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On Hybrid Impulsive and Switching Systems and
Application to Nonlinear Control

Zhi-Hong Guan, David J. Hill, and Xuemin (Sherman) Shen

Abstract—In this note, a new class of hybrid impulsive and switching
models is introduced and their asymptotic stability properties are inves-
tigated. Using switched Lyapunov functions, some new general criteria for
exponential stability and asymptotic stability with arbitrary and condi-
tioned impulsive switching are established. In addition, a new hybrid im-
pulsive and switching control strategy for nonlinear systems is developed.
A typical example, the unified chaotic system, is given to illustrate the the-
oretical results.

Index Terms—Chaos control, exponential stability, hybrid systems, im-
pulsive and switching systems, switched Lyapunov function.

I. INTRODUCTION

Hybrid systems consisting of interacting continuous and discrete
dynamics under certain logic rules, have gained considerable attention
recently in science and engineering [1], [4], [6], [7], [11], [15], [19],
[22] since they provide a natural and convenient unified framework
for mathematical modeling of many complex physical phenomena and
practical applications. Examples include robotics, integrated circuit
design, multimedia, manufacturing, power electronics, switched-ca-
pacitor networks, chaos generators, automated highway systems, and
air traffic management systems. Hybrid control, which is based on
switching between different models and controllers, has also received
growing interest, due to its advantages, for instance, on achieving
stability, improving transient response, and providing an effective
mechanism to cope with highly complex systems and systems with
large uncertainties. A substantial part of the literature on hybrid
systems and hybrid control has been devoted to stability analysis and
stabilization; see the survey papers [4], [16], [19], and the references
therein. Most recently, on the basis of Lyapunov functions and other
analysis tools, the stability and stabilization for linear or nonlinear
switched systems have been further investigated and many valuable
results have been obtained, see [1], [4], [6], [7], [11], [15], [19], [22],
and some references therein.

In general, the most widely studied switching systems can be classi-
fied into two groups: continuous and discrete switching systems. How-
ever, these classes do not cover some useful switching systems ex-
isting in the real world which display a certain kind of dynamics with
impulse effect at the switching points, i.e., the states jump. Exam-
ples of these systems include many evolutionary processes, particu-
larly some biological systems such as biological neural networks and
bursting rhythm models in pathology. Other examples include optimal
control models in economics, frequency-modulated signal processing
systems, and flying object motions. All these systems are characterized
by switches of states and abrupt changes at the switching instants, i.e.,
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the systems switch with impulse effect [9], [16], [21], which cannot
be well described by using pure continuous or pure discrete models.
Therefore, it is important and, in fact, necessary to study impulsive and
switching systems.

From the control point of view, hybrid impulsive and switching con-
trol, based on the theory of impulsive and switching dynamic systems,
is an effective method in the sense that it allows stabilization of a com-
plex system by using only small control impulses in different modes,
even though the complex system behaviors may follow unpredictable
patterns [2], [3], [5], [9], [13]. In addition, a major advantage of com-
bined impulsive and switching control can be seen from the fact that
the impulsive time-invariant unperturbed system is always null-con-
trollable [10]; this is not true for normal time-invariant unperturbed
systems. Although the interest in impulsive control systems has grown
in recent years due to its theoretical and practical significance [2], [3],
[5], [7], [13], [21], but to our knowledge there are very few reports [1],
[7], [11], [14], [15] dealing with hybrid impulsive and switching dy-
namical systems and the corresponding control problem.

This note studies a class of nonlinear hybrid impulsive and switching
systems, and its application to nonlinear control. Using switched Lya-
punov functions, the exponential stability and asymptotical stability
of the class of hybrid impulsive and switching nonlinear systems
are studied and some new general stability criteria are established.
In addition, a new hybrid impulsive and switching control strategy
for nonlinear system control is developed. A typical example, the
unified chaotic system, is given to visualize the satisfactory control
performance.

II. PROBLEM FORMULATION

Let R+ = [0;+1); Rn denote the n-dimensional Euclidean
space. For x = col(x1; . . . ; xn) 2 Rn, the norm of x is
kxk:=( n

i=1 x
2
i )
1=2. For A = (aij)n�n 2 Rn�n; �max(A),

and �min(A) are the maximum and the minimum eigenvalues of A,
respectively. The identity matrix of order m is denoted as Im (or,
simply, I if no confusion arises).

In general, a nonlinear system can be written in the following form:

_x = Ax + f(t; x) (2.1)

where t 2 R+; x 2 Rn is the state variable, A is an n � n matrix,
and f(t; x) : R+ � Rn 7�! Rn is a piecewise continuous vector-
value function guaranteeing the existence and uniqueness of solutions
for (2.1) with initial value problem. Correspondingly, the controlled
nonlinear system can be described as

_x = Ax + f(t; x) + u(t; x) (2.2)

where u(t; x) is the control input. We can construct a hybrid impulsive
and switching controller u = u1 + u2 for (2.2) as follows:

u1(t) =

1

k=1

B1kx(t)lk(t) u2(t) =

1

k=1

B2kx(t)�(t� tk) (2.3)

where B1k and B2k are n � n constant matrices, �( � ) is the Dirac
impulse, lk(t) = 1 as tk�1 < t � tk , and otherwise, lk(t) = 0 with
discontinuity points

t1 < t2 < � � � < tk < � � � lim
k!1

tk =1 (2.4)

where t1 > t0; t0 � 0 is the initial time.
From (2.3), u1(t) = B1kx(t); t 2 (tk�1; tk]; k = 1; 2; � � �, which

implies that the controller u1(t) switches its values at every instant tk ,
and, without loss of generality [2], [21], it is assumed that x(tk) =
x(t�k ) = limh!0 x(tk � h).

On the other hand, u2(t) = 0 as t 6= tk . Therefore, (2.2) and (2.3)
together imply that

x(tk+h)�x(tk) =
t +h

t

[Ax(s)+f(s; x(s))+u1(s)+u2(s)]ds

where h > 0 is sufficiently small. As h ! 0+, this re-
duces to 4x(t) jt :=x(t+k ) � x(tk) = B2kx(tk), where
x(t+k ) = limh!0 x(tk + h). This implies that the controller
u2(t) has the effect of suddenly changing the state of (2.2) at the
points tk; that is, u2(t) is an impulsive control, and u1(t) is a switching
control.

Accordingly, under control (2.3), the closed-loop nonlinear system
of (2.2) becomes

_x = Ax + f(t; x) +B1kx; t 2 (tk�1; tk]

4x = B2kx; t = tk

x(t+0 ) = x0; k = 1; 2; . . . :

(2.5)

System (2.5) is called a hybrid impulsive and switching system. In
general, the hybrid impulsive and switching system has the following
form:

_x = Ai x+ Fi (t; x); t 2 (tk�1; tk]

4x = Bkx; t = tk

x(t+0 ) = x0; k = 1; 2; . . .

(2.6)

where t 2 R+; x 2 Rn is the state variable, t0 � 0 is the
initial time, Ai and Bk are n � n matrices, switching signal
� : R+ 7�! f1; 2; . . . ;mg, which is represented by fikg according to
(tk�1; tk] 7�! ik 2 f1; 2; . . . ;mg, is a piecewise constant function,
the time sequence ftkg satisfies (2.4),4x jt=t = x(t+k )�x(tk), and
Fi (t; x) : R+ � Rn 7�! Rn are piecewise continuous vector-value
functions with Fi (t; 0) � 0; t 2 R+, and ensuring the existence and
uniqueness of solutions for (2.6).

Obviously, (2.6) has m different modes, that is

_x = Aix + Fi(t; x); i = 1; 2; . . . ;m (2.7)

switching in the interval R+. For any switching signal �; t 2 R+, and
t > t0, let Ti(t0; t) denote the total activation time of the ith subsystem
(2.7) during [t0; t], which is the union of the corresponding switching
intervals included in [t0; t]. Furthermore, let m(Ti(t0; t)) denote the
Lebesgue measure of the setTi(t0; t). Then, the first equation of system
(2.6) can be rewritten as

_x = Aix+ Fi(s; x); s 2 Ti(t0; t); t 2 R+ (2.8)

where i = 1; 2; . . . ; m;
m
i=1 Ti(t0; t) = [t0; t].

The characteristics of the nonlinear hybrid system (2.6) that differ
from most existing models (see [4], [16], [19], and the references
therein) are both its state discontinuity and its model diversity due to
impulses and switches. Therefore, to ensure that it can be successfully
used to describe and to deal with various impulsive and switching
phenomena, especially some evolution processes [2], [16], [21], a
detailed investigation of this new model is necessary.

In what follows, the global asymptotic and exponential stability of
the hybrid model (2.6) is first studied, and then, an example of the con-
trolled system (2.5) is investigated.

III. STABILITY OF HYBRID IMPULSIVE AND SWITCHING SYSTEMS

In the subsequent discussion, the following lemma will be needed.
Lemma 3.1 [8]: If P 2 Rn�n is a positive–definite matrix, Q 2

Rn�n is a symmetric matrix, then

�min(P
�1
Q)x>Px � x

>
Qx � �max(P

�1
Q)x>Px; x 2 R

n
:
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We now consider the asymptotic properties of the hybrid system
(2.6). For (2.6), assume that, for t 2 R+; x 2 Rn, there exist con-
tinuous functions 'i(t) � 0 and positive–definite matrices Pi, such
that

F>i (t; x)Pi x � 'i(t)x
>Pix; i = 1; 2; . . . ; m: (3.1)

Furthermore, for convenience, define the following locally integrable
functions �i(t) and parameters �k and � by the inequalities and
equalities

�max P�1i (A>i Pi + Pi Ai) + 2'i(t) � �i(t) (3.2)

�max[(I +Bk)
>(I +Bk)] � �k (3.3)

� = max
1�i�m

f �2i g �i = (�max(Pi)=�min(Pi))
1=2 (3.4)

where i = 1; 2; . . . ;m; k = 1; 2; . . ..
Remark 3.1: It is easy to see that the inequality (3.1) holds

when the nonlinear function F (t; x) satisfies the Lipschitz
condition kF (t; x)k � L(t)kxk;8x; t. In fact, for any con-
stant � > 0; F>(t; x)Px � (1=2)[(F>(t; x)F (t; x))=(�) +
�(Px)>(Px)] � (1=2)[(L2(t))=(�)x>x + �x>P>Px] �
(1=2)[(L2(t))=(��min(P)) + ��max(P )]x>Px. But the converse
situation is not true. For example, let F (t; x) = (x1;�x1 x3; x1 x2)

>

with x = (x1; x2; x3)
> 2 R3, then there exists a positive–definite

matrix P = diagf3; 1; 1g such that F>(t; x)Px � '(t)x>Px with
'(t) = 1. However, kF (t; x)k � L(t)kx(t)k does not hold for any
x 2 R3. In fact, as x ! 1 along the trajectory x = (x1; x1; 0)

>, it
follows that (kF (t; x)k)=(kxk)! +1. Thus, for nonlinear function
F (t; x), the inequality (3.1) is less conservative than the Lipschitz
condition which is usually assumed in literature; see, for instance, [7],
[11], [13], and [22].

Theorem 3.1: Assume that (3.1) holds and the impulsive switching
of (2.6) satisfies
k�1

j=1

ln(��j) +

m

i=1 T (t ;t)

�i(s)ds �  (t0; t); t 2 (tk�1; tk]

(3.5)

where k = 1; 2; . . . ; Ti(t0; t) is defined for (2.7),  (t0; t) is a contin-
uous function onR+; �i(t); �k, and � are given by (3.2)–(3.4), respec-
tively. Then

lim
t!+1

 (t0; t) = �1 (3.6)

implies that the trivial solution of (2.6) is globally asymptotically
stable, and

 (t0; t) � �c(t� t0); t � t0 (3.7)

with c > 0 being constant, implies that the trivial solution of (2.6) is
globally exponentially stable.

Proof: Construct the switched Lyapunov function in the form of

Vi (x) = x>Pi x; ik 2 f1; 2; . . . ;mg (3.8)

wherePi is a positive–definite matrix given by (3.1), and letVi (t) =:
Vi (x(t)). Since (3.1) and (3.2) hold, from Lemma 3.1, the total deriva-
tive of Vi (x), with respect to (2.6), is

_Vi (x(t)) j(2:6)

= [Ai x+ Fi (t; x)]> Pi x+ x>Pi [Ai x+ Fi (t; x)]

= x> A>i Pi + Pi Ai x+ 2F>i (t; x)Pi x

� �max P�1i A>i Pi + Pi Ai + 2'i(t) x>Pi x

� �i (t)Vi (t); t 2 (tk�1; tk] (3.9)

which implies that Vi (t) � Vi (t+k�1) exp[
t

t
�i (s)ds]; t 2

(tk�1; tk], where �i (t) is given by (3.2). Substituting

(3.8) leads to �min(Pi )x>(t)x(t) � �max(Pi )
x>(t+k�1)x(t

+
k�1) exp[

t

t
�i (s)ds]; t 2 (tk�1; tk] or

w(t) � �w(t+k�1) exp
t

t

�i (s)ds ; t 2 (tk�1; tk]

(3.10)
where � is defined in (3.4), and

w(t) = x>(t)x(t): (311)

On the other hand, it follows from (2.6) that

w(t+k ) = [(I +Bk)x(tk)]
>(I +Bk)x(tk)

� �max[(I +Bk)
>(I +Bk)]x

>(tk)x(tk) � �kw(tk)

(3.12)

where �k � 0; k = 1; 2; . . ., are given by (3.3).
Using (3.10) and (3.12) successively on each subinterval leads

to the results. For t 2 (t0; t1]; w(t) � �w(t+0 ) exp[
t

t
�i (s)ds],

which leads to w(t1) � �w(t+0 ) exp[
t

t
�i (s)ds], and w(t+1 ) �

�1w(t1) � ��1w(t
+
0 ) exp[

t

t
�i (s)ds]. Similarly, for t 2

(t1; t2]; w(t) � �w(t+1 ) exp[
t

t
�i (s)ds] � �2�1w(t

+
0 )

exp[
t

t
�i (s)ds+

t

t
�i (s)ds]. In general, for t 2 (tk�1; tk]

w(t) � w(t+0 )�
k�1 . . . �k�1 exp

t

t

�i (s)ds

+
t

t

�i (s)ds+ � � �+
t

t

�i (s)ds : (3.13)

Noticing the definition of Ti(t0; t) given in (2.7) and assumption
(3.5), it follows from (3.13) that

w(t) � w(t+0 )�

k�1

j=1

(��j) exp

m

i=1 T (t ;t)

�i(s)ds

� w(t+0 )�e
 (t ;t); t 2 (tk�1; tk]

and, therefore, w(t) � w(t+0 )�e
 (t ;t); t � t0; which implies from

(3.6) and (3.7) that the trivial solution of (2.6) is globally asymptoti-
cally stable and globally exponentially stable, respectively. This com-
pletes the proof.

Remark 3.2: In Theorem 3.1, a general criteria for guaranteeing the
global asymptotic stability of (2.6) is established. The inequality (3.5)
characterizes the impulsive effect k�1

j=1 ln(��j) and the switching ef-
fect m

i=1 T (t ;t)
�i(s)ds in aggregate form, i.e., there is no spe-

cial limit to ln(��j) and �i(t), as well as to the switching model and
switching interval. This is because for the Lyapunov functions Vi(x)
used in the proof of Theorem 3.1, there is no sign requirement on DVi
in interval (tk�1; tk] and at time instants tk . Usually, such conditions
are required to get the stability results, but there are exceptions [12].

Corollary 3.1: For (2.6), assume that (3.1) holds.

i) If �i(t) � ��i < 0; �i > 0 are constants, and there exists a
constant 0 < � < �i; i = 1; 2; . . . ;m; such that

ln(� �k)� �(tk � tk�1) � 0; k = 1; 2; . . . (3.14)

then the trivial solution of (2.6) is globally exponentially stable,
where �i(t); �k, and � are given by (3.2)–(3.4), respectively.

ii) If �i(t) � �(t); �(t) is locally integrable, i = 1; 2; . . . ;m, and
there exists a constant � > 1 such that

ln(�� �k) +
t

t

�(s)ds � 0; k = 1; 2; . . . (3.15)

then, either �(t) � 0 or supk
t

t
j�(s)j ds � M < +1

implies that the trivial solution of (2.6) is globally asymptot-
ically stable, where �i(t); �k, and � are given by (3.2)–(3.4),
respectively.
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Proof: When �i(t) � ��i < 0; i = 1; 2; . . . ;m, let � =
min1�i�mf�ig, it follows from (3.14) that k�1

j=1 ln(��j) +
m
i=1 T (t ;t)

�i(s)ds �
k�1
j=1 ln(��j)�

m
i=1 �im(Ti(t0; t)) �

k�1
j=1 ln(��j) � �(t � t0) = k�1

j=1 ln(��j) � �(t � t0) � (� �

�)(t � t0) �
k�1
j=1 ln(��j) � �(tk�1 � t0) � (� � �)(t � t0) =

k�1
j=1 [ln(��j) � �(tj � tj�1)] � (� � �)(t � t0) � �(� � �)

(t � t0); t 2 (tk�1; tk], namely, k�1
j=1 ln(��j) + m

i=1 T (t ;t)

�i(s)ds � �(� � �)(t � t0); t � t0, which implies that (3.5) and
(3.7) hold with (� � �) > 0 and therefore the trivial solution of
system (2.6) is globally exponentially stable.

When �i(t) � �(t); i = 1; 2; . . . ;m; t 2 (tk�1; tk], it leads to

k�1

j=1

ln(��j) +

m

i=1 T (t ;t)

�i(s)ds

�

k�1

j=1

ln(��j) +
t

t

�(s)ds

� �

k�1

j=1

ln(�) +

k�1

j=1

ln(���j) +
t

t

�(s)ds

+
t

t

[j�(s)j � �(s)]ds: (3.16)

If �(t) � 0, then it follows from (3.15) and (3.16) that
k�1
j=1 ln(��j) + m

i=1 T (t ;t)
�i(s)ds � � ln(�k�1) +

k�1
j=1 ln(���j) +

t

t
�(s)ds = � ln(�k�1) +

t

t
�(s)ds +

k�1
j=1 [ln(���j ) +

t

t
�(s)ds] � � ln(�k�1) +

t

t
�(s)ds; t 2

(tk�1; tk]. Clearly, as � > 1; limt!+1[� ln(�k�1)+
t

t
�(s)ds] =

limk!+1[� ln(�k�1) +
t

t
�(s)ds] = �1.

Similarly, if supk
t

t
j�(s)j ds �M < +1, then it follows from

(3.15) and (3.16) that k�1
j=1 ln(��j) + m

i=1 T (t ;t)
�i(s)ds �

� ln(�k�1) +
t

t
�(s)ds + 2M; t 2 (tk�1; tk]; and

limt!+1[� ln(�k�1) +
t

t
�(s)ds+ 2M ] = �1.

Thus, in both cases, (3.5) and (3.6) hold, and from Theorem 3.1, it
immediately leads to the conclusion of Corollary 3.1. This completes
the proof.

Remark 3.3: In the case of ii) in Corollary 3.1, the parameters
�i(t) may be positive, negative, or sign varying, which implies that
stability or instability for switching subsystem (2.7) is not neces-
sary. A special case, such as an autonomous impulsive system, i.e.,
Ai � A; Fi(t; x) � F (x) satisfying the Lipschitz condition and with
� > 0 being constant was discussed in [13].

In the following discussion, the concept of “average dwell-time”
introduced by Hespanha and Morse [6] will be used. That is, for each
switching signal � and each t � t0 � 0, let N�(t0; t) denote the
number of discontinuities of � over the interval [t0; t). For given
N0; �a > 0, let Sa[�a; N0] denote the set of all switching signals sat-
isfyingN�(t0; t) � N0 + ((t� t0)=�a). The constant �a is called the
“average dwell-time” and N0 the “chatter bound.” This implies that,
for a given switching signal � 2 Sa[�a; N0] over [t0; t), there may
exist some consecutive discontinuities with interval separated by less
than �a, but the average interval between consecutive discontinuities
is no less than �a.

Corollary 3.2: For (2.6), assume that (3.1) is satisfied and �k �
�; �k is defined by (3.3), k = 1; 2; . . ..

i) If �� � 1; � is defined by (3.4), and for t � t0

m

i=1 T (t ;t)

�i(s)ds �  (t0; t) (3.17)

then the conclusion of Theorem 3.1 holds.
ii) If �� > 1; � is defined by (3.4), and for t � t0

ln(��)

�a
(t� t0) +

m

i=1 T (t ;t)

�i(s)ds �  (t0; t) (3.18)

then the conclusion of Theorem 3.1 holds for any switching
signal � = fikg 2 Sa[�a; N0], where N0; �a > 0 are given
constants satisfying k � 1 � N0 + (t� t0)=(�a) for any t 2
(tk�1; tk]; k = 1; 2; . . .. Specifically, if tk�tk�1 � � > 0; k =
1; 2; . . ., and the average dwell time �a in (3.18) is replaced
with �, then the conclusion of Theorem 3.1 holds for arbitrary
switching.

Proof: When �� � 1, then ln(��j) � ln(��) �
0; j = 1; 2; . . .. It follows from (3.17) that k�1

j=1 ln(��j) +
m
i=1 T (t ;t)

�i(s)ds � m
i=1 T (t ;t)

�i(s)ds �  (t0; t); t �
t0, which implies that (3.5) is satisfied and, therefore, the conclusion
of Theorem 3.1 holds.

When �� > 1, since k�1 � N0+(t� t0)=(�a) for t 2 (tk�1; tk],
it leads to (� �)k�1 � (� �)N +(t�t =� ); t 2 (tk�1; tk].
Accordingly, as t 2 (tk�1; tk], it follows from (3.13) that
w(t) � w(t+0 )� (��)

k�1 exp[ m
i=1 T (t ;t)

�i(s)ds] �

w(t+0 ) � (��)
N (��)(t�t )=(� ) exp[ m

i=1 T (t ;t)
�i(s)ds] =

w(t+0 )�(��)
N exp[(ln(��))=(�a)(t � t0) +

m
i=1 T (t ;t)

�i(s)ds]; t 2 (tk�1; tk]. Moreover, by

(3.18), it arrives at w(t) � w(t+0 )� (��)
N e (t ;t); t � t0;

which implies that the conclusion of Theorem 3.1 holds for any
switching signal � = fikg 2 Sa[�a; N0]. For the special case,
tk � tk�1 � � > 0, the conclusion can be similarly proved and the
details are omitted. This completes the proof.

For (2.6), if fi1; i2; � � � ; img = f1; 2; . . . ;mg and Ai =
Ai ; Fi (t; x) = Fi (t; x); k = 1; 2; . . ., then it is called a hybrid
impulsive and periodic switching system, or (2.6) has a periodic
switching law. In this case, one has the further results.

Corollary 3.3: Assume that (3.1) holds and (2.6) is a hybrid impul-
sive and periodic switching system with tk � tk�1 = �k; �k+m =
�k; �k � �; k = 1; 2; . . ., and �i(t) � �i; i = 1; 2; . . . ;m; �k; �, and
�i are constants. Then

m ln(��) + �1�1 + � � �+ �m�m < 0 (3.19)

implies that the trivial solution of (2.6) is globally asymptoti-
cally stable, where �k; �i(t), and � are given by (3.2), (3.3),
and (3.4), respectively. In addition, if Bk+m = Bk , that is,
�k+m = �k; k = 1; 2; . . ., then the inequality (3.19) can be re-
placed by m

i=1[ln(��i) + �i�i] < 0.
Remark 3.4: Corollary 3.3 gives a compact criterion for a class

of nonlinear impulsive and periodic switching system (2.6), which is
independent of the construction of a Lyapunov function [14]. When
Fi(t; x) � 0 and Bk+m � Bk , (2.6) becomes a linear impulsive and
periodic switching system. For this special case, Corollary 3.3 imme-
diately reduces to be similar to a result [15, Th. 1] with the switching
interval being periodic. In addition, Corollary 3.3 is easily to verify
since the parameters �i and �k are given by inequality estimation and
�k is independent of the choice of positive matrix Pi.

IV. ILLUSTRATIVE EXAMPLE

As an application of Theorem 3.1 and Corollaries 3.1–3.3, we con-
sider the control problem for a benchmark nonlinear chaotic system
which includes the Lorenz system and Chen’s system as special cases
[17], i.e., we design an impulsive and switching controller to suppress
the chaos.
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Example: Consider the chaotic system [17] described by

_x1 = (25a+ 10)(x2 � x1)

_x2 = (28� 35a)x1 � x1x3 + (29a� 1)x2

_x3 = x1x2 �
a+ 8

3
x3

(4.1)

where a 2 [0; 1].
Rewrite system (4.1) as

_x = Ax + f(x) (4.2)

where x = (x1; x2; x3)
>; f(x) = (0;�x1x3; x1x2)

>, and

A =

�(25a+ 10) (25a+ 10) 0

28� 35a 29a� 1 0

0 0 �a+8

3

:

The hybrid impulsive and switching controlled system based on (4.2)
has the following form:

_x = (A+Bi )x+ f(x); t 2 (tk�1; tk]

4x = B2kx; t = tk

x(t+0 ) = x0; k = 1; 2; . . .

(4.3)

with Bi and B2k being 3� 3 matrices, Bi 2 fB1; B2; . . . ; Bmg;
4x(tk) = x(t+

k
)� x(tk), and ftkg satisfying (2.4). Obviously, (4.3)

is a special case of the (2.6) with Ai = A + Bi ; Fi (t; x) � f(x),
and Bk = B2k .

For (4.3), if Pi � I , then f>(x)x = 0, i.e., in (3.1), 'i(t) = 0; i =
1; 2; . . . ;m. Let �maxf(A + Bi)

> + (A + Bi)g � �i; �maxf(I +
B2k)

>(I + B2k)g � �k; � = tk � tk�1; i = 1; 2; . . . ;m; k =
1; 2; . . .. Then, the corresponding results of Theorem 3.1 and Corol-
laries 3.1–3.3 hold.

It can be seen from the previous example that there are several ways
to design the impulsive and switching time sequence ftkg, control gain
matrices fBig and fB2kg, such that the controlled system (4.3) is glob-
ally asymptotically stable. In addition, observe that it is not necessary
to estimate the Lipschitz constant of the nonlinear term or bound the
system state for (4.1) as is often used [3]–[20]. Because of the page
limit, the further discussion and simulant results are omitted here.

V. CONCLUSION

In this note, some new criteria for exponential stability and asymp-
totic stability of a class of nonlinear hybrid impulsive and switching
systems have been established using switched Lyapunov functions. As
an application, a new hybrid impulsive and switching control strategy
for chaos suppression has been developed. An illustrative example has
been given to demonstrate the improved control performance.
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