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Abstract—The k-nearest neighbors (kNN) classification has
been widely used for defective product identification and anomaly
detection in the Industrial Internet of Things (IIoT). In this
article, we propose a secure and efficient distributed kNN clas-
sification algorithm (SEED-kNN) to prevent information and
control flow exposure while supporting large-scale data clas-
sification on distributed servers. Specifically, we first design
a secure and efficient vector homomorphic encryption (VHE)
scheme by constructing a key-switching matrix and a noise
matrix for data encryption. Based on the designed VHE, SEED-
kNN is proposed to efficiently achieve the confidentiality of data
flow, kNN query, and class label, while enabling homomorphic
operations on the encrypted data. Moreover, by leveraging the
Map/Reduce architecture, SEED-kNN enables the kNN classifica-
tion over the large-scale encrypted data on distributed servers for
industrial control systems. Finally, we demonstrate that SEED-
kNN achieves semantic security and high classification accuracy,
and is applicable in IIoT due to its high efficiency.

Index Terms—Big data, Industrial Internet of Things (IIoT),
intelligent systems, machine learning (ML), security and privacy.

I. INTRODUCTION

INDUSTRIAL Internet of Things (IIoT) uses interconnected
sensors, actuators, and other equipment to promote the

manufacturing and industrial process. The IIoT, also known as
Industry 4.0, is an evolution of industrial control systems that
shifts from traditional supervisory control and data acquisition
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(SCADA) technologies to cloud-based systems, potentially
improving productivity and efficiency. Especially, due to the
great advances of artificial intelligence technology, intelligent
control, in its attempt to mimic a human operator, has brought
new avenues to make industrial control systems smart, auto-
matic, and economical. The intelligent industrial control [1],
[2] is able to monitor and control the industrial processes and
extract the most valuable information from data for planning
and decision making. Intelligence has flourished in various
domains, such as intelligent logistics, smart robotics, and
smart automotive manufacturing. By applying intelligence to
industrial control systems, numerous machine learning (ML)
algorithms, such as support vector machine, decision tree, and
neural network, have been used for the information and con-
trol flow classification from complex systems and environment
[3], [4]. For example, in industrial manufacturing, the ML
algorithms are utilized to train the model of fault detection
from the historical data for the rapid detection of future abnor-
mal behavior, and the intelligence of traffic light control is
built based on ML algorithms to mitigate traffic congestion
and improve travel efficiency for drivers [5]–[7].

As one of the popular ML algorithms, the k-nearest neigh-
bors (kNN) classify an object to the class most common
among its k-nearest neighbors based on a plurality vote of its
neighbors. The kNN algorithm can acquire high accuracy in
defective product identification [8] and anomaly detection [9]
for IIoT. However, the kNN algorithm has high computa-
tional complexity and it consumes large amounts of computing
resources if there is massive data with a large number of fea-
tures to be analyzed. To address this issue, the powerful cloud
server is employed to perform the expensive kNN algorithm
over the collected data. By migrating the heavy computational
overhead to the cloud, the bottleneck of the kNN algorithm
can be addressed, making it suitable to be used in IIoT.

The knowledge used to form the training data set in
kNN is extracted from data flows, system states, or mea-
surements of various sensors. Generally, these data contain
plenty of important information that manufacturers or cor-
porations are unwilling to expose to the public, such as
industrial process flows, product information, business secrecy,
and traceable data of individuals [10]. To preserve the confi-
dentiality of these data, a widely used approach is to encrypt
data before uploading them to the centralized server [11]–[13].
Nevertheless, traditional ciphers may affect data availability,
which means that it is difficult to conduct data analytics
directly over ciphertexts. To address this problem, secure kNN
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classification algorithms [14], [15] have been proposed to
achieve secure computation over encrypted data, by exploiting
homomorphic encryption (HE) or secure multiparty computa-
tion. However, the HE, e.g., the Paillier encryption, has to
encrypt each feature in data object one by one, which may
bring heavy computational overhead to devices. Meanwhile,
the multiparty computation needs multiple rounds of interac-
tions between devices for computing the similarity of vectors
in the multidimensional feature space such that the communi-
cation burden is heavy. Besides, some secure kNN classifiers
have been proposed based on data disturbance techniques, e.g.,
k-anonymity [16] or differential privacy [17]. Nevertheless,
data disturbance may reduce classification accuracy due to
the blending of statistical noise. Especially, it cannot yet
truly preserve privacy because of reidentification attacks [18].
Therefore, how to achieve efficient and secure kNN clas-
sification with high accuracy guarantee is still challenging.
Furthermore, the existing schemes assume that the data are
maintained on a single powerful server, while the industrial
control system is usually distributed, which means that many
distributed servers are interconnected to form a scalable con-
trol platform for the industrial control system. For example, a
control server is deployed to control the operations of devices
in a car manufacturing machine shop, and these distributed
servers are controlled by the control center.

In this article, we propose a secure and efficient distributed
kNN classification algorithm (SEED-kNN) for intelligent
industrial control systems. Specifically, we first design a secure
and efficient VHE scheme (SE-VHE) that can achieve seman-
tic security and efficient data encryption, and then propose the
SEED-kNN based on the designed SE-VHE to support effi-
cient kNN classification over the encrypted training samples
with high classification accuracy. Moreover, by considering
the fact that the data are separately maintained on multiple
servers, the Map/Reduce architecture is leveraged to achieve
the parallel and distributed data classification. Specifically, the
main contributions of this article are summarized as threefold.

1) The SE-VHE is designed by constructing the new key-
switching matrix based on the invertible matrix in key
generation and inserting the noise vector in data encryp-
tion. SE-VHE is proved to achieve semantic security.
SE-VHE has the distinct features of short public-key
size and low time cost on data encryption while sup-
porting multiple homomorphic operations such as linear
transformation.

2) By leveraging the designed SE-VHE, SEED-kNN is
designed to achieve secure and accurate kNN clas-
sification for the intelligent systems. Integrating the
Map/Reduce architecture, the encrypted query is split
and mapped to all the distributed servers maintaining
the training samples, and then each server computes the
similarity scores, i.e., the inner products between the
encrypted query and the training vectors, for majority
voting. During these procedures, both the kNN query
vectors and training samples are well protected based
on the SE-VHE.

3) The security of the SE-VHE and the SEED-kNN is dis-
cussed to demonstrate that the former realizes semantic

Fig. 1. System model.

security and the latter can well protect the confidentiality
of training data, kNN queries, and class labels based on
the security of SE-VHE. The performance evaluation is
also conducted to show that the SE-VHE has the shorter
public-key size and higher efficiency on data encryp-
tion than the existing vector HE (VHE) [19], and the
SEED-kNN achieves high classification accuracy with
low computational and communication overhead.

The remainder of this article is organized as follows. We
formalize the system model and design goals in Section II and
propose the SE-VHE in Section III. Then, we propose SEED-
kNN and discuss its security in Section IV, which followed by
the performance evaluation in Section V. Finally, we review
the related work in Section VI and draw the conclusion in
Section VII.

II. PROBLEM STATEMENT

In this section, we formally define the system and threat
models, and identify our design goals.

A. System and Threat Models

The intelligent industrial control systems monitor and con-
trol the manufacturing processes and system operations based
on the collected data on distributed servers using artificial
intelligence technologies. As shown in Fig. 1, the system
model consists of three entities, namely, the control center,
the cloud, and the devices.

Control Center: The control center learns the current states
of the industrial control system or subsystem, monitors the
manufacturing processes, and makes decisions for the system
events. For example, the control center in the smart grid col-
lects the power consumption of the customers in a particular
area and adjusts the power generation to maintain the balance
of power demand and supply. The control center not only man-
ages, commands, directs, or regulates the behavior of devices
using control loops but also uses ML algorithms, such as kNN
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algorithm, to achieve false detection, automatic control, or pro-
cess optimization based on the information and control flow,
and measurements of devices.

Cloud: The cloud is composed of many connected servers
that might be located in different positions, such as machine
shops or data centers. It provides a scalable platform for sig-
nificant data storage and resource sharing. It can be the private
cloud built by the intelligent industrial control systems or the
public cloud provided by the cloud storage and computing
service provider. These distributed servers are responsible for
managing their individual manufacturing tasks and sharing
their idle resources for supporting the desirable functionalities
of intelligent industrial control systems.

Devices: The devices are the deployed sensors, measurers,
operating arms, and local servers monitored by the control
center in intelligent industrial control systems. These devices
collect the information about the system states, update the
state information, and perform the control commands. They
are capable of interacting with the cloud for data submission
and receiving control flows from the control center through
wired or wireless communications.

The control center performs the ML algorithms, such as
the kNN algorithm, on the data set in the cloud to discover
the added values for automatic control and industrial process
monitoring. The data set D, generated by devices, is prepro-
cessed to generate the training samples and maintained on
the distributed servers in the cloud. The control center issues
the kNN query q to the cloud in an attempt to acquire the
corresponding classification f (q) based on the similarity mea-
surement function f . This kNN query q will be partitioned
and distributed to the multiple servers in the cloud that may
maintain different parts of training samples. The classification
results from servers are gathered and the final class label f (q)

is returned to the control center.
However, the industrial control system is vulnerable to be

interfered or corrupted, as its components, including com-
puters, networks, applications, and devices may bring seri-
ous security weaknesses to the whole system. The standard
ISA/IEC-62443 has defined procedures for implementing elec-
tronically secure industrial automation and control systems,
but the cyber security accidents still frequently happened, such
as power grid blackouts caused by cyberattacks in Ukraine
in 2015 and 2017. The data exchanged between devices and
servers might be eavesdropped or captured by the hackers, and
the cloud is suspicious to expose the maintained data inten-
tionally or unintentionally. Also, the software bugs, hardware
failures, bugs in the network path, and motivated hackers may
bring serious threats toward data confidentiality. The control
center is supposed to be fully trusted. Strong defense mech-
anisms would be deployed to resist potential cyberattacks for
the control center, the “brain” of intelligent industrial control
systems.

B. Design Goals

To enable secure and efficient distributed kNN classification
under the aforementioned system model and against security

threats, the SEED-kNN should achieve the following design
goals.

1) Data Confidentiality: The training samples in the cloud
should be well protected to prevent possible data leak-
age. Also, the kNN query and the returned class label
are needed to be preserved to prevent the control
information exposure.

2) Classification Accuracy: The accuracy of kNN classi-
fication on the encrypted training samples should be
sufficiently high to support correct automatic control and
decision making for the control center. The classification
accuracy of encrypted data samples should be almost the
same as that of the clear data.

3) Distributed Query: Distributed computing should be
supported such that the kNN query could be performed
on multiple servers in the cloud in parallel.

4) High Efficiency: The kNN classification should be effi-
ciently executed on massive data on each server, and the
communication and computational overhead brought by
the SEED-kNN should be low.

III. SECURE AND EFFICIENT VHE

The original VHE [19] is not secure enough to resist the
existing attacks, i.e., an attacker can recover the secret key
or the plain vector from the key-switching matrix or the
ciphertext, respectively [20]. Besides, in the original VHE, the
elements in each vector and matrix are represented as binary
strings. The operations of high-dimensional vectors are per-
formed bit by bit, which need the large size of public keys to
encrypt and result in heavy computational costs. Due to the
binary representation of the vector or the matrix in the orig-
inal VHE, the operations to high-dimensional vectors lead to
large computational and communication costs. For example,
to encrypt a 500-D vector, the size of the public key should
be 120 MB and the encryption time is up to 27 s. Hence,
the original VHE cannot be used in IIoT. In this article, we
will design a new VHE scheme for better security and higher
performance (SE-VHE), which is the cryptographic primitive
of SEED-kNN. The SE-VHE is derived from the original
VHE. Specifically, a new key-switching matrix is designed to
prevent the secret key recovery based on an invertible matrix
in key generation and a noise vector is used to obfuscate the
plain vector in data encryption. In this way, the plain vector
and the secret key cannot be recovered from the ciphertext and
the key-switching matrix, respectively, and thus SE-VHE can
achieve IND-CPA security, i.e., the indistinguishability under
chosen-plaintext attacks. Furthermore, SE-VHE has the advan-
tages of the small public-key size and low encryption time
cost, since it does not use the binary representation of vectors
or matrices.

Notations: Scalars are denoted by lowercase letters, vectors
are denoted by lowercase bold letters, and matrices are denoted
by uppercase bold letters, respectively (e.g., x is a scalar, x is a
column vector, and X is a matrix). In addition, |x| denotes the
maximum entry and �x�q denotes the nearest integer modulo
q of each entry xi for the vector x ∈ R

n.
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Algorithm 1 GenInv
1: Input: n
2: Output: I1, I2
3: Generate two identity matrices I1, I2 ∈ Z

n×n
q

4: for i = 1 to k do
5: Generate randomly a vector: [s, d, o], s, d ← χ, s �=

d, o← {−1, 0, 1}
6: if o = 0 then
7: Exchange columns I1[d] and I1[s]
8: Exchange rows I2[s] and I2[d]
9: else if o �= 0 then

10: I1[s]← I1[s]− o · I1[d]
11: I2[d]← I2[d]+ o · I2[s]
12: end if
13: end for

Algorithm 2 Trans
1: Input: Sold
2: Output: S, M
3: Generate two matrices Ps, Pm ← GenInv(n′)
4: Generate two matrices, T ← χm×(n′−m) and A ←

χ(n′−m)×n

5: Construct two matrices, St = [I, T] ∈ Z
m×n′ , where I is an

identity matrix of m, and Mt =
[

Sold − TA
A

]
∈ Z

n′×n
q

6: Calculate S = StPs and M = PmMt

A. Scheme Description

We first present two important algorithms, GenInv and
Trans, which are used to generate the parameters in SE-VHE.

Algorithm 1 generates two matrices I1 and I2 with I1I2 = I,
where n is determined by the key size. Note that the larger
the value of k is, the better randomness I1 and I2 has.

We accordingly design a new key-switching operation
Trans, where n and n′ denote the dimensions of the old
key matrix Sold ∈ Z

m×n
q and the transformed key matrix

S ∈ Z
m×n′
q , respectively. The modified key-switching operation

is depicted in Algorithm 2.
In Algorithm 2, given a ciphertext cold and its secret key

Sold, S and M are generated. Thus, the new ciphertext can be
calculated by c = Mcold and its correctness is guaranteed by
the following equation:

Sc = SMcold

= StPsPmMtcold

= [I, T]

[
Sold − TA

A

]
cold

= Soldcold.

Now, we present the SE-VHE that consists of four prob-
abilistic polynomial-time algorithms: VHE = (VHE.Setup,

VHE.KG, VHE.Enc, VHE.Dec).
1) VHE.Setup(λ): Given a security parameter λ, m, n, p,

q, w ∈ Z are randomly chosen with m < n and q 	 p,
and a discrete Gaussian noise distribution χ on Zq with
standard deviation δ is picked. Note that the modulus q is
chosen based on λ to guarantee the security. The system

parameter Param = (m, n, p, q, w, χ) is published to the
public.

2) VHE.KG(Param): Algorithm 2 is executed to generate
(S, M) ← Trans(wI), where I ∈ Z

m×m is an identity
matrix. The secret key S ∈ Z

m×n
q is kept private and

the encryption key M ∈ Z
n×m
q is released. Note that

according to Algorithm 2, we have SM = wI.
3) VHE.Enc(x, M): A small noise vector e ← χn is ran-

domly chosen in Z
n
q and the plaintext x is encrypted as

c = Mx + e, where x ∈ Z
m
p is a plaintext vector, c ∈ Z

n
q

is a ciphertext vector, and M ∈ Z
n×m
q is the encryption

key. Note that to guarantee the security of plaintext, the
noise e is added to generate the ciphertext.

4) VHE.Dec(c, S): The plaintext x ∈ Z
m
p is recovered by

calculating x = �(Sc/w)�q, where c ∈ Z
n
q is the cor-

responding ciphertext and S ∈ Z
m×n
q is the secret key.

Note that the correctness of decryption is guaranteed by
the following equation:

x =
⌈

Sc
w

⌋
q
=

⌈
S(Mx + e)

w

⌋
q
=

⌈
x+ Se

w

⌋
q
.

It is easy to see that to recover x from c with the secret key
S correctly, this condition |Se| < (w/2) should be satisfied. To
be specific, we have n|S||e| < (w/2). Therefore, let E denote
the upper bound of |e|, then we have

E <
w

2n|S| .
Compared to the original VHE of E < w/2 [19], the

upper bound of |e| in our scheme has somewhat decreased.
Nevertheless, if E is properly set, it does not affect the
correctness when being applied to SEED-kNN.

In addition, SE-VHE supports all homomorphic operations
of the original VHE, including addition, linear transformation,
and weighted inner product [19]. Nevertheless, the conditions
for guaranteeing homomorphism would accordingly change.

B. Security

The SE-VHE security follows from the learning with error
(LWE) problem [21], as shown in Theorem 1. Here, we give
a sketchy proof framework.

Theorem 1: Our SE-VHE scheme can achieve semantic
security assuming that the LWE problem is intractable.

Proof: First, we consider that the proposed SE-VHE
scheme achieves one-way security. In the SE-VHE, the plain-
text x is encrypted as c = Mx + e. Here, to break one-way
security, given the ciphertext c, the adversary is required to
answer the plaintext x. This is equivalent to solve the LWE
problem: to obtain x from c ≈ Mx if M is a random matrix.
As is known, the LWE is a well-known hard problem [21].
Therefore, as long as M is a random matrix, the one-way secu-
rity of the SE-VHE can be reduced to the LWE problem. Thus,
we subsequently analyze the randomness of M. As stated
above, we have M = PmMt. To ensure the randomness, Mt

is required to have a large size, which depends on the size of
T and A. It also requires Pm to be random. To be specific,
according to Algorithm 1, each row of Pm should be indepen-
dent of the other n− 1 rows. To clarify this point, we first set
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P1 as the probability that a row in Pm has no dependence on
other rows. Thus, we have

P1 =

⎛
⎜⎜⎝

(
n− 1

2

)
(

n
2

)
⎞
⎟⎟⎠

k

=
(

1− 2

n

)k

.

Then, we set P2 as the probability that a row in Pm is made
only one exchange operation. Thus, we have

P2 = 1

3

⎛
⎜⎜⎝

(
n− 1

2

)
(

n
2

)
⎞
⎟⎟⎠

k−1 (
n− 1

1

)
(

n
2

) = 2

3

(
1− 2

n

)k−1

.

It is easy to see that P1 and P2 could be negligible as long
as the loop value k in Algorithm 1 is significantly large with
respect to the ciphertext size n(n > 2). Therefore, our SE-VHE
can have Pm and Mt with good randomness. In summary, if the
loop value k is large enough, the SE-VHE achieves one-way
security based on the hard problem of LWE.

Subsequently, on the basis of one-way security, we fur-
ther discuss IND-CPA security (indistinguishability under the
chosen-plaintext attack). In IND-CPA, the adversary has the
capability of querying the encryption oracle for polynomial
times, in which the oracle would return the ciphertext given
any adaptively chosen plaintext. Given two plaintexts a and b,
and the challenging ciphertext c, which is the encryption of a
or b, the adversary is asked to decide which plaintext is cor-
responding to c. First, IND-CPA security cannot be achieved
if the adversary can break one-way security by recovering x
from c = Mx+e. Fortunately, as discussed above, the SE-VHE
can guarantee one-way security. Second, for the challenge of
distinguishing a and b with respect to c, it is equivalent to dis-
tinguish between a − a and a − b based on the homomorphic
property. To be specific, it is equivalent to distinguish between
the zero vector 0 and the nonzero vector x. Let c0 = M0+ e0
and c1 = Mx + e1, where x �= 0. Since e0, e1 ← χn, it is
indistinguishable between c0 and c1. Therefore, the SE-VHE
satisfies IND-CPA. Namely, the SE-VHE achieves semantic
security.

C. Performance Comparison

We conduct simulation experiments to evaluate the SE-
VHE performance and compare the performance between the
SE-VHE and the original VHE [19]. In order to guarantee
the decryption correctness, we set w = 230 and E = 200.
The experiments are carried on a laptop with i3-4130 CPU
and 8-GB RAM, running Windows 10 operating system and
Python 3.5 programming language. The comparison results are
depicted in Fig. 2(a) and (b). It can be seen that the longer
the plaintext vector x is, the more storage space the SE-VHE
can save for the public-key storage and the more encryption
time the SE-VHE can reduce compared with the original VHE.
Below, we briefly analyze the comparison results.

In the original VHE, the key-switching matrix is constructed

as Mo =
[
(wI)∗ − TA+ E

A

]
∈ Z

n′l×m
q , where (wI)∗ is the

(a) (b)

Fig. 2. VHE performance comparison. (a) Public Key Size. (b) Encryption
Time.

binary representation of wI and l is the binary parameter.
In SE-VHE, a new key-switching matrix is constructed as

Mt =
[

wI − TA
A

]
∈ Z

n′×m
q (step 5 of Algorithm 2). The

difference is that the key matrix wI is represented to Mo in
binary and the dimension is n′l × m, while wI is represented
to Mt directly in the unit of each element and the dimension
is n′ × m. In the original VHE, the public key M is exactly
Mo and the encryption of a plain vector x under the public
key M can be performed as c = Mx. In SE-VHE, the public
key is further calculated as M = PmMt (step 6 of Algorithm
2) and the encryption can be calculated as c = Mx+ e. Since
SE-VHE does not process the vectors or matrices in binary,
the public-key size in SE-VHE is much shorter than that in the
original VHE and the encryption time is significantly reduced.
Therefore, SE-VHE has the advantages of the small public-key
size and low encryption time cost.

IV. PROPOSED SEED-kNN

In this section, we propose SEED-kNN to achieve the kNN
classification over encrypted training samples based on the
SE-VHE.

A. Secure Computation of Similarity Scores

The devices upload the training data set D to the distributed
servers in the cloud. D could be represented as a table com-
prising n data records t1, t2, . . . , tn. In D, each record has
ti = [ti1, . . . , tim, ci] with m + 1 attributes, i = 1, 2, . . . , n.
In particular, the (m + 1)th attribute ci is the class label.
Then, the control center has a query set, including N queries
q1, q2, . . . , qN , in which each query is qj = [qj1, . . . , qjm],
j = 1, 2, . . . , N.

To protect the data set, the ciphertexts D′ of D =
{t1, t2, . . . , tn} are stored in a server (or multiple servers for
storage replication) in the cloud. The control center performs
kNN queries on the data set and acquires classification results
from the cloud for industrial control systems. The N queries
q1, q2, . . . , qN sent by the control center are also protected.
Upon receiving the encrypted N queries, the master server in
cloud splits the queries and maps them to the servers main-
taining the data. Each distributed server calculates similarity
scores between the stored data records and each query qj, to
find the most similar k records of qj. Here, the similarities
are evaluated by means of the inner product qj

T ti in the kNN
classification. The similarity scores computed by each server
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are returned to the master server and further forwarded to
the control center. However, in this procedure, the main chal-
lenge is how to compute qj

T ti from the encrypted ti and qj. To
address this issue, we use the linear-transformation operation
on the encrypted ti with the transformation matrix G = qj

T in
SEED-kNN.

B. SEED-kNN

SEED-kNN is composed of two phases: 1) initialization and
2) classification.

Initialization is responsible for initializing the whole system
and preparing the training data set for the kNN classification.

1) Setup: The control center invokes Setup to generate the
system parameter Param, the encryption key M0, and the
secret key S0. Then, the control center publishes Param
and M0 to the public, and keeps S0 in private.

2) DataUpload: The device recordwise encrypts the train-
ing data set D = {t1, t2, . . . , tn}. Specifically, ti[1 : m]
and ti[m+1] (also known as the class label ci) in the data
record ti are encrypted, respectively. That is, the device
first calculates t′i[1 : m] ← VHE.Enc(ti[1 : m], M0)

and c′i ← VHE.Enc(ci, M0), in which t′i[1 : m] are
the ciphertexts of the first m attributes of ti, and c′i is
the ciphertext of the corresponding class label ci. Then,
the device uploads D′ = {(t′i[1 : m], c′i), 1 ≤ i ≤ n}
to the server in the cloud. Besides, to improve com-
putational overhead, the device also can encrypt ti
as a whole: t′i ← VHE.Enc(ti, M0). In this way, an
encryption operation can be saved for the device.

Classification utilizes the linear transformation operation to
evaluate the similarity scores based on the inner product using
the encrypted t′i.

1) QueryGen: For a single query vector
q = [q1, q2, . . . , qm], there is a corresponding
transformation matrix as

G =
[

q1 q2 · · · qm 0
0 0 0 0 1

]
(1)

and the control center needs to calculate the similarity
score between the query and the data record. If there are
N queries q1, q2, . . . , qN , the control center has to cal-
culate the similarity scores for these queries one by one.
To reduce the operation times, these N queries can be
handled at the same time by using the batch technique.
Specifically, the transformation matrix corresponding to
N queries can be constructed as

G =

⎡
⎢⎢⎢⎣

q11 · · · q1m 0
...

. . .
...

...

qN1 · · · qNm 0
0 · · · 0 1

⎤
⎥⎥⎥⎦. (2)

In this way, the control center can perform N encrypted
queries to obtain the similarity scores simultaneously.

2) ScoreCalculate: Upon receiving the encrypted query,
i.e., the key-switching matrix M, from the control cen-
ter, the master server in the cloud distributes M to all
servers maintaining the data set. After receiving M, each

server calculates the similarity score s′i ← Mt′i for each
t′i in D′ for 1 ≤ i ≤ n, and sends N′ = {s′1, . . . , s′n}
to the master server. As t′1, t′2, . . . , t′n are independent,
multiple servers can calculate the encrypted inner prod-
ucts s′i in parallel. Here, the similarity scores are the
inner products of the query vector and the data set, and
each s′i is the ciphertext of a similarity score. The master
server finally collects all the encrypted similarity scores
returned from the distributed servers and forward them
to the control center. In order to process massive training
data in practice, we leverage the parallel framework of
Map/Reduce [22] to calculate the matrix multiplication
as N′ ← M ×D′, where M is the key-switching matrix
corresponding to the user’s query, D′ = {t′1, t′2, . . . , t′n}
is the encrypted training data set, and N′ = {s′1, . . . , s′n}
is the encrypted similarity scores. For the matrix multi-
plication upon Map/Reduce, we may consider the basic
technique of element by element, in which the mapper
independently calculates the multiplication for each pair
of elements, while the reducer combines the results for
each output element. However, this element-by-element
technique incurs heavy computational and communi-
cation overhead. Since t′1, t′2, . . . , t′n are independent
and the distributed servers use the same key-switching
matrix M to calculate the encrypted similarity scores, we
use the blocking technique of row by column to improve
the efficiency of the matrix multiplication, in which the
first matrix M can be decomposed into row vectors and
the second matrix D′ can be decomposed into column
vectors.

3) LabelDec: The control center decrypts N′ to N =
{Gti|i = 1, . . . , n} with the new secret key S′ to obtain
Gti ← VHE.Dec(s′i, S′), as shown in (3), in which
qT ti[1 : m] is the similarity score and ci is the class
label

Gti =
[

qT ti[1 : m]
ci

]
. (3)

For the batch computation of N queries, the control
server decrypts to obtain Gti with the new secret key S′,
as shown in (4), in which qj

T ti[1 : m] are the similarity
scores and ci is the class label

Gti =

⎡
⎢⎢⎢⎢⎣

q1
T ti[1 : m]

q2
T ti[1 : m]
· · ·

qN
T ti[1 : m]

ci

⎤
⎥⎥⎥⎥⎦. (4)

4) MajorityVote: The control center counts the majority
class from the votes of k-nearest neighbors and finally
acquires the class label cqj

for each query qj.

C. Security Remarks

SEED-kNN protects the confidentiality of the training data
set D, the query vector q, and the corresponding classifica-
tion result cq. Specifically, the training data set D is encrypted
by the SE-VHE, whose IND-CPA security can be reduced to
the LWE problem. Without S0, no adversary can acquire any
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information about D. The query vector q is transformed in
Algorithm 2 to generate M, which can be also considered as
the encryption of G under the secret keys S0 and S′. With the
transformation in Algorithm 2, no information of G can be
extracted from M, except for the degree of G. According to
the homomorphic operation of the SE-VHE, the class label cq
is also encrypted by the SE-VHE and only the control cen-
ter is capable of recovering Gti with the new secret key S′.
Since the SE-VHE is IND-CPA secure, the confidentiality of
class label cq is based on the LWE problem. In summary, as
long as S0 and S′ are kept privately by the control center, and
the LWE problem is intractable, no adversary can acquire any
knowledge about D, q, or cq in SEED-kNN.

V. PERFORMANCE EVALUATION

In the section, we evaluate the performance of the SEED-
kNN in terms of classification accuracy, computational over-
head, and communication cost. The extensive experiments are
conducted on real data sets in UCI [23]. The computing tasks
of the devices and the control center in SEED-kNN are con-
ducted on a laptop with i3-4130 CPU and 8-GB memory,
running Windows 10, and the computations of the cloud are
executed on a server with E5-2430 CPU and 24-GB memory,
running Ubuntu 16.04.

A. Classification Accuracy

The SE-VHE can support the encryption and decryption
over integers. In order to achieve kNN classification over real
numbers, we use rational numbers to approximate real num-
bers in SEED-kNN. That is, a real number is first set as
the desired precision times a scaling factor and then rounded
to the nearest integer. In specific, we use the Z-score data
standardization method [24] to normalize the data to be
classified.

To demonstrate the effectiveness of the SEED-kNN, both
the traditional kNN algorithm and our proposed SEED-kNN
are executed on the Breast Cancer Wisconsin data set [23]
with the following setting. The traditional kNN algorithm is
run directly over real numbers in the Breast Cancer Wisconsin
data set. To execute SEED-kNN, we set the precision of the
data as 1, 2, and 3 digits, which means that real numbers are,
respectively, scaled by 10 times, 100 times, and 1000 times and
then rounded to integers. The classification accuracy of both
kNN and SEED-kNN is shown in Table I with respect to the
different digits. If data precision is 2 or 3 digits, SEED-kNN
can obtain the same classification accuracy with the traditional
kNN algorithm, i.e., 98%, while preserving the privacy of data
owners. If data precision is 1 digit, the accuracy of SEED-
kNN declines to 57%. Only in this case, SEED-kNN is not as
accurate as the traditional kNN, so we do not recommend to
set the precision to be 1 digit. In the following experiments,
we set the precision to be 2 digits.

Then, we run the traditional kNN algorithm and our
proposed SEED-kNN on multiple data sets in UCI [23]. As
shown in Table II, our SEED-kNN can achieve almost the
same classification accuracy as the traditional kNN algorithm.
Here, n is the number of data records in training data, N is the

TABLE I
ACCURACY OF kNN AND SEED-kNN

TABLE II
ACCURACY ON MULTIPLE DATA SETS

number of kNN queries, and m is the number of attributes in
each training sample. Note that although SEED-kNN does not
achieve higher classification accuracy than the traditional kNN
algorithm, it possesses the important merit of privacy preser-
vation. The original kNN cannot offer this property while
it is imperative in IIoT since the privacy preservation for
users is critical. The training data set is extracted from data
flows, system states, or measurements of various sensors in
IIoT. These data contain plenty of important information that
manufacturers or corporations are unwilling to expose to the
public, such as industrial process flows, product information,
business secrecy, and traceable data of individuals. Therefore,
it is necessary to propose SEED-kNN to protect the private
information in IIoT.

B. Computation and Communication Overhead

In initialization, the control center executes Setup once
to generate the system parameters such that the executing
time is constant. Classification and MajorityVote can be effi-
ciently performed since they are run in the plaintext domain.
Therefore, we mainly discuss the performance in DataUpload,
QueryGen, and ScoreCalculate phases.

In DataUpload, each data record ti(1 ≤ i ≤ n) in the
training data set D is encrypted before uploading. For the
privacy-preserving kNN protocol in [14], each attribute in ti
would be encrypted using the Paillier encryption separately.
As a consequence, the time complexity of the data encryp-
tion is O(nm). While in SEED-kNN, we employ the SE-VHE
to encrypt the data record in a batch manner, and thus the
complexity is O(n).

In QueryGen, the generation of secure query request q′
is more efficient than that in [14]. Samanthula et al. [14]
attributewise encrypted the query vector q into q′ such that
the running time is linear with the number of attributes; in our
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(a) (b)

Fig. 3. Performance in SEED-kNN. (a) Time Cost. (b) Communication
Overhead.

TABLE III
RUNNING TIME ON SIMILARITY SCORE

SEED-kNN, the linear-transforming operation is constructed to
generate an encrypted query q′ (a.k.a M), which can transform
qTS0 to S′. The batch computation technique is leveraged to
handle all queries at the same time, thereby the performance of
SEED-kNN is significantly improved. Therefore, our SEED-
kNN is more efficient than the scheme in [14]. In addition, the
time cost for generating M is increasing with the number of
queries, as shown in Fig. 3(a). The communication overhead in
QueryGen is slowly increased with the number of queries, as
illustrated in Fig. 3(b). In particular, if the number of queries is
more than 100, the SEED-kNN can reduce the communication
overhead by up to 50%.

In ScoreCalculate, the SEED-kNN calculates the similarity
score based on the SE-VHE with efficient linear-transforming
operation, and Samanthula et al. [14] generated the similarity
score based on the secure two-party computation. As shown
in Table III, the time cost of similarity score calculation in
SEED-kNN is much lower than that in [14]. The reduction
of time consumption becomes larger with the increase in the
number of queries.

VI. RELATED WORK

ML algorithms are being increasingly utilized for a variety
of applications that process individuals’ private data [25]–[27].
Especially, the k-nearest neighbors classifier is one of the
essential ML algorithms that have been widely used to
achieve data search, sample classification, and object rec-
ommendation. Many privacy-preserving kNN-based search
schemes [28]–[31] have been proposed to support encrypted
data search in the cloud. Nevertheless, privacy-preserving
kNN-based search schemes cannot be directly used in data
classification. To achieve secure data classification, some
privacy-preserving kNN classifiers have been designed based
on data perturbation [16], [32], [33] or data distribution
[34], [35]. Aggarwal and Philip [16] proposed a new frame-
work for privacy-preserving data mining of multidimensional
data. The kNN classifiers with different security levels were

designed on the anonymized data set mapped from the original
data. Chen and Liu [32] proposed a random rotation per-
turbation approach for privacy-preserving data classification.
Gursoy et al. [33] designed a differentially private kNN clas-
sification protocol on the basis of the radius neighbor classifier.
However, data perturbation may lose valuable information
and thus decrease kNN classification accuracy after the data
are perturbed. Furthermore, the data perturbation cannot yet
truly preserve privacy due to reidentification attacks [18]. Data
distribution based on multiparty computation, e.g., horizon-
tally or vertically partitioned data sets, can also protect the
data confidentiality in kNN classification. Zhan et al. [34]
designed a kNN classifier for vertically partitioned data, and
Xiong et al. [35] presented a privacy-preserving kNN frame-
work for mining horizontally partitioned data. Unfortunately,
these works either sacrifice the classification accuracy or
cause heavy computational and communication overhead to
the participants.

With the rapid development of homomorphic encryp-
tion (HE), a large number of privacy-preserving kNN
classification schemes have been proposed based on HE.
Samanthula et al. [14] designed a privacy-preserving
kNN classification protocol based on the Paillier encryp-
tion. Subsequently, still by using the Paillier encryption,
Rong et al. [36] explored privacy preserving the kNN compu-
tation in multiple cloud environments. However, the Paillier
encryption only can achieve the linear operation for the kNN
algorithm. Li et al. [15] also presented a privacy-preserving
kNN classification scheme with multiple data owners, but their
scheme could not hide the data access pattern. Subsequently,
Wu et al. [37] studied the privacy-preserving kNN classifica-
tion over hybrid encrypted outsourced data, where the data
attributes are encrypted using the Paillier encryption and the
class labels are encrypted based on the ElGamal encryption.
The reencryption technique has to be utilized to generate the
intermediate computation values, which results in the heavy
computational overhead. Recently, Yang et al. [38] proposed
a privacy-preserving kNN classification protocol by exploit-
ing a new VHE [19] that encrypts a data item with multiple
attributes in a batch way. Unfortunately, this VHE suffers from
security and performance weaknesses [20].

VII. CONCLUSION

In this article, we have proposed a SEED-kNN for intelli-
gent industrial control systems. Specifically, we have designed
a new VHE scheme that satisfies semantic security and has
high efficiency on public-key storage and vector encryp-
tion. By leveraging the designed VHE, SEED-kNN has been
proposed to efficiently classify the large-scale encrypted data
on distributed servers based on the similarity scores. The train-
ing data set, kNN queries, and class labels are well protected
to prevent information leakage. The proposed algorithm can
be implemented in the intelligent industrial control systems
to support a variety of applications, such as defective product
identification, fault detection and classification, and anomaly
detection. For the future work, we will design privacy-
preserving deep learning schemes to secure control flow and
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enable more complex functions in intelligent industrial control
systems.
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