other correlated SNs; but if the AN runs

out of energy, the whole coverage of the cluster will be

completely lost from the viewpoint of BSs, even when some

SNs in the cluster are still alive. Therefore, we focus on

energy constraints of ANs.

Once being deployed, an AN can obtain and report its

own location by using an on-board GPS receiver, through

triangulation with a few reference points [16], or as

instructed by network operators during manual deployment.

ANs are in sleep state initially, until they are activated by

the on-board wake-up circuit. Then, ANs are instructed with

mission schedules, aggregation schemes, and relay routes to

accomplish the mission cooperatively with other SN/AN

clusters. An SN/AN cluster may undergo the sleep-idle-

active cycle repeatedly during its lifetime until the AN

exhausts its on-board energy. Once being activated, the AN

should feed live local-views or view-changes to other ANs

and, eventually, to BSs. According to a specific mission, all

ANs can be activated at the same time, or they can be

activated independently. The first style is referred to as

synchronized activation; the second one is unsynchronized.

An AN can be left in active state once it is activated, or it

can be in active and inactive (including sleep and idle) states

alternatively. The first mode is referred to as continuous

activation; the second one is discrete. Although different

missions can choose different activation styles and modes,

from the viewpoint of topological lifetime, an unsynchro-

nized discrete mission can always be converted to an

equivalent synchronized continuous mission, as soon being

discussed in Section 2.2.

Once ANs have been placed, an immediate challenge is

to locate BSs so that network lifetime can be maximized
COMCOM 2727—12/2/2005—13:46—SHYLAJA—134825—XML MODEL 5 – pp. 1–13
ED P
ROOeven without inter-AN relaying. We assume that ANs can

communicate with BSs independently, and that BSs are

always reachable for ANs as long as ANs can draw enough

transmission power from their remaining energy supply.

This property and the characteristics of steady live local-

views constructed by ANs, suggest a deterministic MAC

scheme such as TDMA employed by ANs. Although an SN,

depending on the amount of sensible information available

at a certain time, can send raw data in burst to its AN, the

aggregated live local-views should be relatively smooth and

in low volume, whereas the TDMA scheme can save the

extra control overhead and power consumption encountered

by contention-based MAC schemes. Our study does not rely

on any specific MAC schemes, since topology control is

even under the regular MAC layer. After BSs are located,

and if inter-AN relaying is desirable, BSs can derive relay

schedules, and instruct ANs to communicate cooperatively

to achieve a longer network lifetime. Table 1 lists some

frequently-used symbols.
2.2. Power and energy models

Communication is a dominant source in power con-

sumption for WSNs, where live local-views are transmitted

over the air. Thus, we focus on the communication-related

activities for battery-powered ANs, since BSs are not

energy-constrained. For an AN to transmit a stream at rate r

over Euclid distance d, its minimal transmitter power

consumption is

ptðr; dÞZ rða1 Ca2dnÞ; (1)

where a1 is a distance-independent term (e.g. the power

consumed in transmitter circuit), and a2 reflects the

distance-dependent one. Eq. (1) mainly considers the path
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loss of exponent n, and usually 2%n%4 for free-space and

short-to-medium-range radio communications.

For an AN to receive a composite stream at rate r from

other ANs, its power consumption in receiver circuit is

prðrÞZ rb: (2)

For an AN to relay a bypassing stream at r and to transmit

it further over distance d, its relaying power consumption is

pf ðr; dÞZ prðrÞCptðr; dÞ: (3)

If an AN generates a stream at r0(t) itself, relays j

bypassing streams at rk(t), where 1%k%j, and then

transmits an outgoing stream at
Pj

iZ0 riðtÞ to another AN

or a BS that is d away, its total communication-related

power consumption is

pðtÞZ pr

Xj

iZ1

riðtÞ

 !
Cpt

Xj

iZ0

riðtÞ; d

 !
: (4)

If the initial energy allocated for the AN is e(0), its node

lifetime l is defined byðt0Cl

tZt0

pðtÞdt Z eð0Þ; (5)

where t0 is the time when the AN is initialized. Even with a

non-linearity model for conventional batteries (e.g. battery

lifetime is determined by both battery capacity and

discharge current raised to the Peuker constant), as long as

we can derive l from e(0) and p(t) empirically, the proposed

approaches should still apply in practice.

From the viewpoint of remaining energy, as shown in

Fig. 2, an unsynchronized discrete mission can always be

converted to an equivalent synchronized continuous mission

[17]. For example, Fig. 2(a) represents a discrete mission. If

we group all sleep, idle, and active states together, we have

Fig. 2(b), which is a continuous mission equivalent in

remaining energy. In Fig. 2(c), two ANs, n1 and n2, have

unsynchronized activation cycles. However, we can always

rearrange the converted continuous missions to make sure

that they are synchronized at least once. The convertibility
UNCORR
0

re

sleep idle sleep idle

active

0

remaining energy

time

activation

(a) (b

(c) (d

initialization
deployment

v
v

1

2

Fig. 2. Activation styles and modes: (a) discrete, (b) con
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is due to the additive property of consumed energy, which is

the integral of power consumption over time in (5).

Therefore, we mainly focus on a synchronized continuous

mission, where ANs have constant-rate streams and are

activated at t0Z0. The results can be extended to a general

mission with arbitrary activation styles and modes.
ED P
ROOF

2.3. Topological lifetime definition

For a WSN of N ANs placed on a plane, i.e. VNZ{niZ
(xi,yi)}, given the initial energy allocation ei(0) at ni, which

generates a stream at rate ri, the node lifetime is li. For

topology control, our focus is network lifetime (R or L for

the case with or without inter-AN relaying) from network

initialization to a point when the WSN cannot maintain

enough ANs alive to continue its given mission. The goal of

topology control is to maximize the topological lifetime of a

WSN with regard to a certain amount of initial energy

provisioning.

According to the criticality of a specific mission, we have

the most stringent definition of topological lifetime for a

WSN: N-of-N lifetime (LN); i.e. mission fails if any AN runs

out of energy, or LNZmin{li} for 1%i%N. The first ANs

that run out of energy are denoted as critical nodes in nC.

Maximizing the topological lifetime LN is equivalent to

maximizing min{li} for 1%i%N, where min{li} is the

lifetime of the critical ANs. Fig. 3 shows a sample WSN of

NZ10 ANs (identified by numbered crosses in Fig. 3(a))

scattered in a unit square, and the BS b (filled triangle) has

been located optimally without inter-AN relaying. We

assume that ANs are homogeneous with unit initial energy

and produce streams at a unit rate. The cases with

heterogeneous ANs are discussed in Section 4. For an

ease illustration, we assume that nZ2 and a1Z0 in (1). As

we shall see, b locates at the center of a circle C with

minimum radius, crossing all critical ANs nCZ{n2,n9,n10},

and enclosing all non-critical ANs. In this case, max LNZ
5.504 normalized unit time without inter-AN relaying.

Fig. 3(b) shows the remaining energy and node lifetime
maining energy

timesleep idle
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equivalent lifetime

active idle sleep

)

)
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3. Serialized optimal inter-AN relaying

With the determined BS location, we can further prolong

network lifetime if inter-AN relaying is application-accep-

table and energy-favorable. Here, we first define relay

candidates for a given AN.We then obtain a parallel optimal

allocation through Linear Programming. Finally, we intro-

duce an algorithm to convert the parallel relaying, which

requires an AN to potentially communicate with all of its

relays simultaneously, to a serialized relay schedule, with

which anANonly needs to have one relayingAN at any time.

3.1. Relay candidates selection

As discussed in Section 2.3, critical ANs run out of

energy first. To further prolong network lifetime, it is

necessary to find relay candidates for critical ANs first.

3.1.1. One-dimension relaying

For a critical AN n12nC, assume there is a non-critical

AN n22VN/nC between n1 and b. n2 can be a relay candidate

for n1, if n2 has energy left when n1 runs out of energy, i.e.

e2K(e1p2)/p1>0. As shown in Fig. 4(a), n2 relays x portion

of the data generated by n1. Here, we assume that relaying is

always favorable, i.e. bZ0 in (3). The communication-

related power consumption is

p1ðxÞZ r1½xðd1 Kd2Þ
2 C ð1KxÞd2

1�

at n1 and

p2ðxÞZ ðr1xCr2Þd
2
2

at n2. For n1, its node lifetime with relaying is l1(x)Z
e1/p1(x), and for n2, l2(x)Ze2/p2(x). By increasing x from 0

to 1, or n2 relays more data for n1, l2(x) is reduced. This

process stops either xZ1 or l2(x)Zl1(x). In the former case,

n2 still has energy left when n1 is out of energy. In the latter
COMCOM 2727—12/2/2005—13:46—SHYLAJA—134825—XML MODEL 5 – pp. 1–13
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one, n2 cannot relay more for n1, otherwise n2 is out of

energy first.

Fig. 4(b) plots the optimal x as a function of rZd2/d1. If

p1(x)Zp2(x), i.e.

xðd1 Kd2Þ
2 C ð1KxÞd2

1 Z ð1CxÞd2
2 ;

or

d2
1 K2xd1d2 Kd2

2 Z 0:

When xZ1,

d2
1 K2d1d2 Kd2

2 Z 0;

or

r2 C2rK1Z 0:

Hence, rZ
ffiffiffi
2

p
K1z0:414 when the optimal x becomes 1.

As shown in Fig. 4(b), when d2% ð
ffiffiffi
2

p
K1Þd1, n1 should

use n2 as its full relay, i.e. xZ1.When ð
ffiffiffi
2

p
K1Þd1%d2%d1,

the optimal x decreases gradually. When d2Zd1, xZ0; i.e. n2
is no longer a relay candidate for n1, since they are the same

distance away from b. In Fig. 4(b), p1 and p2 are the power

consumption of n1 and n2 without relaying, respectively. To

minimize the power consumption at n1,

x Z 1

rZ
ffiffiffi
2

p
K1

(
(6)

and min p1ð1ÞZ ½ð2K
ffiffiffi
2

p
Þd1�

2. When xZ1, to minimize the

total power consumption p1(x)Cp2(x) at n1 and n2,

p1ð1ÞCp2ð1ÞZ ðd1 Kd2Þ
2 C2d2

2 Z 3 d2 K
d1

3

� �2

C
2d2

1

3
;

i.e. minfp1ð1ÞCp2ð1ÞgZ2d2
1=3 when

x Z 1

rZ
1

3

8<
: (7)

Eqs. (6) and (7) can be used to locate the best relay for an AN

to minimize its own or the total power consumption for the

AN and its relay, respectively. These equations can also be
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used to assist the SN/AN cluster placement process when

dedicated relay nodes are introduced to further increase the

network lifetime for a deployed WSN.
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3.1.2. Two-dimension relaying

Unfortunately, determining relay routes and data ratios

on a plane becomes much more complicated. We will use

Linear Programming (LP) to obtain the two-dimension relay

allocation. Since there are in total N2 possible relay routes,

the computational complexity may become an obstacle

when N is large. Therefore, we shall develop some criteria

to preselect the relay candidates for an AN, so that the LP

complexity is affordable.

Consider a homogeneous WSN of ANs with unit r and e,

as shown in Fig. 5(a), there are several possible criteria for

an AN n1 to choose its relay candidate n2.
 T 652

(c1)
MCOM

653

654
CCloser to n1 than b: n1 does not choose an AN which is

indeed farther away from n1 than b; i.e. d1>d1,2 is

required for n2 to be a relay candidate for n1.

655
(c2)

656

657
ERelay toward b: n1 does not choose an AN which is

farther away from b than n1; i.e. d1>d2 is required for

n2 to be a relay candidate for n1.
UNCORR
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v

v

(a)

Fig. 5. Relay criteria and routes in two-dimension relaying; (a
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(c3)
y

(b)

) relay
OFEnergy conservativeness: optionally, n1 does not

choose n2 as its relay if the energy saving at n1 cannot

compensate the extra overhead ðp̂2Þ at n2; i.e. p1K
p1;2O p̂2 is required for n2 to be a relay candidate

for n1.
658
ED P
ROThe first criterion (c1 in Fig. 5(a)) excludes any ANs that

are actually farther away to reach for n1 than to b. The

second criterion (c2) excludes any ANs that are farther

away from b than n1: since under the e and r assumptions,

they are more critical than n1. The last criterion (c3) is

optional and only applicable when ANs need to conserve

total energy consumption as well. c1 and c2 do not alter the

optimality of network lifetime for homogeneous WSNs, but

c2 has such potential when the initial energy and data rate

among ANs are significantly different. When preselecting

relay candidates, which criteria are used to filter out bad

relays depends on specific applications. Here, we adopt c1
and c2.

Table 2 outlines an algorithm in Tcl-like pseudo code to

preselect relay candidates and form relay routes for WSNs.

Initially, the relay candidate set RC is empty (line 1), and a

non-relayed set NR is built (line 3) and then sorted (line 4)
0
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candidate criteria, and (b) possible relay routes.
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Table 2

Algorithm to preselect relay candidates

1 set RC NULL

2 foreach v in VN

3 lappend NR {v dv}

4 set NR [lsort -index 1 NR]

5 while NR

6 set v [lindex NR 0 1]

7 foreach r in RC

8 if r(R(v)

9 lappend RR_v {v r 0}

10 set NR [lrange NR 1 end]

11 lappend RC v
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by the distance between ANs and the BS. For the first AN n

(line 6) in NR, we examine whether there is a relay

candidate r for this AN in RC (line 8) according to the

chosen criteria R. If so, the relay route {v r 0} is added to

the relay route set RR. After all ANs in RC have been

examined, v is removed from NR (line 10) and added to RC
(line 11). When NR becomes empty, RR contains all

possible relay routes under the chosen criteria. Since there

are N ANs, and each AN can be a relay for other ANs, the

time complexity for this algorithm is O(N2). However, it is

much better to have this preselecting process, instead of

leaving the complexity for LP, as we shall see soon.

Fig. 5(b) gives all possible relay routes for the sample WSN

with the chosen criteria c1 and c2.
After obtaining the possible relay routes, we need to

determine the amount of data relayed through each route, as

we did with the relay ratio x in Section 3.1.1. The relay

routes and their data rate are referred to as a feasible relay

rate allocation. The allocation is optimal if network lifetime

can be maximized with such an inter-AN relaying

arrangement.
T 763
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UNCORREC3.2. Parallel relay routes

To obtain an optimal relay allocation, we first assume

that an AN has the capability to transmit data to multiple

relay candidates simultaneously (or parallel relaying).

Assume AN n relays for ANs fvr
1; v

r
2;.; vr

mg, and n has its

own relay candidates fvt
1; v

t
2;.; vt

ng. n generates a bit-stream

at rate r itself, and relays for vr
i at rr

i . It then transmits an

outgoing stream at rt
j to its relay candidate vt

j. Therefore,

Xm

iZ1

rr
i Cr Z

Xn

jZ1

rt
j ; (8)

i.e. the rate of incoming streams plus the rate of self-

generated stream should equal to the rate of outgoing

streams, as all local-views should be sent to the BS

(aggregation is application-specific and not considered

here). This property is referred to as flow conservation.

Let e be the initial energy that n has, and 3 be the

remaining energy that n has when the WSN fails to carry on

its mission. eK3 is the energy to receive flows from vr
i at rr

i
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and to transmit flows to vt
j at rt

j throughout network lifetime

R. Let pr
i and pt

j be the power consumption at n to receive

and transmit these flows, respectively. We have

R
Xm

iZ1

pr
i C

Xn

jZ1

pt
j

 !
C3Z e:

This property is referred to as energy conservation. When

the network fails to carry on its mission, the remaining

energy 3R0. This equation can be further rewritten asPm
iZ1 pr

i C
Pn

jZ1 pt
j

e
Cs Z

1

R
; (9)

where sZ(3/eR)R0 is treated as a slack variable.

Now, we can formulate a constrained optimization

problem with the objective of maximizing the network

lifetime R, i.e.

min
1

R
Z

Pm
jZ1 pr

j;1 C
Pn

kZ1 pt
1;k

eq

Cs1 (10)

with the following constraints at each AN ni

ST

Xm

jZ1

rr
j;i Cri K

Xn

kZ1

rt
i;k Z 0

Xm

jZ1

pr
j;i C

Xn

kZ1

pt
i;k

ei

Csi K
1

R
Z 0

;

8>>>>>><
>>>>>>:

(11)

where ri and ei are the data rate and initial energy that ni

generates and carries, respectively. In this formulation, we

have N flow conservation constraints and N energy

conservation constraints, i.e. 2N constraints in total (term

1/R can be removed from (11) by linking energy constraints

at any two nodes, which results an equivalent standard LP

formulation with 2NK1 resultant constraints in total, and

can be solved by applying regular LP-solving techniques).

If we did not preselect relay candidates in Section 3.1, we

have N2 relay routes (including the final routes to the BS).

These variables will add considerable computational over-

head when we solve this problem. In other words, the

problem formulation has a high complexity, despite the fact

that LP itself is expensive to solve in time complexity. Since

we cannot reduce the number of constraints, we try to reduce

the number of total variables (routes). According to c2, if ni

chooses nj as its relay, nj should not choose ni as its relay, since

it is energy-inefficient to bounce traffic between AN/BSs; i.e.

there are at most (N(NC1))/2 preselected relay routes. With

the criteria adopted in Section 3.1.2, we can further reduce

the number of considered routes, as we shall see shortly.

Table 3 gives the optimal relay rate allocation with the

preselected relay candidates. Blank entry in ri,j denotes the

routes not in the RR set, and 0 denotes the routes in the RR

set but not in the optimal relay allocation set. Since self-

relay is not energy-conscious, it is denoted by—in Table 3.

Positive ri,j is the actual relay allocation when network
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Table 3

Relay routes and rate allocation ri,j

i ri ri,1 ri,2 ri,3 ri,4 ri,5 ri,6 ri,7 ri,8 ri,9 ri,10 ri,b ei 3i pi li

1 1 – 1.386 0 0 1 z0 z0.119 z8.420

2 1 0 – 0.386 0 0 0 0.164 1 0 0.119 8.420

3 1 0 – 1.386 0 0 1 0.033 0.086 11.609

4 1 – 0 4.501 1 0 0.119 8.420

5 1 0.386 0 0.506 – 1.107 0 1 0.065 0.054 18.475

6 1 – 1.495 1 0 0.119 8.420

7 1 – 2.230 1 0 0.119 8.420

8 1 – 1.107 1 0.100 0.018 54.359

9 1 0.222 0.778 – 0 1 0 0.199 8.420

10 1 0.495 0.452 – 0.053 1 0 0.119 8.420
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Fig. 6. Parallel relay allocation; (a) optimal relay routes, and (b) node energy and lifetime.
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lifetime is maximized. A quick statistics can tell that among

all 100 relay routes, there are 29 preselected relay routes,

and LP finally chooses 16 optimal relay routes, which are

shown in Fig. 6(a), for the maximized network lifetime

of 8.420 unit time. ANs with the shortest lifetime in

Fig. 3(b), i.e. {n2,n9,n10}, now have a longer lifetime by

transmitting a portion of their data to nearby ANs, at the cost

of other ANs such as {n1,n4,n8} having a shorter lifetime, as

shown in Fig. 6(b).

Table 4 compares the overhead of the regular LP

formulation and the enhanced one with preselected routes.

They both have 20 constraints, i.e. one flow and one energy

conservation for each AN. For the regular LP formulation,
UNCORTable 4

Compatison on linear programming overhead

# Constraints # Variables

Regular LP 20 100

Enchanced LP 20 29

Table 5

Comparison on random optimal base station location with optimal relay allocatio

Random b

Median Maximum

L 1.546 5.083

MCOM 2727—12/2/2005—13:46—SHYLAJA—134825—XML MODEL 5 – pp. 1–13
ED Pthere are 100 considered relay routes, while for the

enhanced LP, only 29 routes are considered after the

preselection process. The number of relay routes is related

to the number of total variables in the LP formulation. The

more variables, the higher overhead to solve the problem.

With the regular LP, it takes 51 iterations to find the optimal

allocation, while with the enhanced LP, it only takes 21

iterations. They both obtain the optimal relay allocation

with the same network lifetime. With the preselection

process, we can considerably speed up the LP problem-

solving process, as indicated in Table 4.

Table 5 lists the topological network lifetime achieved

through random BS location (by exhaustive grid search),
# Iterations Max RN

55 8.420

21 8.420

n

Optimal b Optimal b

w/o optimal relay w/optimal relay

5.504 RZ8.420
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optimal BS location without relaying, and optimal BS

location with optimal relay allocation. It shows the

substantial efficacy of the proposed topology control

approaches. The N-of-N topological lifetime with inter-AN

relaying is denoted as R, and L without inter-AN relaying.

For the sample WSN, the optimal BS location with optimal

relay allocation can improve network lifetime by 445% over

the random BS location without relaying, and by 50% over

the optimal BS location without optimal relay allocation.

ANs {n2,n4,n6,n7,n9,n10} are critical and run out of energy

first in the optimal relay allocation of the sample WSN. It is

worth pointing out that for non-critical ANs {n1,n3,n5,n8},

their feasible relay allocation can be different from the one

shown in Fig. 6(a) and Table 3, unless they become critical

nodes themselves. In addition, the optimal relay allocation

may not be unique due to different initial LP solutions, but

they all give the same network lifetime.
TED P
RO

Table 6

Algorithm to calculate relay schedule

1 proc addr {v dr}

2 if vZZb

3 Return

4 cancel switch v

5 set v2 [lindex EQ_v 0 1]

6 set e2 [lindex EQ_v 0 2]

7 update e2 in EQ_v

8 set rt [expr rtCdr]

9 at nowC e2
pðrt ;dn;n2 Þ

switch v

10 addr v2 dr

11 Endproc

12 proc switch {v}

13 set v2 [lindex EQ_v 0 1]

14 addr v2 --rt

15 set EQ_v [lrange EQ_v 1 end]

16 set v2 [lindex EQ_v 0 1]

17 set e2 [lindex EQ_v 0 2]

18 at nowC e2
pðrt ;dn;n2 Þ

switch v

19 lappend RS {now v v2}

20 addr v2 rt

21 Endproc

22 Foreach v VN

23 set ps 0

24 Foreach {v t rr} RR_v

25 set rs [expr psCpt(rr,dt)]

26 set eq (eK3)/ps

27 Foreach {v t rr} RR_v

28 lappend EQ_v {v t eq$pt}

29 set EQ_v [lsort -ran 1 EQ_v]

30 set EQ_v [concat { } EQ_v]

31 Foreach v VN

32 switch v
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3.3. Serialized relay schedule

The parallel optimal relay allocation obtained in Section

3.2 requires that ANs always have the capability to transmit

data to multiple relaying ANs simultaneously. This require-

ment can impose a technical challenge to the radio

transceiver design when a transmitter can only tune to a

specific time slot, frequency band, or code sequence at any

time. Therefore, it is necessary to derive a serialized relay

time schedule, so that an AN transmits its data to exactly one

node (AN or BS) at any time. At a predetermined time, the

AN switches its time slot, frequency band, or code sequence,

and communicates with the next relay node. Since the

turnaround operation is also expensive, we expect atmost one

switch per each relay node throughout network lifetime.

The proposed serialization algorithm is based on relay

energy allocation, not relay rate, power, or time allocation.

Although energy allocation is an integral of power and time

allocations, only energy (data) allocation is an invariant

during the serialization process, as shown in Fig. 2. In a

parallel relay rate allocation, an AN ni transmits a stream at

rate r1 to its relay node n1, r2 to n2, and so on. e and 3 have

the same definition as that in Section 3.2. Throughout

network lifetime R, the energy allocation (or quota) for nk at

ni is

fi;k Z
ðeK3Þpi;k

pi;1 Cpi;2 C/Cpi;m

; (12)

where pi,k is the power for ni to send a stream at rk to nk.

During network lifetime R, AN ni has the flexibility to

choose which relay to use at a certain time and how long it

uses the relay, as long as the flow conservation and the

energy quota are both satisfied. For example, once the WSN

is initialized, ni can randomly pick an AN n1 in its relay set,

and transmit all data it has, including the data it generates

and the data relayed for others, until it exhausts the energy

quota fi,1 for n1. n1 will be removed from the relay set. Then,
COMCOM 2727—12/2/2005—13:46—SHYLAJA—134825—XML MODEL 5 – pp. 1–13
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ni picks another unchosen node n2 in its remaining relay set

and exhausts the energy quota fi,2 for n2. This process

repeats until the relay set becomes empty. No matter in

which order the relay nodes are chosen, nj always achieves

the same node lifetime; therefore, the WSN achieves the

same network lifetime.

Table 6 outlines the approach to obtain the serialized

relay schedule. Procedure addr{v dr} is used when an

AN nj, which n relays data for, changes its data relayed from

nj to n by Dr. If n is the BS, such change has no impact, since

b is not energy-constrained (line 2). Otherwise, n cancels its

next switch event (line 4) and sets up a new one (line 9),

according to the remaining energy quota of its current relay

n2 and the updated outgoing data rate rt. This procedure is

called for n2 and its current relay recursively.

switch{v} determines the actual relay time schedule. It is

called when the current relay n2 has exhausted its energy

quota. Therefore, relay n2 is updated by addr{v2 Krt}
(line 14) since the data rate from n to n2 drops from rt to 0.

Then, the next relay node for n is retrieved from the relay

list, and a new switch event is set up according to the energy

quota for the new relay and the current outgoing date rate of

n. For the new relay n 02 and its relays, addr is called

recursively (line 20) since the data rate from n to n 02 jumps

from 0 to rt.
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Fig. 7. Serialized relay schedule; (a) relay schedule, and (b) relay snapshot at tZ2.
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Code from line 22 to 28 calculates the energy quota (EQ)

for each relay of a given node n, according to the output of

the candidate preselection in Section 3.1 and the rate

allocation in Section 3.2. When applicable, line 29

randomizes relays in the list, so that it is less likely that

multiple ANs choose the same AN as their relay at the same

time. Line 30 intentionally prefixes a dummy relay at the

beginning of the EQ list, so that we can issue a pseudo

switch{v} at network initialization and switch from the

dummy relay to a real relay in VN. Assume that add{v r}
have the complexity O(1), then each switch{v} has the

complexity O(N) since a relay path at most has NK1

intermediate relays to b. Therefore, the total time complex-

ity to obtain the relay schedule is O(NjRRj). This schedule

can actually be calculated in a distributed manner at each

AN, if b dispatches the energy quota by (1) to ANs directly,

unless the relay schedule needs to be coordinated with the

mission schedule at b.

Fig. 7(a) plots the resultant serialized relay schedule. The

numbered cross denotes when an AN chooses another node

as its new relay, and the unnumbered cross denotes when the

AN serves as a relay for other ANs and the incoming data rate

changes. For example, at network initialization, n10 chooses b

as its relay for 0.446 unit time. When its remaining energy

drops to 0.918 unit, n10 has used up the energy quota for b and

switches to the next relay n6. At 4.616 unit time, n10 has used

up the quota for n6, and switches to n7 until at 8.420 unit time
UNCOR
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the network fails to carry on its mission due to multiple ANs

(including n10) out of energy.

Although AN n7 does not change its relay (the BS)

throughout network lifetime, its power consumption also

changes due to different ANs using it as their relay. During

[0,1.873] unit time, no other ANs use n7 as a relay; n7 has the

least power consumption for an outgoing stream at 1 unit rate.

Then at 1.873 unit time, n9 starts to use n7 as its relay.

Therefore, n7 begins to have a higher power consumption (or

a quicker drop of its remaining energy) with a two-unit

outgoing flow. After 4.616 unit time, both n9 and n10 use n7 as

their relay. n7 now has the highest power consumption in its

lifetime for a three-unit outgoing flow. At 8.420 unit time, n7
exhausts its energy, and at the same time the entire network

fails to carry on its mission. Fig. 7(b) gives a snapshot of the

relay schedule for the sample WSN at tZ2.0 unit time. The

arrow of lines shows the direction of relayed flows; the line

width implies the data rate. For serialized relaying, at any

time, VN always forms a tree rooted at the BS.

A certain amount of energy quota allocated for nk at n

represents the amount of data transferred from n to nk. Since

the total energy and energy quota for each relay are identical

in either parallel or serialized relaying, the amount of data

transferred should also be the same. A formal proof of this

equivalency was given in [17]. Therefore, an AN has the

same lifetime with parallel or serialized relaying, as shown

in Fig. 8(a) for AN n7. With parallel relaying, the remaining
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energy at n7 decreases at a constant rate throughout its node

lifetime. With serialized relaying, the remaining energy at

n7 decreases at different rates according to its current power

consumption shown in Fig. 8(b). Although the remaining

energy curves for parallel and serialized relaying are

different most of the time, they meet again when tZRN.
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4. Further discussions

We have developed approaches to obtain the optimal

relay rate allocation and time schedule if inter-AN relaying

is feasible, acceptable, and favorable, in order to maximize

the topological lifetime of a WSN with a certain amount of

initial energy provisioning. In this section, we further

discuss the applicability and extensibility of these proposed

approaches in a more practical context.

4.1. Topology control process

Fig. 9 illustrates the relationship among these approaches

and their positions in the whole topology control process.

Given a geographical coverage C, the information source S,

and the expected network lifetime T, the first step is to

collocate SN/AN clusters V with S, which gives a proper

coverage [18]. With the incremental cluster grouping

techniques, some SN/AN clusters are then grouped into a

WSN partition VN that is served by a common BS. The BS is

then located optimally for a WSN partition so that the

network lifetime L, according to N-of-N or other lifetime

definitions, is maximized even without inter-AN relaying. If

LRT, the topology control process exits with the optimal

BS location.

If L!T, topology control can either adjust the SN/AN

cluster partition, or request more BSs. If inter-AN relaying

is application desirable, energy favorable, and most

importantly, system feasible, topology control can also

invoke the approaches in Section 3.1 to preselect relay

candidates. With the LP approach in Section 3.2, network

lifetime can be prolonged to R. If RRT, this relay allocation

is acceptable and will be converted into a serialized relay
UNCORR
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Fig. 9. Topology control iterations for wireless sensor networks.
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schedule, according to the approach developed in Section

3.3. Then, topology control exits with both the optimal BS

location and optimal relay schedule.

However, if R!T, topology control has to rely on its last

two resorts: more BSs or dedicated relay nodes. Although

we did not address the node placement and partition

problem in this paper, the relay candidacy criteria in

Section 3.1 can assist the process of deciding, where to place

the additional dedicated relay nodes. It turns out that

topology control actually is an interactive process with

multiple iterations. During the course of network operation,

nodes may fail and be substituted by other nodes, and the

mission may get extended. These changes require a revisit

of some building blocks in the topology control process

depicted in Fig. 9.

4.2. Practical considerations

In the previous discussions, we focused on the distance-

related portion of power consumption and its role in

topology control. In a practical WSN, other non-distance-

related power consumptions may become non-negligible,

e.g. the energy consumed within the transmitter or receiver

circuit, as well as in the data processing and view

composition components. Node homogeneity may not

always be guaranteed, especially when we consider the

WSN redeployment scenarios (i.e. new nodes join the

network long after old nodes have been initialized and

activated). Also, transmission power consumption may take

a path loss exponent greater than two and include other

portions to combat multi-path, shadowing, interference and

other effects. A third geometry dimension may be

introduced when node elevation varies considerably.

The approaches proposed in this paper are extensible to

accommodate these challenges. For the relay candidates

selection, instead of the Euclid distance used in criteria

{c1,c2,c3} in Section 3.1, we can replace it by: how

expensive, in terms of node lifetime, it is for a node to use a

relay. For example, a node should not choose the node that

is more expensive than b as its relay. Within this schema,

the LP formulation is similar, and we can still obtain the

optimal relay allocation. The serialization process is based

on the actual energy quota, so it will not be challenged by

heterogeneity in practice. ANs count the energy consumed

for the current relay, and switch to another relay when the

energy quota for the current one has been exhausted, while

non-transmission-related energy consumption can be set

aside early.

The proposed approaches on inter-AN relaying arrange-

ment, along with other blocks in topology control such as

SN/AN/BS placement and partition, give us the capability to

maximize network lifetime topologically. Although we

assumed that topology control is done before network

initialization in this paper, further improvement can be

introduced by adaptively updating topology control

throughout the entire mission. For example, the BS can
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have certain mobility, and may change its location when

some ANs are dead or about to run out of energy. Here, we

adopt a two-stage approach: locate the BS first; then arrange

inter-AN relaying optimally. Another attempt can allow the

BS to change its location while rearranging inter-AN

relaying to achieve an even longer network lifetime. At

each step, the approaches proposed to obtain the optimal

relay arrangement still apply.
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5. Related work

MANETs and regular WSNs have attracted intensive

research interest in recent years. A comprehensive survey on

WSNs can be found in [10] and the references therein. The

research challenges and directions for MANETs can be

found in [11]. Although two-tieredWSNs havemany aspects

in common with MANETs and regular WSNs, its tiered

structure and mission-driven nature bring in some unique

characteristics. For example, most research activities in

WSNs assume a dense and microsensor deployment.

Microsensors have very limited energy provisioning to

capture scalar-only data such as temperature and motion

triggered by external events. But for a two-tieredWSN, ANs

are much more capable than ordinary microsensors (SNs), as

they are required to construct and feed live local-views to

BSs when they are activated.With the considerable coverage

of a single SN/AN cluster, there is no need to have a very

dense deployment of SN/AN clusters (generally, SN/AN

clusters are placed with the proximity of designated areas).

Due to this sparse deployment, the inter-AN distance is

comparable with the dimension of coverage, and scalability

is manageable even with a few BSs and a certain number of

ANs. Based on these facts, the lifetime of anAN is dominated

by its distance-related communication power consumption.

Therefore, topology control that determines the distance

from ANs to BSs and chooses relay candidates according to

the inter-AN distance, plays a vital role in maximizing the

topological network lifetime of WSNs.

There are a few lifetime and topology-focused research

activities in the literature. The lifetime upper bound of

information harvest sensor networks that convey probabil-

istic data from a point, a line, or an area source is derived in

[19]; simulation-based evaluations to validate the tightness

of the derived bound are also given there. In [20], the

optimal role assignment is further explicitly formulated as a

maximal network flow problem, again in data harvest

networks. In our context, instead of harvesting from

probabilistic information sources, when being activated,

WSNs should consistently offer an in-situ, real-time, and

steady global-view of the whole network. In [21], a family

of flow augmentation algorithms, which redirect data flows

among nearby nodes to balance their energy consumption in

a distributed but empirical manner, is presented. Our

approach is a centralized one due to the application nature

of WSNs. After the BS is located, if inter-AN relaying is
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feasible, we first select relay candidates and then obtain the

optimal parallel relay allocation. In contrast to previous

work in this area, we further convert the relay allocation to a

serialized relay schedule with the equivalent optimality, and

allow ANs to choose their relays locally according to energy

quota. Therefore, an AN only needs to have one relay

destination at any time. In some two-tiered WSNs, BSs can

further have certain mobility (e.g. mounted on vehicles),

and have sophisticated processing and storage capabilities

to accommodate the centralized topology control and other

functionalities.

Other topology-related research mainly focused on

multi-hop routings in WSNs. For example, [22] considered

fixed topologies of {4,6,8}-neighbor on a two-dimension

plane and 6-neighbor in a three-dimension space, and

proposed a power-aware routing scheme to reduce the total,

and even the per-node, power consumption. In this paper,

we consider an arbitrary node placement on a plane, without

any geometrical constraints on the node neighborhood. In

practice, the location of SN/AN clusters is determined by

specific missions, not by topology control. [23] considered

adjusting the transmitter output power to create a desired

topology for connectivity and bi-connectivity; it also

observed that a poor topology can only offer a small

fraction of the achievable lifetime, but they focused on

multi-hop networks without any common sinks like those in

WSNs. [24] proposed a sparse topology and energy

management (STEM) technique that aggressively puts

nodes in sleep mode and only wakes them up when they

are needed to forward data; it also explored the equivalency

of nearby nodes for data forwarding. However, in two-tiered

WSNs, due to their application characteristics, once being

activated, the already-sparsely-deployed ANs usually can-

not be forced into sleep. Otherwise, the designated local-

views are lost. [25] proposed a distributed cone-based

topological control to maintain the global connectivity with

minimum power paths in multi-hop ad hoc networks. [26]

considered a distributed algorithm to determine whether a

node should be awake or asleep, depending on how many of

its neighbors will get benefit and how much remaining

energy it has. The focus in these work, i.e. the purpose of

topology control, is different from the one that we have in

this paper. Instead of minimizing the power consumption

for individual nodes or along a forwarding path, we

minimize the power consumption of those critical ANs

that dominate the lifetime, or utility, of the entire WSN.

Overall, the WSNs under our consideration are BS-centric

with multi-hop inter-node relaying, where SN/AN clusters

with a certain amount of initial energy are sparsely deployed

in designated areas without significant redundancy.
6. Conclusions

In this paper, we have proposed approaches to obtain the

optimal relay allocation to maximize the topological
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lifetime of a WSN with a certain amount of initial energy

provisioning, when inter-node relaying is application-

desirable and energy-favorable. We also converted the

parallel relay rate allocation into a serialized relay time

schedule so that any node only needs to have one relaying

node at any time. Experimental evaluations have demon-

strated the efficacy of topology control as a vital process for

two-tiered WSNs, and they also validated the optimality of

proposed approaches.

For future work, the main focus will be on the other few

building blocks in the topology control diagram shown in

Fig. 9: node placement and partition techniques, and their

impact on the BS location and inter-node relaying arrange-

ment. Others scenarios, such as dynamic deployment and

redeployment, as well as hierarchical and heterogeneous

WSNs, can also be taken into consideration.
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