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Abstract. An adaptive fuzzy logic estimator for locating mobiles in a direct sequence code division multiple
access (DS/CDMA) cellular system is proposed. The location estimation is based on the measured pilot signal
strengths by the mobile station (MS) from a number of nearby base stations (BSs). A smoother, which uses
past and current output data from the fuzzy estimator to produce a more accurate estimate, is used to improve the
accuracy of the location estimation. Numerical performance results under various path loss and channel shadowing
conditions are presented to demonstrate the viability of the proposed fuzzy estimator.

Keywords: mobile location estimation, fuzzy logic, wireless communications.

1. Introduction

Mobile location estimation is to determine the position of a mobile station (MS) operating in
a geographical area covered by a cellular network. A recent Report and Order issued by the
U.S. Federal Communications Commission (FCC) requires that all cellular networks be able
to provide the location information of mobile stations (MSs) for the use of Emergency 911
(E-911) public safety agency by 2001 [1, 2]. In specific, the cellular networks must provide
latitude and longitude estimates of the MS’s position within an accuracy of 125 meters root
mean square (RMS) at 67% of the time. In addition to the E-911 safety services, the MS
location information can be used for other applications: (a) location-sensitive billing which
provides a wireless carrier the ability to offer different rates depending on whether the wireless
terminal is used at home, in the office, or on the road; (b) fraud detection in order to battle
against cellular phone fraud; (c) intelligent transport system which can enable services such as
providing information to travelers, more effective dispatch of vehicle in fleets, and detecting
traffic incident and congestion; (d) enhanced network performance for achieving efficient and
effective resource management.

An MS’s position can be determined by measuring parameters of radio signals that travel
between the MS and a number of fixed transceivers. The most important measurements are
received signal strength, propagation time of arrival (TOA) [3], time difference of arrival
(TDOA) [4, 5], angle of arrival (AOA) [6–8], and carrier phase. Each measurement defines
a locus on which the MS (i.e., the object being positioned) must lie. The point at which the
loci from multiple measurements intersects defines the position of the MS. Previous research
efforts using received signal strength to estimate an MS location were based on a mathematical
model describing the path loss attenuation with distance [9, 10]. In general, if an MS is closer
to a base station (BS), then the propagation path attenuation from the BS to the MS is smaller,
and vice versa. Hence, if the BS transmits a pilot signal with constant transmitted power,
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then the received signal power at the MS carries the information of the distance between the
MS and the BS. Since the location of the MS is a function of the distances between the MS
and its nearby BSs, this location can be estimated based on real-time measurements of the
received pilot signal power at the MS from the BSs. However the challenges in estimating
MS location based on the pilot signal power measurements come from the following facts:
(a) There exists a relatively slow fluctuation of the received signal level due to scattering in
the propagation medium between the BS and the MS. The shadowing process randomizes
the relation between the received pilot signal power and the distance from the MS to the BS;
(b) The received signals are contaminated by the multiple access interference (MAI) due to
other users in the system and unavoidable background noise. As a result, it is impossible to
accurately obtain the MS location based on the measurements. To tackle this difficulty, fuzzy
inference method can be used as a powerful tool to solve the problems related to uncertainty
and imprecision. The fuzzy inference approach represents qualitatively expressed control rules
quite naturally with linguistic description [11]. Many applications of fuzzy logic are found
in communication networks, such as in call admission control, policing, rate control, traffic
control, etc. A fuzzy inference system with a smoothign device based on [12] is presented
in this paper for MS location estimation. The system can deal with the random shadowing
effect by using training data from real measurements or from statistical models of practical
propagation environments. To handle the measurement error, the system incorporates the de-
gree of certainty (or accuracy) of the measurements by giving a larger degree of importance
to the data with higher measurement accuracy. Furthermore, both the current and previous
measurement data are used to improve the estimation accuracy since the MS location depends
on its movement pattern (such as movement trajectory).

2. Mobility Model

We consider a wireless communication network operating in a frequency division duplex
(FDD) mode. MSs in each cell share the radio frequency spectrum through the DS/CDMA
protocol. The same total frequency bandwidth is reused in every cell to increase the radio
spectral efficiency and to eliminate the need for frequency coordination. Due to the universal
frequency reuse and the use of Rake receivers, soft handoff becomes possible. An MS can
transmit to and receive signals from more than one BS at any time. A CDMA system employs
soft handoff, which makes before break. During transition from one cell to a neighboring cell,
the MS establishes a communications link with the new BS while at the same time keeping
its communications link with the original BS. The original communications link is terminated
only after the MS has firmly established itself in the new cell. In the forward link, each BS
transmits a distinct pilot signal for pseudorandom noise (PN) code and carrier synchronization.
The code and waveform of the pilot signals from all BSs are the same, they are distinguished
from one another by the phase or timing offsets of the pilot signals. The relative time-offsets
of pilot signals for neighboring cells are either known beforehand or broadcast to all MSs. The
MS can detect the pilot signal from any BS when the strength of the signal is above a certain
level which is determined by the transmission power of pilot signals. Prior to any transmission,
the MS monitors the received pilot signal power levels from nearby BSs. It chooses its home
BS according to the maximum pilot signal power received. The network uses MS assisted soft
handoff as in the IS-95 proposal [13]. While tracking the signals from the home BS, the MS
searches for all the possible pilots and maintains a list of all pilots whose signals are above a
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Figure 1. Network structure with hexagonal layout.

prescribed threshold. This list is transmitted to a mobile switching center (MSC) periodically
through the home BS. The MSC uses the information to make decision on when the soft
handoff should start [14]. In addition, the MSC uses the information to estimate the location
of the MS. Figure 1 shows the structure of the network with hexagonal cell layout, where
the MS under consideration is located at the point M. The index i will be used throughout
this section to denote variables related to the home BS (i = 0) and to the neighboring BSs
(i = 1, 2, . . . , 6). Let di(t) denote the distance between the MS and the first-tier BSi at the
time t . The time t will be discretized and represented as tn (= n
t), n = 1, 2, . . ., where 
t
is the time interval over which the received pilot signals are measured. At tn, the local mean
of the pilot signal amplitudes received at each MS can be modeled by [6]

an,i = γi · [di(tn)/D0]−κ · 10ξi (tn)/10 + vn,i i = 0, 1, . . . , 6 , (1)

where γi is a constant proportional to the amplitude of the pilot signal. The second term on the
right hand side (RHS) of (1) is the path loss with path loss exponent κ , and reference distance
D0 from the transmitter. Both κ and D0 can be determined from measurements. The third
term is lognormal shadowing which characterizes long-term fading. The parameters ξi(tn) is
to characterize the effect of shadowing and can be modeled by a normal random variable
(for any tn) with zero mean and variance σ 2. For i �= j , ξi(tn) and ξj (tn) are independent.
If the transmitted pilot signals have the same power, then γi = γ for i = 0, 1, . . . , 6. vn,i
is due to MAI (the information-bearing signals in the forward link to all the mobile stations)
and background noise. When there are a large number of users in the system, MAI can be
modeled as a Gaussian random process. With the measured strength of the pilot signal from
BS_i received at the MS, the three largest signal strengths are chosen for the estimation of the
location of the MS.

3. Fuzzy Inference System with Smoother

Figure 2 shows the block diagram of the proposed fuzzy inference smoothing system. It
consists of two subsystems: a fuzzy inference system and a smoothing filter. The fuzzy in-
ference system estimates the location of an MS at time tn based on the measured pilot signal
strengths at time tn. The smoother outputs the improved mobile location estimation based on
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Figure 2. The fuzzy inference system with smoother.

the estimates from the fuzzy inference system up to time tn. The design of the two subsystems
are given in subsections 3.1 and 3.2.

3.1. FUZZY INFERENCE SYSTEM

The fuzzy inference system is a special expert system. It employs a knowledge base, expressed
in terms of fuzzy inference rules, and an appropriate inference engine to estimate the location
of an MS at tn based on the measurement data an,i . The knowledge base can be designed to take
into account (a) the wireless propagation environment such as the one described by Equation
(1), and (b) measurement errors. The system is capable of utilizing knowledge elicited from
human operators. The knowledge is expressed by using natural language, a cardinal element
of which is linguistic variables [15]. Let the linguistic variable an,i be the received signal level
from BS_i at time tn, then the corresponding universe of discourse is the set of all possible
received signal levels. We choose the term set of an,i , denoted byUan,i , to contain the following
elements: extremely small (ES), very small (VS), small (S), small to medium (SM), medium
(M), medium to large (ML), large (L), very large (VL), extremely large (EL). Let the linguistic
variable dn,i be the distance between the MS and the cell_i at epoch tn, with the universe of
discourse being the interval [0,√3D] (D is the radius of the circle in Figure 1). We choose the
term set of dn,i , denoted by Udn,i , to be the set containing the following elements: extremely
small (ES), very small (VS), small (S), small to medium (SM), medium (M), medium to large
(ML), large (L), very large (VL), and extremely large (EL). The number of terms in Uan,i and
Udn,i , respectively, is selected so as to achieve a compromise between the complexity and the
fuzzy inference system performance. The membership functions of the input (the received
signal levels) and the output (the distance) depend on the BS coverage areas, transmitted pilot
signal power, the path loss exponent κ and channel shadowing statistics σ .

The fuzzifier translates the measured data into linguistic values of the fuzzy set in the input
universe of discourse. Each specific value of the measured signal level an,i is mapped to the
fuzzy set U 1

an,i
with degree µ1

xi
(an,i) and to the fuzzy set U 2

an,i
with degree µ2

xi
(an,i), and so on,

where UJ
an,i

is the name of the J th term or fuzzy set value in Uan,i .
The fuzzy rule base is the control policy knowledge base, characterized by a set of linguis-

tic statements in the form of IF-THEN rules that describe the fuzzy logic relatinship between
the measured data an,i and the distance dn,i . The kth rule has the following form.

Rk:
If an,j1 is A1k and an,j2 is A2k and an,j3 is A3k,
then dn,j1 is D1k and dn,j2 is D2k and dn,j3 is D3k ,

where k = 1, 2, . . . , K, andK is the total number of the fuzzy rules, j1, j2 and j3 are indexes
of three BSs from which the MS can receive the strongest pilot signals. (an,j1, an,j2, an,j3) ∈
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Uan,j1 × Uan,j2 × Uan,j3 � Ua and (dn,j1, dn,j2, dn,j3) ∈ Udn,j1 × Udn,j2 × Udn,j3 � Ud are
linguistic variables, AJk and DJk are fuzzy sets in Uan,jJ and Udn,jJ , respectively.

In the fuzzy inference engine, fuzzy logic principles are used to combine the fuzzy IF-
THEN rules in the fuzzy rule base into a mapping from fuzzy sets in Ua to fuzzy sets in
Ud .

Given fact:
an,j1 is Ã1 and an,j2 is Ã2 and an,j3 is Ã3

Consequence:
dn,j1 is D̃1 and dn,j2 is D̃2 and dn,j3 is D̃3 ,

where ÃJ and D̃J (J = 1, 2, 3) are linguistic terms for an,jJ and dn,jJ , respectively. The fuzzy
rule base can be created from training data sequence (e.g., measured input-output pairs). To
avoid tedious field trials, the training data can also be generated in computer simulation based
on propagation model and cell structure. Given a set of desired input-output data pairs, a set
of fuzzy IF-THEN rules can be generated. In addition, a degree which reflects the expert’s
belief of the importance of the rule can be assigned to each rule. For example, the importance
of a rule increases if the corresponding input data has a higher measurement accuracy. The
measurement accuracy increases as the received signal-to-interference-and-noise ratio (SINR)
increases. With the same interference-and-noise component for all received pilot signals, the
differences among the SINR values are proportional to the differences among the received
power values of the pilot signals. If the mobile is closer to BS_i than to BS_j , the average
received signal power from BS_i is larger than that from BS_j , the average received signal
power from BS_i is larger than that from BS_j . Hence, the measured data for BS_i should be
weighted more (i.e., have a larger degree) than that for BS_j . The degree assigned to rule k is
calculated by using product operations

Qk = µk

3∏
J=1

µIJk (an,jJ )

3∏
J=1

µOJk(dn,jJ ) , (2)

where IJk denotes the input region of rule k for an,jJ ,OJk denotes the output region for dn,jJ ,
µIJk (an,jJ ) is the degree of an,jJ in IJk obtained from the membership functions, µOJk (dn,jJ )
is the degree of dn,jJ in OJk, and µk is the degree of the data vector (an,j1, an,j2, an,j3)

assigned by human operators. When there is more than one rule in one box of the fuzzy
rule base, the rule that has the largest degree is chosen.

The defuzzifier performs a mapping from fuzzy sets (dn,j1, dn,j2, dn,j3) ∈ Ud (the output of
the inference engine) to a crisp point (d̃n,j1, d̃n,j2, d̃n,j3). d̃n,jJ denote the estimate (generated
by the fuzzy inference system at time tn) of the true location dn,jJ . Among the commonly
used defuzzification strategies, the center average defuzzification method yields a superior
result [15]. The formula for the estimate at the defuzzifier output is

d̃n,jJ =
∑K

k=1 Q̄k

∏3
J ′=1 µIJ ′k (an,jJ ′)d̄J ′k∑K

k=1 Q̄k

∏3
J ′=1 µIJ ′k (an,jJ ′)

, (3)

where d̄J ′k is the center value of the output region of rule k, and Q̄k is the degree (normalized
to 1) of rule k.

The output of the defuzzifier is the estimated distances between the MS and the three
individual BSs. These distances can be used to obtain the location of the MS. As shown
in Figure 3, the MS is located at point M, and the corresponding BSs are located at points
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Figure 3. The coordinates of the MS and BSs.

A, B and C. The coordinates for points M, A, B and C are (x0, y0), (xa, ya), (xb, yb) and
(xc, yc), respectively. The estimated distances from M to the three BSs are d0a , d0b and d0c,
respectively. The following three equations give the relation between the location (x0, y0) and
d0a, d0b, and d0c.

(x0 − xa)
2 + (y0 − ya)

2 = d2
0a (4)

(x0 − xb)
2 + (y0 − yb)

2 = d2
0b (5)

(x0 − xc)
2 + (y0 − yc)

2 = d2
0c . (6)

Each of the above equations represents a circle, with the point (x0, y0) located at the cir-
cumference of each circle. Equations (4)–(6) can be combined pairwise to yield the following
set of three first order equations for determining the point (x0, y0).

(xb − xa)
2x0 + (yb − ya)

2y0 = d2
0a − d2

0b + x2
b − x2

a + y2
b − y2

a

2
(7)

(xc − xa)
2x0 + (yc − ya)

2y0 = d2
0a − d2

0b + x2
c − x2

a + y2
c − y2

a

2
(8)

and

(xc − xb)
2x0 + (yc − yb)

2y0 = d2
0b − d2

0c + x2
c − x2

b + y2
c − y2

b

2
. (9)

Each of the above first order equations represents a straight line that is perpendicular to
the line connecting the centers of the pair of equations from (4) to (6) used to generate the
equation of the straight line. The three individual intersection points which come from a
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combination of any two straight lines can represent the three possible locations of the MS, i.e.,
(x1

0 , y
1
0 ), (x

2
0 , y

2
0 ) and (x3

0 , y
3
0 ), respectively. By taking the average of these three outcomes, the

coordinates of the MS location, (x0, y0), can be obtained from the following equation.

x0 = x1
0 + x2

0 + x3
0

3
, y0 = y1

0 + y2
0 + y3

0

3
. (10)

In case the three straight lines from (7), (8) and (9) are in parallel, i.e., the three BSs are on
the same straight line, the following equation

xb − xa

xc − xa
= yb − ya

yc − ya
= d2

0a − d2
0b + x2

b − x2
a + y2

b − y2
a

d2
0a − d2

0c + x2
c − x2

a + y2
c − y2

a

(11)

can be used to generate another line with the two points (xa, ya) and (xb, yb). By using (11),
(4) and (5), the position (x0, y0) can then be obtained.

3.2. THE SMOOTHER

For each MS, there is a strong correlation among its locations at adjacent time moments if
the product of the MS velocity and the time interval 
t is small. This makes it possible to
improve the MS location accuracy based on its current and previous estimation values. Let the
current user location estimation from the fuzzy inference system be (x0, y0), and the previous
L − 1 estimates be (x−1, y−1), (x−2, y−2), . . . , (x−(L−1), y−(L−1)). The following equations
constitute a smoothing algorithm that yields the smoothed estimate, (x̄′

0, ȳ
′
0), of the current

user location.

xmed =
0∑

j=−(L−1)

xj/L (12)

ymed =
0∑

j=−(L−1)

yj/L (13)

x̄′
0 = xmed + (x0 − x−(L−1))/2 (14)

ȳ′
0 = ymed + (y0 − y−(L−1))/2 . (15)

The smoothing algorithm also reduces the effect of MAI and background noise by averag-
ing the Gaussian random variables. The smoothing algorithm is adequate over a short duration
of time. The value of L depends on the variations of the MS’s velocity and direction. L should
be small if the variations increase, and large if the variations decrease.

4. Simulation Results

This section first explains the simulation set up and training procedure, and then evaluates the
performance of simulated fuzzy inference system for MS location estimation.
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4.1. THE SIMULATED FUZZY SYSTEM

The microcellular network under consideration has a hexagonal cell structure as shown in
Figure 1. The BS is located at the center of each cell, and an MS within the dash circle can
receive pilot signals from its neighboring BSs. The three largest signal strengths are chosen
for the estimation of the MS location.

To choose the type of membership functions, it is necessary to take into account both the
computational efficiency and adaptation easiness of the fuzzy inference system. Gaussian,
triangular and trapezoidal functions are the most commonly used membership functions. The
Gaussian function is chosen as the format of membership function in the simulation because
it is a better reflection of the mobility model, since shadowing assumes a lognormal distribu-
tion. With the Gaussian function, the degree µIJ ′k (an,jJ ′) in Equation (2) can be expressed as
following:

µIJ ′k (an,jJ ′) = exp

(
−
(
an,jJ ′ − ājk

σjk

)2
)
, (16)

where ājk and σjk are adjustable parameters for each Gaussian function.
Substituting Equation (16) into Equation (3), the estimate at the defuzzifier output is

d̃n,jJ =
∑K

k=1 Q̄k

∏3
J ′=1 exp

(
−
(
an,jJ ′ −ājk

σjk

)2
)
d̄J ′k

∑K
k=1 Q̄k

∏3
J ′=1 exp

(
−
(
an,jJ ′ −ājk

σjk

)2
) . (17)

In order to determine parameters ājk , σjk and d̄J ′k′ , and to generate fuzzy inference rules,
all possible distances dn,i (distance between the MS and each BS) are divided into 9 ranges
equally and the center value of each range, denoted by d̄J ′k(0), is chosen as the initial cen-
ter value of the range. The initial values of ājk and σjk are determined based on the mean
and variance of an,i for each distance range, denoted respectively as ājk(0) and σjk(0). To
obtain the initial fuzzy inference rules, 10,000 MSs uniformly distributed in the dash circle
of Figure 1 are simulated, and one pair of training data (an,jJ ′, dn,J ′) are generated for each
MS, where an,jJ ′ are the three largest signal strengths received at the MS, and dn,J ′ are the
distances between simulated MS and the corresponding BSs, J ′ = 1, 2, 3. After the initial
fuzzy inference rules have been generated, the total number of fuzzy rules K is known. In
order to determine the optimal fuzzy inference rules, the back propagation training method,
which is an iterative gradient algorithm, is employed to train the fuzzy system, i.e., given a
set of training input-output sequences (an,jJ ′, dn,J ′), J ′ = 1, 2, 3, the parameters in Equation
(17) are adjusted such that the error

err(n, J ′) = 1

2
(d̃n,J ′ − dn,J ′)2, J ′ = 1, 2, 3 (18)

is minimized. Since d̃n,J ′ is the function of ājk, σjk and d̄J ′k, the optimization problem be-
comes one of training the parameters ājk, σjk and d̄J ′k to minimize err(n, J ′). At each step, the
gradient of the err(n, J ′) with respect to the adjusted parameter is calculated by differentiating
the err(n, J ′) with respect to the parameter, then the parameter is adjusted based on the value
of the gradient.
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Table 1. Fuzzy inference rule examples.

an,j1 an,j2 an,j3 dn,j1 dn,j2 dn,j3 Qk

VS S MS VL ML MS 1.0

S S MS L ML M 0.904

VS S M VL L S 0.565

VS VS L VL VL VL 0.424

VS VS M VL L S 0.383

Let zk = ∏3
J ′=1 exp

(
−
(
an,jJ ′−ājk

σjk

)2
)
, b = ∑K

k=1 zk, c = ∑K
k=1(d̄J ′kzk), then d̃n,jJ =

c/b. To adjust d̄J ′k, we use,

d̄J ′k(n) = d̄J ′k(n− 1)− α
∂err

∂d̄J ′k
, (19)

where J ′ = 1, 2, 3 and n = 1, 2, . . . , α is a positive real-valued constant stepsize.
Using the chain rule, we have

∂err

∂dJ ′k′
= (d̃n,jJ − dn,J ′)

∂d̃n,jJ

∂c

∂c

∂d̄J ′k
= (d̃n,jJ − dn,J ′)

1

b
zk . (20)

Hence, the algorithm to adjust d̄J ′k is

d̄J ′k(n) = d̄J ′k(n− 1)− α(d̃n,jJ − dn,J ′)
1

b
zk , (21)

where n = 1, 2, . . . , k = 1, 2, . . . , K and J ′ = 1, 2, 3.
Similarly, the algorithms to adjust ajk and σjk can be obtained as following:

ājk(n) = ājk(n− 1)− α
d̃n,jJ − dn,J ′

b
(d̄J ′k − d̃n,jJ )zk

2(an,jJ ′ − ājk(n− 1))

σ 2
jk(n− 1)

(22)

σjk(n) = σjk(n− 1)− α
d̃n,jJ − dn,J ′

b
(d̄J ′k − d̃n,jJ )zk

2(an,jJ ′ − ājk(n− 1))2

σ 3
jk(n− 1)

, (23)

where n = 1, 2, . . . , j = 1, 2, 3, k = 1, 2, . . . , K and J ′ = 1, 2, 3.
After the parameters of ajk , σjk and d̄J ′k have been adjusted using the above algorithms,

the fuzzy inference rules can be tuned further according to these adjusted values of parameters
and the same training data which are used in generating the initial fuzzy inference rules.

Figures 4 and 5 show the membership functions of an,i and dn,i , respectively, with the
parameters κ = 4 and σ = 2 dB. The overlapping of the Gaussian functions possesses a
natural capability to express and deal with measurement uncertainties (crisp points do not
have this capability). Table 1 gives an example of some fuzzy inference rules obtained after
the training.

4.2. PERFORMANCE EVALUATION

In order to evaluate the overall system performance, 200 MSs are simulated with movement
patterns characterized by the following:
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Figure 4. Membership function of the received signal strength (κ = 4, σ = 2 dB).

Figure 5. Membership function of the distance between the MS and BS (κ = 4, σ = 2 dB).

1. The initial location of each MS is uniformly distributed within the dash circle of Figure 1.
2. The initial velocity of each MS is a constant uniformly distributed in [10, 30] meters per

second. When an MS changes its moving direction, its velocity may become a new con-
stant uniformly distributed in [10, 30] meters per second and independent of the previous
velocity.

3. The initial direction of movement of each MS’s is uniformly distributed in [0, 2π ], and
the direction can be changed any time each being uniformly distributed in [0, 2π ] and
independent of previous direction(s).

4. The time interval 
t for updating the location information is 1 second.

Different propagation environments (i.e., different values of κ and σ ) and L of the
smoothing algorithm are used to evaluate the system performance.

Table 2 gives the root mean square (RMS) estimation errors for various values of σ with
κ = 4 and L = 11. It is observed that the parameter σ plays an important role in estimation
accuracy of the fuzzy inference system. As the value of σ increases, there is an increase in
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Table 2. Root mean square (RMS) esti-
mation error Err in meters given κ = 4
and L = 11.

σ (dB) RMS estimation error

1 75.516

2 104.474

3 140.504

4 185.780

5 249.476

6 314.024

Table 3. Root mean square (RMS)
estimation error Err in meters given
σ = 2 dB and L = 11.

κ RMS estimation error

2 190.525

4 104.474

6 71.443

the degree of shadowing effect of the propagation channel, resulting in an increase of the un-
certainty in the measurements of the received signal strength and of estimation errors. Table 3
gives the root mean square (RMS) estimation errors for different values of κ with σ = 2 dB
and L = 11. It can be seen that, as the value of κ increases, the estimation errors decrease.
This is because a larger κ value means a faster attenuation of the received signal level as the
distance between the MS and the BS increases. Correspondingly, the degree of randomness
in the received signal level will decrease, resulting in a better estimation. Table 4 shows the
percentage of RMS estimation errors for various values of tap length L with σ = 2 dB and
κ = 4. It is observed that the estimation RMS errors decrease when L increases, and over
70% of estimated RMS errors are within 125 meters for L ≥ 11.

Table 4. Percentage of RMS estimation errors within different range Ran given κ = 4 and
σ = 2 dB with different L.

Ran(m)/L 0 3 5 7 9 11 13

0–125 19.56% 43.39% 55.43% 63.45% 68.58% 72.00% 73.91%

125–200 22.47% 30.51% 30.05% 26.59% 23.14% 20.17% 18.36%

200–300 26.24% 19.38% 12.04% 7.94% 6.02% 5.28% 4.76%

300–400 16.20% 5.38% 1.92% 1.31% 1.36% 1.43% 1.69%

400 up 15.53% 1.35% 0.56% 0.72% 0.90% 1.11% 1.27%
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Figure 6. Example of an MS’s simulated and estimated movement trajectory.

As an example, Figure 6 shows the comparison of a simulated MS’s movement (trajectory)
and the estimated trajectory with the values of parameters κ and σ of the propagation environ-
ment being 4 and 2 dB, respectively. The initial velocity of the MS is 19 meters per second,
and becomes 15 meters per second and 16 meters per second after changing its direction of
movement. From the figure, it can be seen that the estimation of the MS’s location can closely
track the actual location trajectory.

5. Conclusions

A fuzzy inference system with an associated smoothing device is developed to estimate user
location based on real-time measurement of the pilot signal powers received at the MS. Com-
puter simulation results have demonstrated the performance of the fuzzy system with different
propagation environments. The advantages of the fuzzy system lie in (i) its usefulness since it
provides reasonable MS location information, (ii) its simplicity in implementation, since it is
a one-pass build up procedure which does not require on-line training, and (iii) low cost, since
the location estimation is obtained based on the existing signaling in CDMA networks.
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