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Abstract—In this paper, the joint time–frequency domain
channel estimation problem in orthogonal frequency-division
multiplexing (OFDM) wireless communication systems is trans-
formed to a set of independent time-domain estimation problems.
A robust channel estimation algorithm based on the filtering
approach is proposed to estimate the channel fading in the time
domain. The estimation criterion is to minimize the worst possible
amplification of the estimation errors in terms of the exogenous
input disturbances such as multiplicative and additive noise. The
criterion is different from the traditional minimum estimation
error variance criterion for the Kalman estimation algorithm,
and requires no a priori knowledge of the disturbance statistics.
It is shown that the proposed channel estimation algorithm is
more robust compared with the Kalman estimation counterpart
in terms of model uncertainty, and is more suitable to practical
OFDM wireless communication systems.

Index Terms—Channel estimation, orthogonal frequency-divi-
sion multiplexing (OFDM), filtering, wireless communica-
tions.

I. INTRODUCTION

THE high demand for a large volume of multimedia services
in wireless communication systems requires high trans-

mission rates. However, high transmission rates may result in
severer frequency selective fading and intersymbol interference
(ISI) if the bandwidth of the transmitted signal is large com-
pared to the coherence bandwidth of the channel. Orthogonal
frequency-division multiplexing (OFDM) has been proposed to
combat these types of channel disturbance [1]–[4]. In an OFDM
system, the signal is transformed into a number of components,
each with a bandwidth narrower than the coherence bandwidth
of the propagation channel. Each of the OFDM signal com-
ponents is modulated onto a distinct subcarrier. With OFDM,
the transmission in each subcarrier experiences frequency flat
fading, and OFDM is said to have transformed frequency-selec-
tive fading to flat fading.

Channel state information is very important to achieve
optimal diversity combining and coherent detection at the
receiving end. In the absence of channel state information,
channel estimators can be used to provide estimates of the
channel state information. In OFDM, channel fading informa-
tion is present in both the time and frequency domains. A proper
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channel estimation algorithm for the OFDM systems should
capture both the time- and frequency-domain characteristics. In
recent years, channel estimation for OFDM systems has been
a very active research area, both in the time domain [6]–[9]
and in the frequency domain [4], [10], [11]. By representing
the correlation function of the channel fading as the product of
the correlation functions in the time domain and the frequency
domain, it is possible to perform channel estimation in the
time domain alone [5]. To our knowledge, the development of
estimation algorithms has been based on known statistics of
the fading channel and the additive noise. The criterion used is
minimization of the variance of the estimation errors, e.g., the
Kalman estimation algorithm. On the basis of known channel
statistics, the Kalman estimator is optimal in the sense that the
error covariance is minimized. However, in practical systems,
channel statistics are not completely known. When the Kalman
estimator is not the dual of the channel, the performance
of the Kalman estimator may suffer significant degradation
[12]. A robust channel estimator for practical OFDM wireless
communication systems, which does not depend on a priori
knowledge of the channel state information, is desirable. This
is the motivation behind the work presented in this paper.

In this paper, the two-dimensional time–frequency channel
estimation problem is first transformed to a set of independent
one-dimensional time-domain channel estimation problems
using the property that the joint time–frequency correlation
function of the channel fading can be represented as the product
of the correlation functions in the time and the frequency do-
mains. A robust channel estimation algorithm is proposed
to estimate the channel fading in the time domain. The
approach differs from the traditional approach such as the
Kalman estimation in the following two respects.

1) No a priori knowledge of the noise source statistics
is required. The only assumption is that the noise has
finite energy.

2) The estimation criterion is to minimize the worst pos-
sible effect in the estimation error (including channel
modeling error and additive noise).

These two features make the proposed estimation algo-
rithm more appropriate for practical OFDM systems where
there is significant uncertainty in the statistics of noise and
channel fading. Since the proposed algorithm has an
observer structure similar to that of the Kalman algorithm, the
implementation complexity is similar to that of the Kalman
algorithm. For this reason, the Kalman algorithm will be used
as the benchmark for performance comparison. Simulation
results show that the proposed estimation approach can
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Fig. 1. Transceiver structure of the MC-CDMA system. (a) The transmitter structure. (b) The receiver structure.

improve both the estimation error and bit error rate (BER)
performance compared to the Kalman estimation approach.

The remainder of this paper is organized as follows. Section II
presents the OFDM system model used in the derivation of the

estimation algorithm. In Section III, the two-dimensional
joint time–frequency domain channel estimation problem in the
OFDM system is decomposed and represented by one-dimen-
sional time-domain estimation problems. Section IV presents
the algorithm for channel estimation in the OFDM system.
In Section V, the performance of the estimation algorithm
is evaluated by simulation in terms of mean-square-error and
BER. Conclusions of this paper are given in Section VI.

II. SYSTEM MODEL

Fig. 1 shows the structure of an OFDM transceiver. The se-
rial data at the input is a sequence of samples occurring at in-
terval . At the transmitter [Fig. 1(a)], the high-rate serial input
data sequence is first serial-to-parallel (S/P) converted into
low-rate parallel streams in order to increase the symbol duration
to . The low-rate streams, represented by the symbols

, are modulated onto
different subcarriers. In order to eliminate interference between
parallel data streams, each of the low-rate data streams is mod-
ulated onto a distinct subcarrier belonging to an orthogonal set
with subcarrier spacing 1 . The parallel streams are then mul-
tiplexed and a cyclic prefix is added to eliminate the effect of ISI.
Thus, the signal transmitted during the th symbol interval

can be written as

(1)

where is the th data symbol of the th stream, is the
total number of subcarriers, and is the length of the guard in-
terval.

The transmitted signal passes through the wireless
channel which introduces signal distortion and additive noise.
The wireless channel can be modeled as a multipath fre-
quency-selective fading channel using a tapped-delay line with
time-varying coefficients and fixed tap spacing [13], which can
be represented as

(2)

where and are the complex amplitude and delay of the
th path, respectively. 1 is the total number of taps. defines

the maximum multipath delay spread. For OFDM to be effec-
tive, the length of the cyclic prefix should be larger than the
maximum multipath delay spread of the channel. In this paper,

is modeled as a wide-sense stationary uncorrelated scat-
tering (WSSUS) process, which has the following correlation
function:

(3)
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where denotes complex conjugation, is the variance of the
channel fading at path , which is determined by the power delay
profile of the channel and satisfies , and is
the normalized correlation function.

The received signal in the th symbol duration can be
expressed as

(4)

where is the background noise.
At the receiver [Fig. 1(b)], the received signal is first demodu-

lated after cyclic prefix removal. For practical implementation,
modulation and demodulation can be achieved by inverse fast
Fourier transform (IFFT) and fast Fourier transform (FFT), re-
spectively. Channel estimation is applied to obtain the estimates
of channel fading in each subcarrier such that coherent detection
can be achieved. Delay blocks are introduced to synchronize the
outputs of the demodulator and channel estimator. In Fig. 1(b),
the second index at the output of the demodulator refers to the
th subcarrier, and is the output for the th subcarrier in

the th symbol interval. By assuming that the channel impulse
response is quasi-static during the th symbol interval so that

for , the intercarrier interfer-
ence can be neglected compared to the background noise. Thus,
the th subcarrier output, , from the
demodulator can be expressed as

(5)

where

(6)

If the channel fading characterized by were known, then
coherent detection and optimum diversity combining would be
achievable at the receiver. However, is time varying and

usually unknown. Hence, an effective channel estimation algo-
rithm is needed to accurately estimate the channel fading pa-
rameter , given and .

III. JOINT TIME–FREQUENCY DOMAIN CHANNEL ESTIMATION

Decision-directed [14] and pilot-assisted [15] approaches are
two of the most commonly used channel estimation algorithms.
Because of the error propagation inherent in the decision-di-
rected approach, the pilot-assisted scheme is preferred. Fig. 2
shows the pilot pattern used in this paper, where the known pilot
symbols are inserted in every OFDM symbols and sub-
carriers. In general, the values of and may significantly
affect the estimation performance and should be selected prop-
erly [16]–[18]. Without loss of generality, let

where and are the sets of pilot positions in the time and
frequency domains, respectively. Then, (5) becomes

(7)

Since the are correlated for different s and s, a proper
channel estimation algorithm should be carried out jointly in
both the time and frequency domains. Directly solving this
two-dimensional estimation problem is very difficult. In the fol-
lowing, based on the separation property of the time–frequency
correlation function of the channel fading, the two-dimen-
sional estimation problem is decomposed to one-dimensional
time-domain estimation problems, which greatly simplifies the
original one.

From (3) and (6), the correlation function of the fading
channel and for different times and
subcarriers can be written as [5]

(8)

where

Equation (8) indicates that the time–frequency correlation func-
tion of the fading channel in the OFDM system can be repre-
sented as the product of the correlation functions in the time
domain and in the frequency domain.
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Fig. 2. Configuration of pilot arrangement.

Let

...

...

where is the number of pilot symbols in the
frequency domain given the symbol time instant . As-
suming that is diagonalizable, the eigendecomposition of

is

(9)

where the superscript denotes Hermitian transposition, is
a unitary matrix consisting of the eigenvectors of , and
is a diagonal matrix with the diagonals consisting of

nonzero eigenvalues ,
and zeros. In the absence of knowledge of the channel
fading statistics, we choose [5], where de-
notes the ceiling function. Alternatively, may be determined
using the approach in [19]. Let

From (7) and (8), we have

(10)

where , and are the th elements of , and ,
respectively; is the th row of . Since the columns of
form a unitary system

for

(11)

Equation (11) indicates that given time instant , the
are uncorrelated for different , i.e., the estimate of only
depends on the observation . In other words,
the original joint time–frequency channel fading estima-
tion problem can be transformed to one-dimensional
time-domain estimation problems shown in (10). Fig. 3
shows the derived channel estimator structure, where the
observation vector is trans-
formed to vector by the matrix

. Then, can be estimated
by one-dimensional time-domain estimators. Let the
outputs of the estimators and zeros form the
vector . The estimates of

, can be obtained by the inverse
transforming using matrix [5]. Given the estimate of
at each pilot position, , can be
obtained by interpolation.

For time-domain estimation, it is well known that the low-
pass slow-fading channel in (10) can be approximated by
an autoregressive (AR) process of the form [20], [21]

(12)

where , and denote the order, the coefficient (tap-
gain parameter), and the model noise, respectively. Because the
channel fading is a stationary stochastic process and
is a white noise, the tap gain and the variance of are
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Fig. 3. Joint time–frequency channel estimator for OFDM system.

time-invariant. Without loss of generality, let the zeroth time-
domain estimator be the reference and omit the second index .
From (10) and (12), the one-dimensional time-domain channel
fading estimation problem can be formulated by the following
state-space model:

(state equation) (13)

(measurement equation) (14)

where

...
...

...
. . .

...
...

the superscript denotes matrix transposition and is the
channel state transition matrix. If the channel correlation func-
tion in (10) is known, the tap gain parameter and
the variance of can be calculated using the Yule–Walker
equations [22]. If the variances of background noise is also
known, the optimal minimum-error-variance-based estimation
algorithms, such as the Kalman filter, can be applied to estimate

. However, the severity of the channel impairments depends
on whether it is indoor or outdoor, urban or suburban [5]. In
practice, the channel correlation function and the vari-
ance of the background noise are not known a priori. The known
variance assumptions may provide an estimate that is highly vul-
nerable to statistical estimation errors, i.e., a small number of
measurement errors may have a large effect on the resultant esti-
mate. In the next section, an -based channel estimation algo-
rithm for the OFDM system, where knowledge of the variances
of and is not needed, is presented. For comparison pur-
poses, we first briefly review the Kalman estimation algorithm.

IV. CHANNEL ESTIMATION ALGORITHMS

Impairments in a wireless channel are unknown and most
likely time-variant. Methods that do not depend on precise

knowledge of the channel characteristics should be more ef-
fective and robust for performing the channel estimation. The
designs of channel estimators in which the estimator gains
are optimized using a minimum error variance criterion (the
Kalman filtering approach) and a minimum estimation error
spectrum criterion (the filtering approach) are presented.
The Kalman approach is a covariance minimization problem
while the approach is a minimization problem where the
maximum “energy” of the estimation error over all disturbances
is minimized.

A. Kalman Estimation Algorithm: A Brief Review

Assume that both model noise and background noise
in (13) and (14) are uncorrelated white Gaussian processes with
zero mean and variances

The design objective of the Kalman estimation algorithm is to
determine the optimal estimate at time based on the obser-
vation such that the error covariance

(15)

is minimized, where the estimation error is given by

(16)

For the state-space model (13)and (14), the Kalman estimation
algorithm is given by

(17)

with initial condition . The estimator gain and error
covariance equations are

(18)

(19)

(20)

where is the Kalman gain vector,
is the a priori error covariance ma-

trix, is the a posteriori error
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covariance matrix, with initial condition , and is
an identity matrix.

B. Estimation Algorithm

Consider the state-space model (13)–(14). We shall not make
any assumptions on the disturbances and , except that they
have finite energy. The finite energy assumption is reasonable
since in any practical system, both and are samples of
bandlimited noise process. Let , where is a 1
linear transformation operator. Thus, unlike the Kalman estima-
tion approach, the estimation approach achieves estimation
using a linear combination of the channel state variables. Let
be the estimate of , and the estimation error be

(21)

The design criterion of the estimator is to provide a uni-
formly small estimation error for any and initial condi-
tion . The measure of performance is defined as the transfer
operator which transforms the and the uncertainty of the
initial condition to the estimation error . The objective
function is

(22)

where is an a priori estimate of
represents unknown initial condition error,

and , and are weighting
parameters. denotes a positive definite matrix that reflects a
priori knowledge on how close the initial guess is to .

and are weighting variables which are left to the choice
of the designer and depend on the performance requirement. In
practical systems, the values of and can be chosen as
the estimates of the covariances of the corresponding noises.
The optimal estimate of among all possible (i.e., the
worst case performance measure) should satisfy

(23)

where “sup” stands for supremum and is a prescribed
level of noise attenuation. The value that can take is discussed
in the next section. Equation (23) shows that the optimal
estimator guarantees the smallest estimation error energy over
all possible disturbances with finite energy.

The discrete-time estimation can be interpreted as a
minimax problem where the strategy is to play the estimate

against the exogenous inputs and the uncertainty of
the initial state [23]. Using and , the
performance criterion can be equivalently represented as

(24)

where , and “min” and “max” stand for minimiza-
tion and maximization, respectively. In (24), the maximization
is used to calculate the worst case of over all disturbance, and
then, the estimate is obtained by minimizing the worst case of .
This minimax problem can be solved by using a game theory ap-
proach [23]–[25]. For the state-space model (13) and (14) with
the performance criterion (24), there exists an estimator for

if and only if there exists a stabilizing symmetric positive
definite solution to the following discrete-time Riccati type
equation:

(25)

where is the initial condition. If a solution exists, then
the estimator is given by

(26)

where

(27)

and is the gain of the estimator given by

(28)

Comparing the Kalman estimation algorithm (17)–(20) and
the estimation algorithm (25)–(28), we can observe the fol-
lowing.

1) The Kalman estimation algorithm minimizes the co-
variance of the estimation error of the state vector
based on the . The algorithm is inde-
pendent of .

2) The estimation algorithm gives the optimal esti-
mate of based on the such that
the effect of the worst disturbances on the estimation
error is minimized.

3) The and Kalman estimation algorithms have sim-
ilar observer structure.

Let the weighting parameters and of the esti-
mation algorithm be the same as the covariances and
of the Kalman estimation algorithm. In the limiting case, where
the parameter , the estimation algorithm reduces to
a Kalman estimation algorithm.

The following observations reveal a glimpse of the implemen-
tation complexity of the algorithm relative to the Kalman
and MMSE algorithms.

1) From the similar observer structure between the pro-
posed and the Kalman estimation algorithms, the

estimator has a similar hardware structure and
computation complexity as the Kalman estimator.

2) For the estimation algorithm, different estimation
results can be obtained with different vector . For
example, if we choose , the
estimation algorithm is designed to obtain the optimal
estimation of . The estimate
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should give a better estimation of channel fading
at the th instant since the estimation is

based on the . This estimation is equiv-
alent to the fixed-lag smoothing problem. The only
difference from the traditional fixed-lag smoothing
problem is that no additional computation is required
in this case.

3) Although the MMSE estimation algorithm proposed in
[5] can endure some mismatch on the correlation func-
tion of the channel fading, information on coherence
bandwidth of the channel fading and the variance of the
background noise is still required. Obtaining this accu-
rate information may greatly increase the complexity
of the receiver design. For the proposed algorithm,
the inherent robustness reduces the dependence of the
estimation performance on the accuracy of the param-
eter estimation, which significantly reduces the com-
plexity of the receiver design. In addition, because of
the recursive property of the algorithm, the com-
plexity on the matrix computation is much less than
that in the MMSE algorithm since there is no need to
store a large number of past measurements.

C. Value Determination

A necessary and sufficient condition for the existence of the
estimator is that the discrete-time Riccati equation (25) has

a positive-definite solution . Thus, the parameter should be
selected carefully to satisfy this constraint. From (25), as long
as the parameter is small enough, the Riccati equation always
has positive definite solutions. On the other hand, in the design
criterion (23), it is observed that the larger the value, the less
effect the interference has on the estimation error. As a result,
the value at any time instant depends on , and

.
From (25), in order to guarantee to be positive definite,

it requires

(29)

where denotes the maximum eigenvalue of the
matrix .

D. Tap-Gain Parameter Estimation

The channel estimation algorithm proposed in Sec-
tion IV-B needs the information on the tap-gain parameters,

, of the AR model. In this section, an
algorithm is proposed to estimate the tap-gain parameters from
the observations.

Since the low-pass slow-fading channel can be approxi-
mated by an AR model described in (12), from (10), the received
signal at the pilot position can be written as

(30)

where . For the stationary
stochastic process is time-invariant.
Here, we need to estimate given the observation . Let

(31)

and be the estimate of at time instant . Then the measure-
ment and estimation error equations can be written as

(32)

(33)

where the superscript denotes that the error is due to the tap-
gain estimation. The performance criterion can be represented
as

(34)

where is an a priori estimate of , and , and
are weights. Following a similar approach as in Section IV-B,
the estimation algorithm to estimate the optimal can be
obtained as

(35)

(36)

(37)

In order to guarantee the existence of the algorithm, should
satisfy (29). In practical systems, the tap-gain parameters can
be estimated by transmitting a training sequence with high
signal-to-noise ratio (SNR). Simulation results in the next sec-
tion show that for high SNR training sequences, the estimator
can provide fairly accurate estimates of the tap-gains.
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Fig. 4. Performance comparison between one-dimensional estimation and joint two-dimensional estimation.

V. SIMULATION RESULTS AND DISCUSSION

In this section, simulation results are presented to evaluate
the performance of channel estimation with both the and
Kalman approaches.

A. System Parameters

Consider an OFDM system using binary phase-shift keying
with 32 subcarriers. The channel used in the simulation is a two-
path Rayleigh-fading channel model with delay zero and .
The power spectral density satisfies Jakes model, i.e., the time
correlation function is of the form

(38)

where is the normalized Doppler frequency and is set to
0.05 to characterize a slowly fading channel. The power delay
profile is assumed exponentially distributed, i.e.,

(39)

The background noise is modeled as a zero-mean indepen-
dent identically distributed complex Gaussian random sequence
with variance . The signal power is normalized to 1 so that the
input SNR is defined as 1 . The length of the time window

is three and the vector of the estimation algorithm
is[1, 0, 0]. is obtained from (29). For performance com-
parison, without loss of generality, we choose . Since
the focus is robustness of the channel fading estimation algo-
rithm to the errors on and , accurate tap-gain parameters

, are used in the simulation. The tap-gain

parameters , are also estimated based on
(35)–(37) by transmitting a training sequence with SNR
dB. It is shown the performance with the estimated tap-gain pa-
rameters is similar to that with the accurate tap-gain parameters.

B. Effect of Number of Pilots in the Frequency Domain

Fig. 4 shows the mean-square-error of the algorithm with
different values of . For performance comparison, the one-di-
mensional time-domain estimation algorithm proposed in [17],
which only uses the time correlation of the channel fading, is
also simulated. To make a fair comparison between one-dimen-
sional and two-dimensional algorithms, in our simulation, the
one-dimensional estimation algorithm is used in place of
the one-dimensional least square (LS) algorithm in [17]. The
simulation results show that joint estimation in both the time and
frequency domains outperforms the one-dimensional time-do-
main estimation. Decreasing the value of , i.e., increasing
the number of pilots in the frequency domain, can further im-
prove the estimation performance. However, further increasing
the number of pilots can only yield marginal improvement on
the mean-square-error since the improvement saturates at about

. In the following simulation, without loss of generality,
we choose .

C. Effect of Input SNR

Fig. 5 shows the mean-square-error versus SNR [no interfer-
ence (intracell or intercell interference)]. The simulation results
show the following.

1) With an increase in input SNR, the mean-square-error
performance of both the and Kalman estimation
algorithms improves.
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Fig. 5. Mean-square-error performance over different input SNR.

Fig. 6. Effects of errors on background noise covariance V .

2) The estimation algorithm outperforms the Kalman
estimation algorithm over all the SNR range consid-
ered.

3) At very high SNR, the performance of the and
Kalman estimation algorithms merges because the
signal component tends to swamp out the channel
noise.

D. Effect of Model Parameter ( and ) Errors

Figs. 6 and 7 show the effects of the background noise and the
model noise covariance errors on the estimation performance,
respectively. Note that the accurate values of and are used
in Figs. 6 and 7, respectively. In the simulation, the input SNR
is chosen to be 15 dB. Let the channel noise covariance and
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Fig. 7. Effects of errors on model noise covarianceW .

the model noise covariance used for estimator design be
and , respectively, where is a multiplier to represent the
deviation of the design parameters from the true values. In the
simulation, takes value in the range from 10 to 10 dB and

dB means no deviation. From the figures, it can be seen
that model parameter errors can considerably degrade the per-
formance of the Kalman estimation algorithm. The esti-
mation algorithm outperforms the Kalman estimation algorithm
over the whole error range considered. The larger the error, the
larger is the performance gain of the algorithm over the
Kalman algorithm. Furthermore, as the errors increase, the per-
formance degradation of the estimation algorithm is more
gradual compared to that of the Kalman estimation algorithm.
For example, in Fig. 6, the mean-square-error using the Kalman
estimation algorithm changes from 0.0038 at 0 dB to 0.009 at
10 dB, while the mean-square-error using the estimation
algorithm changes from 0.0015 at 0 dB to 0.0028 at 10 dB. The
variation of mean-square-error for the Kalman estimation algo-
rithm is four times larger than that of the estimation algo-
rithm. The smaller variation indicates that the estimation
algorithm is more robust against the parameter errors compared
to the Kalman estimation algorithm.

E. BER Performance

At the receiver, the received signal is multiplied by the conju-
gate of the channel estimate to compensate for the phase offset
introduced by the fading channel, and the data symbols are re-
covered by coherent detection.

Fig. 8 shows the BER performance of the OFDM system
using the and Kalman channel estimation algorithms. The
following is observed.

1) The BER performance based on the estimation
algorithm outperforms that based on the Kalman es-
timation algorithm over all the SNR range considered.
The reason is that the more accurate channel estimate
obtained by the estimation algorithm can provide
more accurate phase information about the channel
fading. More accurate phase information can provide
better coherent detection performance. For example, at
a BER of 10 , the input SNR of the system with
estimation is 27.2 dB, while it is 31.7 dB for the system
with Kalman estimation. The improvement is 4.5 dB.

2) At high SNR, the BER characteristics of both the
and Kalman estimation algorithms are close to each
other. The reason is that, at high SNR, both estimation
algorithms can achieve nearly the same channel esti-
mation accuracy.

VI. CONCLUSION

A robust channel estimation algorithm based on the ap-
proach has been proposed for OFDM wireless communication
systems. The proposed algorithm minimizes the effect
of worst disturbance (including both background noise and
channel model noise) on the estimation error and, therefore,
is less sensitive to the uncertainty of the channel statistics.
Simulation results indicate that the estimation algorithm
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Fig. 8. BER performance comparison between the H and Kalman estimation algorithms.

has superior performance to the Kalman estimation counterpart,
while keeping the similar implementation complexity.
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