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Abstract. TCP has been the dominant transport protocol over the global Internet, and its performance
over a hybrid wireless/wireline network has attracted much attention in recent years. This paper inves-
tigates the end-to-end TCP performance, in terms of normalized throughput, effective goodput, and
packet delay, over wireless lossy links with local retransmissions. The results reveal that local retrans-
missions can increase the normalized TCP throughput in different wireless bandwidth, delay, and error
settings, at the cost of a decrease in effective goodput and an increased packet delay. The performance
observation is explained by the explored TCP endpoint behaviors, including the spurious timeout and
duplicated acknowledgment. Analysis shows that spurious timeouts with local retransmissions are rare
due to the conservative TCP timeout algorithm. However, spurious duplicated acknowledgments have
negative impact and a further improvement with the D-SACK proposal is evaluated.
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1. Introduction

Although traditional cellular systems were primarily designed and extensively opti-
mized for voice communications, certain circuit or packet switching data services
[1, 2] have been offered for some time. Currently there are some observations of
interest. With the Internet popularization, data traffic has already exceeded, in vol-
ume, the voice traffic in wired networks, and wireless networks are anticipated to
experience the same process soon. Furthermore, cellular systems now are evolving
into their third generation with a higher speed radio interface, better differentiated
services, and a more efficient packet switching network backboned by the global
Internet.
However, the performance of Internet protocols, particularly TCP/IP, over the

current and future cellular systems [3, 4] is still quite uncertain [5]. Many new pro-
tocol stacks and tunneling protocols [6, 7] have been proposed for cellular data
services, but their horizontal interface to and the possible interference with the
dominant TCP/IP protocols remain open issues. Although in recent years there are
extensive research efforts [9] in this and other related areas, the main targets are
macro mobility support over the global Internet and TCP/IP performance over wire-
less Local Area Networks (LAN) or satellite links [8]. Cellular systems have their
own mobility support mechanisms in the link layer. Therefore, the incorporation
of Mobile IP [13], a network layer mobility solution, and cellular systems with the
additional requirements of micro mobility support, security, and accountability cer-
tainly is a real challenge. Furthermore, cellular systems have their own complicated
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Radio Layer Protocol (RLP) with the link layer flow and error controls, and their
vertical interference [18] with the upper layer control logics deserves further study.
These challenges and open questions motivate the work reported in this paper. It

focuses on the local retransmission mechanism which is a widely used technique in
cellular systems and other wireless networks. Triggered by the selective acknowledg-
ment, this technique applies not only in the lower layer, e.g., by Media Access and
Link Control (MAC/LLC) protocols [20, 21], but also in the higher layer, e.g., by a
Snoop [22] agent in the transport layer at the wireless/wireline interworking node.
Instead of simply concluding that the local retransmissions technique is good or bad
for the overall system in a general setting, which was heavily debated before [18, 19,
21], several representative networking scenarios with different wireless bandwidth,
delay, and error settings in current and incoming cellular systems are studied here.
The purpose of this work is to examine in which scenarios this technique is ben-
eficial to the TCP performance most and in which scenarios it is not, and more
importantly to understand what and how it has to trade off. The observed perfor-
mance should be explainable by and consistent with the TCP endpoint behaviors,
e.g., timeout and duplicated acknowledgment (dupack). It reveals that spurious time-
out is rare with local retransmissions due to the conservative nature of the modern
TCP timeout algorithm. However, spurious dupacks do have negative impact on the
overall performance and further improvement can be achieved with the D-SACK
[17] proposal.
The rest of this paper is organized as follows. Related work on improving the

TCP/IP performance over wireless links with the link or transport layer approach
are outlined in Section 2. Section 3 presents the system model for the hybrid wireless
and wireline networks, as well as the networking scenarios, TCP variants, and appli-
cation traffic under consideration. The end-to-end TCP performance, in terms of
normalized throughput, effective goodput, and packet delay, over wireless lossy links
with local retransmissions in cellular systems are studied in detail in Section 4. The
TCP endpoint behaviors, including the spurious timeout and dupack, are explored
in Section 5 to explain the observed performance and to motivate a performance
improvement by integrating the recent D-SACK proposal. Summary and the future
work in Section 6 finally conclude the entire paper.

2. Related work

TCP was carefully designed to work reasonably well over any IP-capable networking
technologies, no matter wired or wireless networks. However, the extensive follow-
on re-engineering on TCP during the Internet evolution, most noticeably the TCP
congestion control [23], has made it vulnerable over any lossy links. Current TCP
congestion control simply assumes that any packet loss is due to network conges-
tion. Therefore it misbehaves when the packet loss is indeed due to transmission
errors, which is commonly found in many emerging technologies, e.g., infrared and
radio networks, cellular systems, and satellite links. There are many schemes pro-
posed recently in the literature [9, 10] that follow either the link or transport layer
approaches to mitigate the TCP performance degradation over wireless lossy links.
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Other features in these systems which become more and more popular in the het-
erogeneous Internet today, e.g., asymmetric MAC schemes and large transmission
delay, also have impacts on the TCP performance. Mobility support in wireless and
Ad Hoc networks is another related issue.
The link layer approach usually proposes a better and smarter link protocol,

e.g., utilizing Forward Error Correction, retransmitting locally triggered by selective
acknowledgments, differentiating reliable and unreliable services, or just being TCP
aware, to mitigate the impact of link impairment to the upper layer performance.
However, their ability attracts a lot of debates, e.g., when the link outage occurs,
the upper layer still cannot behave adaptively as expected. Furthermore, their verti-
cal interference to upper layers, e.g., competitive retransmissions in both transport
and link layers, is still questionable [18, 19]. The transport layer approach, on the
contrary, tries to help the TCP endpoint to discriminate the loss source by introduc-
ing additional functionality in the receiver, sender, or wireless/wireline interworking
node. The receiver or interworking node can postpone [27] or even disable the
triple-dupack and timeout when the link impairment or user mobility contributes
the packet loss, by reusing some existing TCP flow control mechanisms, e.g., per-
sistent mode [11], or by introducing some new explicit signaling schemes [12]. The
sender also can behave more friendly [26] to packet losses, particularly when it only
has a small number of in-flight packets.
There are also some proposals [9] in the network layer to eliminate the packet

loss due to the user mobility, e.g., hierarchical registering, controlled multicast, and
packet forwarding. The ability of these higher layer proposals to cooperate with
the lower layer flow and error controls which are mandatory in most cellular sys-
tems is still an open question and deserves further investigations. An even braver
approach begins to propose some brand new protocols [7] or protocol stacks [6]
especially for the networking scenario where TCP meets its built-in imperfection.
They either cover the wireless portion based on split connection, or replace the
whole end-to-end connection, and some even eliminate the need of the IP mobility
support. However, the horizontal interface and possible interference for these new
approaches with the de facto TCP/IP protocols over the global Internet are still not
very clear.
This paper differentiates itself from other related work in several respects. First,

instead of proposing some new schemes and algorithms in different layers and fac-
ing the compatibility issues, it studies the interaction between the current TCP/IP
algorithms and the local retransmission techniques which are both widely deployed
already. Secondly, this paper systematically investigates the end-to-end TCP perfor-
mance with different performance metrics which are significant for users, networks,
and protocols, respectively, in several representative networking scenarios to eval-
uate the tradeoffs with local retransmissions. The performance observations are
explained by the explored endpoint TCP behaviors, in terms of spurious timeout
and dupack, which further reveal the implication due to local retransmissions. With
the knowledge that spurious dupack is a major factor for the unnecessary end-to-
end TCP retransmissions, potential performance improvement by integrating the
recent D-SACK proposal can be proposed and evaluated with the undo feature in
this context. Finally, this paper gives an intuitive analysis on the conservative TCP
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timeout algorithm which supports the rare observation of spurious timeouts in this
paper and some other work.

3. System model

3.1. Networking scenarios

The physical wireless/wireline interworking topology is illustrated in Figure 1(a),
where cellular systems are backboned by the wired Internet. A Mobile Host (MH)
communicates with its Correspondent Host (CH) via the serving Base Station (BS),
Foreign Agent (FA), and Home Agent (HA). IETF Mobile IP (MIP) [13] is used
in this context to provide macro mobility support over the Internet, while other
recently proposed schemes, e.g., Cellular IP [14] or HAWAII [15], can be used to
support micro mobility within cellular systems which are interconnected through
the Gateway (GW) to the global Internet. Two logical connection modes, shown
in Figure 1(b), are of interest here. The first one is so-called end-to-end where
the MH talks to its CH directly via one TCP connection over the triangle MIP
routing architecture. The second one utilizes a split connection paradigm where the
GW acts as the application proxy to the CH and the TCP connection from the
MH is constrained within the cellular systems. The first mode has been in use for
many years, while the second mode is getting more popular recently also for other
concerns, e.g., packet filtering, address translation, and content rendering. Therefore
two representative networking scenarios are studied here: a) Wireless Wide Area
Network (WAN) + Wired WAN; b) Wireless WAN + Wired LAN. A single wireless
link, i.e., a special case of the second scenario, is also simulated for comparison
purposes.
The raw radio link between the MH and its serving BS in cellular systems is char-

acterized as comparatively small bandwidth due to limited radio spectrum, large
transmission delay due to heavy modulation and interleaving, and noticeable error
rate due to unavoidable path loss, fading, multiple path, and shadowing. Some rep-
resentative 2.5G and 3G cellular technologies are approximated by using a generic
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two-state link model, depicted in Figure 1(c), with the configurable good or bad
state bandwidth, delay, and error parameters. Usually the radio link suffers lower
bandwidth, longer delay, and higher error rate in the bad state. The uplink and
downlink bandwidth, delay, and error asymmetry are captured, and the overhead
due to the lower layer encapsulation and segmentation is also considered. The res-
idence time in each state is assumed exponentially distributed with a predefined
mean value which can be calculated from the empirical measurement on real sys-
tems. Transmission errors in different states are assumed independent, while the
error characteristics within a given state is highly correlated due to the residual
channel memory.
Wired LAN has negligible transmission delay and congestion losses, while the

wired WAN, particularly the Internet, has comparatively large delay and noticeable
packet losses. Congestion losses are randomly distributed and only recoverable by
the TCP endpoints. Therefore, in this study, there are mixed packet loss sources,
i.e., network congestion and transmission errors, and only the latter one can be
recovered by local retransmissions.

3.2. TCP variants

Reno and NewReno are now two mainstream TCP variants implemented in various
platforms, while SACK [16] and its further extensions, e.g., D-SACK [17], are getting
more and more attention. Since Tahoe, although an old TCP variant, reportedly
has more stable behavior than Reno over wireless lossy links [26], it is also studied
here.
All these TCP variants assume that all packet losses, either signaled by a time-

out at the sender, a triple-dupack returned by receiver, or an Explicit Congestion
Notification (ECN) [25] flagged by routers, are the result of network congestion,
independent of what is the origin of a particular loss. Any TCP variant, initially
or after being idle for a while, has to probe the network capacity by increasing its
sending rate, first exponentially (known as Slow Start) and then linearly (Conges-
tion Avoidance) after the congestion window (cwnd) reaches the Slow Start thresh-
old (ssthresh). The load-gain curve in Figure 2(a) implies that the network will
be eventually overloaded or congested with the aggressive TCP sender, and pack-
ets are discarded when buffer overflow occurs in routers. While retransmitting the
lost packet, shown in Figure 2(c), the sender also exercises a family of coupled
congestion algorithms [23] which differentiate these TCP variants. Tahoe treats a
triple-dupack equivalently as a timeout (Fast Retransmit) and throttles the cwnd to
its initial size, while Reno just optimistically halves cwnd (Fast Recovery, accurately
a half of current outstanding data) on a triple-dupack, as Figure 2(b) illustrates.
The TCP receiver only acknowledges incoming packets accumulatively and the

sender does not have any knowledge after the first lost packet indicated by a triple-
dupack. Therefore usually neither Tahoe nor Reno has the ability to detect and
recover multiple packet losses in the same sender window without waiting for a
timeout. Figure 2(b) shows clearly that the timeout has much bigger impact than the
triple-dupack on the achievable performance after packet losses, and the situation
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Figure 2. TCP congestion control.

is even worse when the packet loss indeed is not due to severe network congestion,
e.g., transmission errors over wireless links. To avoid the timeout, NewReno has an
improvement based on the Partial Acknowledgment algorithm which can recover
multiple losses in a “one per round-trip time (rtt)” manner, while SACK uses a
more promising Selective Acknowledgment option, which requires both the TCP
sender and receiver SACK capable, to recover multiple packet losses in a faster
manner. However, it is found [26] that the ability of NewReno and SACK to recover
multiple packet losses is still largely limited when there is a small amount of in-flight
packets and the receiver can not generate enough feedback to trigger the expected
algorithms.

3.3. Application traffic

Most Internet applications adopt the client/server model. In this model, the trans-
port endpoint (client) first issues a small amount of requests to the other one
(server), which in turn responds with a large amount of replies. It is further found
that most user-initiated TCP connections mainly attract data towards the initia-
tor. Given these observations, many emerging link technologies, e.g., Asymmetric
Digital Subscriber Line, Cable Modem, broadcast satellite, and some cellular sys-
tems, are also engineered on purpose to provide more bandwidth in the downlink
to better fit the traffic asymmetry and to utilize the link resource efficiently. In this
work, both download and upload applications are studied, but more attention is
given to the asymmetric downloads since they currently dominate the Internet traf-
fic workload. As shown in Figure 1(b), the MH is the user client that initiates a
TCP connection to its CH in the end-to-end mode or to the GW in the split mode,
sends a short request, and receives a large amount of reply data. Typical applica-
tions with this paradigm include the following: a mobile user using the handheld
computer with cellular interfaces for Web surfing, file downloading, or database
inquiry. Background traffic is also considered, and it competes with a TCP down-
load flow that is under the main investigation in this paper. This traffic, generated
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by other mobile users, is either TCP-transported, e.g., long-lived FTP sessions, which
is definitely TCP friendly, or UDP-transported unreliable Constant Bit Rate (CBR)
streams without the built-in TCP friendliness.

4. Local retransmissions

The end-to-end TCP performance with local retransmissions is studied within the
ns-2 [24] simulation framework. The original ns-2 link object has been extended
to accommodate the local retransmissions technique. Some important simulation
parameters are listed in Table 1. A wired network has a comparatively high data
rate, but might experience congestion losses over the global Internet. Data rates in
wireless WAN correspond to those specified for vehicle, pedestrian, and in-door or
stationary mobile hosts in the 2.5G and 3G cellular systems, and some even lower
rates in the current systems are also simulated. Access delays include the propaga-
tion latency in the macro, micro, and pico cell configurations, and also include the
time consumed by the lower layer signaling and processing. Uplink and downlink
bandwidth ratio is assumed to be 1 � 4, as most commercial systems offer in such
range, and the delay ratio is 2 � 1 due to the uplink MAC contentions and other
overheads. The lower layer segmentation/reassembly overhead is assumed to con-
sume about 15% of the raw capacity. The mean residence times in the good and
bad states are approximated by the Doppler frequencies, which is a function of the
mobile speed and the operating radio frequency. The raw average packet error rate
varies from 0.1% to 1% for light error profile and from 1% to 10% for heavy error
profile, and the error-free situation is also simulated for comparison purpose.
Every simulation run lasts 110 seconds, and each run with the same network and

traffic settings repeats 20 times with various initial random seeds and background
traffic patterns to eliminate the simulation dynamic. Background UDP traffic con-
sumes roughly 25% of the link resource, and there are up to 8 concurrent TCP
connections competing for the left resource with a TCP-transported flow of the
main investigation. Logging facilities at the link object with local retransmissions
and at the TCP source and sink objects are activated 5 seconds after the simulation
starts and are deactivated 5 seconds before it finishes to eliminate the dynamic when
the TCP connection is in its transit phase. Logged datasets are processed offline
to extract the statistical mean of the desired metrics, e.g., normalized throughput,
effective goodput, and packet delay, which are detailed in the sequel.

Table 1. Some simulation parameters

Data Raw packet Mean
rate Delay loss/error residence

(Kbps) (ms) prob. (%) time (ms)

Wired WAN 1K 10 1 ∼ 2 —
Wired LAN 10K 0.01 0 —
Wireless 144 100 good 0�1� 1 10� 50� 100
WAN 386 50 bad 0�1 ∼ 10 1� 5� 10
downlink 1920 10 1 ∼ 100
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Figure 3. Normalized throughput for various TCP variants.

4.1. Normalized throughput

Normalized throughput in this context is defined by the ratio, in the range of 0
and 1, of the application throughput and the effective bandwidth available to that
application. Here the effective bandwidth excludes the transmission error and the
transmission capacity occupied by other traffic. Therefore the normalized through-
put is independent of the background traffic. This is a very important user-oriented
performance metric, as it reflects how much a user can obtain from what the net-
work provider offers by using the TCP/IP protocol stack.
Figure 3 gives a throughput comparison of different TCP variants with and with-

out local retransmissions, when the wireless delay is 10 ms and the mean bad state
residence time is 1 ms. Other settings have similar results unless otherwise stated.
Measured samples are depicted in dots and their mean values by curves. Samples are
scattered in the horizontal axis for presentation clarity. With local retransmissions
(arq) where the default retry limit is 3, the effective packet loss rate is 0 when the
raw packet error rate ranges from 0.1% to 1%. Almost no timeout, even with a fine
grained timer of 100 ms, at the TCP sender is observed. Therefore Tahoe achieves
the lowest throughput as it treats a dupack the same as a timeout and re-initializes
its cwnd. Reno and NewReno have a similar performance. Since SACK is more
aggressive to recover the packets that are actually still retried by local retransmis-
sions, it has lower normalized throughput than NewReno. Without local retransmis-
sion (drop), TCP experiences pseudo-random packet losses. Therefore, NewReno
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and SACK achieve better throughput than Tahoe and Reno as they have the ability
to recover multiple packet losses in one sender window. Since Tahoe conservatively
follows the Slow Start algorithm after the first packet loss, it is reportedly more
robust than Reno, which first follows Congestion Avoidance on a triple-dupack and
then follows Slow Start on a timeout, if there are consecutive losses due to the burst
transmission errors over wireless links. Figure 3 supports such a claim when the
error rate is comparatively high. In what follows the main focus is given to the cases
with and without local retransmissions, and Reno is chosen as the representative
TCP variant for presentation simplicity.
With local retransmissions, it is shown that TCP can gain higher normalized

throughput. However, when the wireless delay and bandwidth grows, the gain
becomes smaller, although still positive, since local retransmissions become costly
(Figure 4) and even local retransmissions cannot fully compensate for the capac-
ity loss in a high speed link. Also when there are mixed packet loss sources in the
end-to-end mode, the gain due to local retransmissions becomes smaller as a major
component of packet losses is only recoverable by the end-to-end TCP retransmis-
sions.

4.2. Effective goodput

Local retransmissions cannot achieve the positive gain in normalized throughput
without any tradeoff. Here the effective goodput and packet delay are considered
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Figure 4. Normalized throughput with various wireless delays.
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Figure 5. End-to-end goodput with various wireless delays.

as another two important performance metrics. Effective goodput in this context
is defined by the ratio, in the range of 0 and 1, of the amount of data transferred
from the TCP sender to the receiver and the amount of total traffic generated in
the same direction. Both end-to-end and local retransmissions can generate addi-
tional overhead traffic. This metric is more significant in cellular systems, as it is
proportional to the efficiency of the energy consumed by mobile hosts which are
usually powered by batteries. It is also proportional to the effective utilization of
the limited radio resource which is shared by a group of mobile hosts.
Figure 5 shows the effective TCP goodput with and without local retransmissions,

with various wireless delay settings. It is interesting to find that the goodput is
almost independent of the different wireless delay and bandwidth settings unless
the error rate is very high, as it is invariant for the given end-to-end TCP algorithms
and local link mechanisms. The case with local retransmissions has lower goodput
since more traffic is generated locally over the wireless link. For examples, when the
raw average error rate is 1% and the wireless bandwidth and delay are 384 Kbps
and 10 ms, respectively, the goodput is about 2% lower for the case with local
retransmissions whose throughput is about 37.6% higher. Therefore, in this case,
the increased overhead due to local retransmissions is tolerable. However, when the
wireless delay grows to 100 ms, a similar loss of 2.1% in goodput only brings the
gain about 6.8% in throughput with local retransmissions. Therefore, the increased
overhead due to local retransmissions in this case becomes non-negligible and needs
to be balanced along with other concerns. Similar tradeoffs are also found when the
wireless bandwidth grows and when there are congestion losses in the wired WAN.
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4.3. Packet delay

Packet delay in this context is defined as the time experienced by a particular data
packet from the TCP sender to the receiver, including the delay due to the transmis-
sion, propagation, queueing, and local retransmission if any. Although the through-
put is a primary metric for bulk data transfer applications, the packet delay is also
measured in this experiment to quantify the impact due to local retransmissions.
Since TCP uses the timeout mechanism as the final guard to detect and recover
packet losses, a change in packet delay will have impact on the efficiency of the
timeout estimation algorithm. Also, this metric can provide a guideline for the non-
TCP traffic which is delay and jitter sensitive but exercises the TCP-friendly flow
control mechanisms.
Figure 6 shows the average packet delay with and without local retransmissions,

with various wireless delay settings, when the wireless bandwidth is 384 Kbps. When
the raw error rate is low, the smaller the wireless delay, the quicker the TCP sender
increases its cwnd, and the more packets queued at the wireline/wireless interface
since the wireless link is the bottleneck in the packet forwarding path. Therefore,
packets experience large delay with a small wireless delay, since in this case the
queueing delay dominates the packet transit delay. When the error rate goes high,
the queue length at the wireline/wireless interface decreases dramatically, and the
transmission delay over the wireless link begins to dominate the packet delay. There-
fore, packets experience large delay with a large wireless delay when the wireless
error rate is high. Average packet delay increases for the case with local retrans-
missions, since a packet or a portion of the packet has to travel the wireless link
multiple times if there is an error in the previous journey. However, as also shown in
Figure 6, the maximum packet delay, which characterizes the worst case, increases
dramatically with the large wireless delay when the error rate grows. When the wire-
less delay is 100 ms and the raw average error rate is 1%, the maximum packet
delay can increase about 4 times with local retransmissions, while the throughput
gain is only about 6.8% as mentioned. Therefore the tradeoff between the gain
in throughput and the losses in effective goodput and packet delay deserves more
consideration in certain networking scenarios.

5. Endpoint behaviors

The end-to-end TCP performance observed in the previous section is a result of the
internal protocol behaviors at the TCP endpoints. ECN [25] is a proactive approach
for the TCP sender possibly to detect the incoming congestion even before any
packet loss occurs. However, ECN requires the participation of the intermediate
router with the active queue management which is not widely deployed yet. There-
fore this paper still focuses on the traditional timeout and triple-dupack behaviors at
the TCP sender. With local retransmissions, packets experience changing delay and
get re-ordered when arriving at the receiver, which might trigger spurious timeout
and dupack.
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Figure 6. Average and maximum packet delay with various wireless delays.
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Figure 7 illustrates the cwnd size and the number of timeouts and dupacks that
trigger the end-to-end TCP retransmissions in Figure 3. The cwnd size is logged
roughly every rtt during the simulation and is averaged when it finishes. The num-
bers of timeout and dupack triggers are counted and normalized for every 100
acknowledged packets. Even the case with local retransmissions has slightly more
dupack triggered TCP retransmissions; the case without local retransmissions has
non-negligible timeout triggered ones. Since the timeout takes much more time
to recover than the dupack and decreases cwnd severely as Figure 2(b) shows, it
explains why cwnd is larger with local retransmissions when the raw error rate goes
high. A large cwnd implies a higher achievable throughput in Figure 3.

5.1. Spurious timeout

However, the TCP behaviors explored here do not fully conform to the results
reported in the literature [18]. Some observe that local retransmissions can bring
many sender timeouts and competitive retransmissions in both transport and link
layers, which is only found here with a very fine timer granularity.
The symbols used in this subsection are tabulated in Table 2. The TCP time-

out mechanism uses an exponentially weighted moving average (EWMA) algorithm,
which is outlined in this recursive expressions: rtoi = srtti + g3rttvi, where srtti =
srtti−1 + g1erri� rttvi = rttvi−1 + g2��erri� − rttvi−1�, and erri = rtti − srtti−1. The param-
eter rtt is measured once in each sender window and rto is calculated accordingly.
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Table 2. TCP timeout algorithm parameters

rtti round-trip time measurement srtti smoothed rtti
rttvi rtti variance rtoi round-trip timeout value
b burst factor g1� 2� 3 EWMA weight parameters

By comparing the networking scenarios and simulation settings, it is found that
many previous studies use an old TCP Tahoe variant in their analysis and exper-
iments. Originally TCP Tahoe adopts g3 = 2. Although this variant is still found
in many operating systems, modern TCP has already adopted g3 = 4 for a more
conservative rto. The following is an intuitive analysis that explains the conflicting
results observed in other research work.
Assume in the worst case that rtti = t for 0 < i < k and rttk = b ∗ t with a large

k and a finest timer granularity, where t is the smallest rtt and b is the burst fac-
tor. Therefore it is a good approximation that srttk−1 = t� rttvk−1 = 0, and rtok−1 = t.
Since rtok−1 < rttk when b > 1, there is an unavoidable timeout at k. TCP expo-
nentially backs off when a timeout occurs and discards that rtt sample during the
retransmission. If there is a valid rtt available after the retransmission, given errk =
�b − 1�t� rto is computed by the following algorithm,

srttk = t + g1�b − 1�t�

rttvk = g2�b − 1�t�

rtok = t + g1�b − 1�t + g3g2�b − 1�t�

To avoid possible consecutive timeouts, rtok has to be conservatively larger than
rttk+1, which, in the worst case, is another burst of size b ∗ t. Therefore to satisfy

t + g1�b − 1�t + g3g2�b − 1�t > b ∗ t�
it is obvious that

g1 + g2g3 > 1�

Since in TCP g1 = 1
8 and g2 = 1

4 , then g3 > 7
2 should be a safety requirement to

ensure a conservative rto algorithm. Figure 8 gives a numerical illustration on rtt
and rto evolutions, where t = 100 ms� b = 10, and srttinit = 2rttvinit = 1 sec, with the
default TCP weight parameters. If g3 = 2 as the old Tahoe does, it might be too
aggressive and results in many spurious timeouts as observed before. Balancing the
fact that a too conservative rto is deficient to detect lost packets, g3 = 22 is a good
choice also for easy bit shifting implementation.
Figure 9 supports the above intuitive analysis by illustrating the number of time-

outs with different rttv weights, along with the case without having rttv in the rto
equation for comparison purpose. The vertical axis is in logarithmic scale for a
better illustration. Without rttv, the calculated rto is very aggressive and does not
tolerate any change in rtt, so it is quite sensitive to packet losses and local retrans-
missions. The resultant spurious timeouts are almost comparable to the case without
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local retransmissions. With g3 = 1 or 2, the calculated rto is still aggressive and
introduces almost twice as many timeouts as the case with g3 = 4 when the raw
packet error rate grows. However, g3 = 8 does not have too much difference from
the current default g3, and a too conservative rto is deficient to detect lost packets.
This figure shows g3 = 4 is a better choice than is either 2 or 8.

5.2. Spurious dupack

Figure 7 shows that dupack, instead of timeout, is a major factor for the unnecessary
end-to-end retransmissions in the case with local retransmissions. Figure 10 further
illustrates the number of dupack-triggered end-to-end retransmissions with various
wireless delay settings, with the same networking configuration as used to obtain the
results shown in Figure 4. With a large wireless delay, the selective acknowledgment
returns much later to trigger local retransmissions. Since more follow-on packets
are already in flight, a large number of packets arrive at the receiver out-of-order.
Therefore more dupacks due to packet reordering are generated at the receiver and
returned to the sender, and spurious end-to-end retransmissions are triggered. It is
found that the larger the wireless delay, the more sensitive are spurious dupacks
to the increase of raw packet error rates. This explains the performance observed
in the Figure 4, when the wireless delay increases, the normalized throughput and
the performance gain over the error dropping policy decrease dramatically. Similar
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spurious dupack returned from the TCP receiver also explains the performance
difference with different wireless bandwidth and residence time settings.
Since spurious dupacks contribute most of the unnecessary end-to-end retransmis-

sions, it is obvious that, by avoiding these dupack-triggered spurious retransmissions,
the performance can be further improved. There are several approaches available
with the existing mechanisms. Increasing the dupack threshold beyond the default
value of 3 is a possibility. But it is very difficult, if not impossible, to choose a
suitable threshold for an arbitrary networking scenario, since the TCP sender does
not know local retransmissions in remote links. Furthermore, an increased thresh-
old without any adaptation reduces the sender’s ability to detect and recover the
packet that is already lost. On the other hand, the TCP receiver can delay the third
dupack [27] and give local retransmissions more chances. Again, finding a suitable
dupack delay interval is not easier than finding a dynamic dupack threshold, since
the receiver does not have enough knowledge on how long it can wait without trig-
gering a timeout at the TCP sender.

5.3. D-SACK improvement

SACK [16] was originally proposed to extend the accumulative acknowledgment
by using the SACK options which acknowledge the non-contiguous but received
packets. With the header length limit, an acknowledgment packet (ack) can contain
up to 3 pairs of sequence numbers. The first pair outlines the block which contains
the packet that triggers this ack, and the following two just redundantly repeat
the first two SACK pairs in the previous ack. This design maintains the robustness
if the previous ack is lost. The SACK-capable TCP sender then has the ability
to determine which packets are missing and which are received at the receiver
after the contiguous block. Therefore, the sender can detect lost packets if they are
reportedly missing several times and recover them in a more efficient manner by
not retransmitting the packets which are selectively acknowledged, unless a timeout
occurs.
D-SACK [17] is recently proposed to further extend the SACK mechanism to

report the duplicated packets. A packet might get duplicated by the network, or
unnecessarily retransmitted by the sender due to ack loss, premature timeout, or
packet reordering. The receiver uses the first SACK pair to report a full or partially
duplicated packet. By comparing the first SACK pair to the accumulative ack in the
original TCP header, the sender can distinguish whether it is a SACK or D-SACK.
If a packet is received in duplicate without any sender transmission, it indicates
that probably the network duplicates the packet or its ack. Otherwise, it indicates
that, a moment ago, there was an unnecessary retransmission triggered by either
timeout or dupack. If this packet has not been acknowledged accumulatively yet,
there might be an ack loss; otherwise, the timeout might be too aggressive and
occurs prematurely. If there was a dupack-triggered retransmission, it might be
caused by packet reordering instead of pack losses.
With the D-SACK option returned by the receiver and the history that it main-

tains, the sender subsequently has the ability to figure out whether a previous dupack
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is caused by a duplicated packet, a duplicated ack, or a gap in the receiver’s buffer.
If the dupack that triggers a retransmission is due to the duplicated packets, it is pos-
sible for the sender to undo the unnecessary congestion regulation which decreases
cwnd size. Although the unnecessary retransmission has already wasted certain net-
work resources for a while, its impact in the follow-on periods can be hopefully
minimized if cwnd and ssthresh can be recovered to a proper size.
Since the spurious dupack plays a major role in the TCP endpoint when there is

local retransmissions, it is expected that by integrating the D-SACK, these unneces-
sary end-to-end retransmission triggered by spurious dupack can be largely avoided.
Figure 11 shows the end-to-end TCP performance in terms of normalized through-
put (the left vertical axis) and the TCP endpoint behavior in terms of total end-
to-end retransmissions (the right vertical axis) with or without the D-SACK option.
It uses the worst case parameters shown in Figure 4, i.e., with the longest wire-
less delay and the finest timer granularity. With local retransmissions, the normal-
ized throughput is increased slightly over the error-dropping policy since there are
still many spurious end-to-end retransmissions triggered by dupacks due to packet
reordering. With both the D-SACK option and local retransmissions, the normal-
ized throughput is increased dramatically as most impact due to spurious dupacks
have been eliminated and the spurious timeouts only have very little performance
impact as shown in the previous subsections.
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Figure 11. Performance and behaviors with D-SACK.
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6. Conclusions

The end-to-end TCP performance with local retransmissions in several representa-
tive networking scenarios is assessed in this paper. The performance metrics, i.e.,
normalized throughput, effective goodput, and packet delay, are significant to users,
networks, and protocols, respectively. These metrics show the tradeoff nature with
local retransmissions in different wireless bandwidth, delay, and error settings. The
observed performance is further explained by the explored TCP endpoint behaviors
in terms of spurious timeout and dupack. Intuitive analysis on the conservative TCP
timeout algorithm supports the observation of the rare spurious timeout with local
retransmissions, and the spurious dupack is found to have the major implication of
the unnecessary end-to-end TCP retransmission. By integrating the recent D-SACK
proposal which can distinguish the source of dupack alone with the sending history,
the TCP performance with local retransmissions is evaluated with further improve-
ment in the same context.
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