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Abstract. Providing efficient access to a large user population with variant service requirements in wireless
communications networks poses a very challenging problem. Resource allocation in the wireless domain should
take into account bandwidth limitations and fading effects inherent to wireless channels, while accommodating
for resource constraints encountered in wireline networks. In this paper, a fuzzy resource allocator is proposed in
order to facilitate the efficient allocation of network resources in the wireless domain. The network preferentially
allocates its resources to real-time (RT) traffic sources. Using effective transmission rate statistics of non real-
time (NRT) trafficd sources as a measure of fading channel conditions, the fuzzy allocator optimally allocates the
remaining resources to NRT traffic. Simulations show that the fuzzy allocator can reduce delay and incurs fewer
retransmissions for NRT traffic. An overall improvement in wireless channel utilization is demonstrated.
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1. Introduction

Future wireless communications networks are expected to interwork with wireline broadband
networks in order to support multimedia services for mobile users anywhere at anytime. Dif-
ferent media types, with varying quality of service (QoS) requirements, may access these
networks. These media types may be broadly categorized into real-time (RT) traffic, such
as voice and video, which is usually delay sensitive, and non real-time (NRT) traffic, such
as still images and text, which is typically loss sensitive. In order to efficiently use network
resources, and satisfy QoS requirements, proper resource allocation is necessary. However,
the limited radio frequency spectrum and fading conditions inherent to wireless channels
pose resource allocation problems which are more complex than those encountered in the
wireline domain. This is because signals traveling between transmitters and receivers through
a wireless medium undergo attenuation due to transmitter-receiver separation, and the phys-
ical environment posed by the propagation path [2]. Transmission rate control in a wireline
network depends on network congestion only. In the wireless domain, transmission rate con-
trol becomes a function of both network congestion and fading conditions experienced by a
transmitted signal.

Traditionally, resource allocation involves using a set of measured parameters to predict
the required resources for an upcoming transmission period. The parameters are assumed to
have little or no uncertainties [1]. For instance, the wireless channel can be considered to
have two states: degraded and non-degraded, with a precisely defined threshold between these
states. A measured pilot signal by a mobile host (MH) from a base station (BS) falling within
close proximity to the precisely defined threshold is taken as evidential support of the channel
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being in only one of the two states. Resources are then allocated according to one of the two
channel states. The category of logic in which a channel state either does or does not belong to
a degradation state is known as crisp logic. However, the rate with which the channel may fade
can vary significantly. This poses some difficulty in predicting the optimal user transmission
rate based on recent fading channel measurements. Fading effects can decrease a user’s effec-
tive transmission rate, implying an increase in the need for retransmissions by a loss sensitive
NRT traffic source. NRT traffic sources distributed around a BS will have different effective
transmission rates due to the various levels of attenuation experienced. Sources with high
effective rates may transmit more information while sources with lower effective rates may
transmit less. Using this as the premise by which rules for resource allocation are determined,
the resource allocator is able to facilitate optimal utilization of channel resources for NRT
traffic sources. The resource allocator also takes into account multiple channel states.

The simplification of resource allocation, provisioning of improved service to NRT traffic
sources, and resulting improvement in wireless channel utilization has practical significance.
In this paper, a fuzzy resource allocator is developed to meet these objectives. The fuzzy
allocator accepts the possibility of measurement uncertainty and includes this uncertainty
consideration in its definition of fuzzy variables. Thus it allows a gradual transition between
the multiplicity of possible channel states. The fuzzy allocator also optimally assigns avail-
able channel resources to NRT traffic sources according to their effective transmission rate
statistics, which enables more efficient utilization of channel resources. Simulations have
demonstrated that the fuzzy allocator can improve NRT traffic delay and resource utilization
efficiency in comparison to other resource allocation mechanisms.

The remainder of this paper is organized as follows. Section 2 describes the proposed fuzzy
resource allocator model. Section 3 is devoted to the design of the fuzzy resource allocator.
Simulation results and their implications are presented in Section 4. Concluding remarks are
given in Section 5.

2. System Model

Figure 1 shows the system model of the proposed fuzzy resource allocator. In the model, the
base station is the control center which performs the policing function (by leaky buckets)
for traffic accessing the integrated wireless/wireline network. Wireless traffic, consisting of
both RT and NRT traffic, accesses channel resources using narrowband time division multiple
access (TDMA). Through the allocation of network resources, RT traffic is given priority
access, thus ensuring that such traffic meets the requirement of minimal delay.

Channel condition information for NRT traffic sources is obtained by observing received
signal strengths. Depending on the received signal strength for each source, a channel con-
dition indicator, rateeff , may be obtained. Using a measure of the percentage of resources
allocated for RT traffic, %RT, along with rateeff as inputs to the fuzzy allocator, output
parameters ml and rl for leaky bucket control of NRT source l are generated, where l =
1, 2, . . . , N .

Let a defined TDMA time frame be divided into S time-slots. The portion of available slots
allocated to RT traffic is given by:

RTslots = �S × %RT� . (1)

The slot availability for NRT traffic sources is given by NRTslots = S − RTslots. To meet
minimum QoS requirements, a minimum allocation of time-slots is made for each NRT traffic
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Figure 1. System model of the fuzzy resource allocator.

source. Allocation above this minimum occurs if there are time-slots remaining. The token
pool size, ml , determines NRT slot allocation. Sources experiencing better channel conditions
are allocated more time-slots than the allocated minimum. The lth NRT traffic source transmits
using repetition coding, with each packet being repeated repl times where repl is inversely
proportional to token generation rate, rl . High repetition rates, repl , are prescribed for sources
experiencing poor channel conditions, whereas lower repl are prescribed for sources experi-
encing better chanel conditions. By repeating a packet repl times, the likelihood of at least one
of the repl packets containing an acceptable power level for a given bit position increases. Thus
by using repetition coding, the fuzzy token generation rate output vector ensures increased
efficiency in the transmission of NRT traffic.

The allocation information is broadcasted to all users in a reservation frame using the
control signalling channel. It is assumed that the control signalling channel uses robust coding
which ensures readability upon reception at the source end [6]. It is also assumed that there is
sufficient buffer space available at the NRT traffic source end, to ensure that packets are not
lost due to buffer overflow.

NRT traffic sources are characterized as bursty ON-OFF sources. In the ON state, the burst
length is modeled by a geometric distribution with parameter 1

mbl , where mbl gives the mean
burst length for the source when it is in the ON phase. It is assumed that the burst or ON phase
has constant duration, �t time units. NRT traffic load is defined as a percentage ρd of the
possible load. With N NRT traffic sources, the mean batch arrival rate for the lth source is
given by:

λl = ρd(%)

N × mbl
. (2)
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The effect of varying NRT traffic load is observed by increasing ρd and recalculating λi .
The mean inter-arrival time, mia, is calculated by:

mia = 1

λl
(3)

as described in [5].
Path loss and shadowing effects at a transmitter-receiver separation of d are modelled by:

PL(d) = PL(d0)+ 10κ log

[
d

d0

]
+Xσ (4)

where d0 is a close-in reference distance obtained through measurements, PL(d0) is the av-
erage path loss at the close-in reference distance, κ is the path loss exponent, and Xσ is a
zero-mean Gaussian distributed random variable, with standard deviation σ representative of
log-normal shadowing [2]. A source transmits a bit as a waveform of a particular power, Ptr .
Upon arrival at the base station, the waveform has power, Prx , where Prx is given by:

Prx = Ptr − PL(d) (5)

and Prx , Ptr and PL(d) are all in dB (m).

3. Fuzzy resource allocator

In fuzzy logic, an element {a} can have a degree of membership in a fuzzy set X, where U →
[0, 1] is the universe of discourse, a ∈ U , and µx(a) is a membership function. A membership
function associated with a fuzzy set maps an input value to an appropriate membership value.
This mapping is known as fuzzification. The universe of discourse U is spanned by {Xi}
where i ∈ {1, . . . , n} and Xi are fuzzy sets. Xi may or may not overlap with Xj , where
j ∈ {1, . . . , n}, and n represents the number of fuzzy sets spanning U . The definition of fuzzy
sets and fuzzy logic, as opposed to crisp logic, allows for the gradual transition between states
akin to the natural progression of channel degradation.

The principal difference between fuzzy logic and crisp logic arises from the different
rules governing membership. Fuzzy logic permits both partial membership and overlapping
membership in non-exclusive fuzzy sets, whereas crisp logic does not permit the notion of
partial membership. In crisp logic, membership must be exclusive to one set. The benefit of
membership functions used in fuzzy logic stems from the ease with which linguistic variables,
which may be described in terms of their level of membership in more than one state, can be
mapped to fuzzy variables. By considering the dual-state (or multiple-state) membership of
variables, a control decision may be made which reflects a more comprehensive understanding
of the system state.

When a crisp value is resolved into a mapping of memberships in fuzzy sets, it is said to
be fuzzified. This is the first step in implementing a fuzzy controller, as shown in Figure 2.

Fuzzy logic is implemented through the use of fuzzy rules. A fuzzy rule is defined by the
relationship between an observation and an action, and takes the form:

if {xi is Xi, (and, or, not) xj is Xj, . . .}, then yk is Yk

where xi is a measured value; {xi is Xi} denotes the degree of membership of xi in Xi; yk is
the output value; {yk is Yk} denotes the degree of membership of yk in Yk; k is the number of
fuzzy outputs.



Resource Allocator for Non Real-Time Traffic in Wireless Networks 333

Figure 2. A fuzzy controller model.

A fuzzy rule can also be given a respective weight wr ∈ [0, 1] where r ∈ {1, . . . , number
of rules}.

The first part of the rule is called the antecedent, and examines the observations and their
coupling; the latter part of the rule is called the consequent, and defines the action to be
taken [3]. The antecedent and consequent may be multipartite, in which case they are resolved
using the min operation, max operation and inverse operation to implement AND, OR and
NOT Boolean operators, respectively. The fuzzy sets,Xi and Yk, represent linguistic variables,
thus a fuzzy rule can easily model axioms derived from expert knowledge. A collection of
fuzzy rules, {R1, . . . , Rn}, formed from the fuzzy sets, describe the desired observation and
control action, and together form a fuzzy rule base. Within the rule base, each rule is evaluated
separately, and the result is computed. A fuzzy inference engine determines which of these
rules {Ri}, where i ∈ {1, . . . , n}, are matched and subsequently executed.

The fuzzy inference engine and the fuzzy rule base work in tandem. The rule base contains
a collection of rules which effectively implement expert control strategies. In order for these
expert control strategies to be determined, the rule base may need to be trained. The method
by which the rules are executed (or fired) depends on the inference mechanism implemented
by the inference engine. According to some (usually intuitive) approach, the inference engine
will contain an algorithm regarding the sequence in which the rules should be fired, or indeed
whether they should be fired sequentially at all. If the rule base is extensive, sequential firing
may become too time-consuming and some parallel method may be employed instead. If the
rule base contains n rules, and the antecedent(s) of K of these n rules are matched, the control
action to be taken is decided by the inference engine. Each of the K matched rules may or
may not contribute to the final control action. The decision as to which rules contribute to the
final action, is implemented by weighting the rules. Usually the overall control action will be
the aggregate of the partial control actions suggested by each matched rule [4].

The output from the fuzzy inference engine will be a fuzzy value, which needs to be
defuzzified in order to produce a crisp value. The defuzzification may be done by the centroid
method which evaluates the center of the area resulting from the rule base evaluation.

The fuzzy resource allocator shown in Figure 3, is implemented through two fuzzy infer-
ence systems: a repetition rate control system, and an NRT slot allocation system. The former
implements the control of token generation rates, whereas the latter implements the control
of token pool allocations. The output vectors, M and R, are used to implement resource
allocation. In the implementation of the repetition rate control system, fuzzification of the
RATEeff vector is performed by the fuzzifier, using the membership functions for effective
rate as shown in Figure 4.
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Figure 3. Fuzzy resource allocator.

Figure 4. Effective rate input space.

The rules existing in the fuzzy rule base, displayed in Table 1, are evaluated by the fuzzy
inference engine. The weight assigned to each rule varies between 0 and 1, and is indicative
of the level of confidence an expert places on the importance of the rule describing the target
system [9]. For the sake of simplicity, an intuitive approach was used to assign weights to the
rules described in this paper. It is important to note that weights may also be determined by
using a training data set of desired input-output pairs. The intuitive approach used in assigning
weights can be better understood by examining the following examples: The rule “if effective
rate is very low, then repetition rate is very high” is straight forward since a low effective rate
is indicative of highly-degraded channel conditions, and under such conditions, the number of
times a packet must be repeated is very high. Because the rule is straight foward, or intuitive, it
is given a weight of 1. On the other hand, the rule “if effective rate is moderate, then repetition
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Table 1. Fuzzy rule base.

Effective rate Repetition rate Weight

Very low Very high 1.00

Low High 1.00

Moderate Moderate 1.00

Moderate High 0.30

Moderate-high Low 0.50

Moderate-high Moderate-low 1.00

High Low 1.00

Very high Low 0.75

Very high Very low 1.00

rate is high” is less straight forward, and is therefore given an arbitrary lower weight of
0.3. It is not intuitive to give a source, which is experiencing a moderate effective rate (or
some degree of channel degradation), a high repetition rate, as such a source would likely
suffice with a moderate repetition rate. For a source experiencing a moderate effective rate,
the rule “if effective rate is moderate, then repetition rate is moderate” would appear to be
more appropriate, and would therefore be given a weight of 1.

The rule evaluation result is defuzzified using the output membership functions for rep-
etition rate, as depicted in Figure 5, and the output vector R is obtained. The membership
functions used by the fuzzy inference system are determined through the use of expert intuition
and a training data set of desired input-output pairs. The training data set is obtained through
the simulation of packets being transmitted over a wireless channel with varying degrees of
degradation due to transmitter-receiver separation. Through training, the optimum repetition
rate, defined as the rate at which a packet experiences minimum delay and minimum number
of packet retransmissions, is determined for a given value of effective rate.

The NRT slot allocation is implemented by a fuzzy system with bipartite inputs, which
are fuzzified according to the membership functions for RT usage or %RT, and RATEeff , as
depicted in Figures 6 and 7.

The membership functions for RATEeff shown are based on intuition, and the use of training
data was not necessary to obtain these functions.

The NRT slot allocation system takes into consideration all ranges of possible RT usage of
resources, within the set {very low, low, moderate, high, very high}. For each of the five pos-
sible categories of RT usage, all possible effective rate categories in {very low, low, moderate,
high, very high} are considered. Thus the fuzzy resource allocator accounts for all possible
resource availability and channel degradation conditions, or all possible combinations of the
pair (RT usage, effective rate).

Table 2 displays the rules found in the fuzzy rule base for the NRT slot allocation system.
Rules describing the most extreme cases of RT usage and effective rate are given the highest
weighting, because in these cases, the desired control action is most obvious. This can be
demonstrated by examining the first rule in Table 2:

“If RT usage is very low and effective rate is very high, then share_of_slots is very high”.
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Figure 5. Repetition rate.

Figure 6. RT usage input space.

Consideration of this rule makes clear its intuitive nature; if RT usage is very low, there
exist more resources which are available to NRT traffic sources, hence more slots may be
allocated to NRT traffic sources accessing the wireless channel. However, slot allocation
should be done according to the ability of NRT traffic sources to best utilize the available
resources. This optimal slot allocation is done by assigning a very high share_of_slots to NRT
traffic sources with very high effective rates, indicating very good channel conditions.
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Figure 7. Effective rate input space.

Figure 8. Share of slots allocated.

The fuzzy inference engine outputs the result of the executed rules to the defuzzifier,
where the centroid method is used to determine the crisp value share_of_slots. The output
membership functions that facilitate this process are shown in Figure 8.

The membership functions depicted in Figures 6–8 are uniform in their shapes because
they are obtained from an intuitive understanding of the desired system operation; they are
not skewed by training. The membership functions shown in Figure 8 do not give the specific
number of slots to be allocated to each user. Instead they indicate the share, or portion of
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Table 2. Fuzzy rules for NRT slot allocation in the fuzzy
allocator.

RT usage Effective rate Share_of_slots Weight

Very low Very high Very high 1.00

Very low High High 1.00

Very low Moderate Moderate 1.00

Very low Low Low 1.00

Very low Very low Very low 1.00

Low Very high Very high 0.50

Low High High 1.00

Low Moderate Moderate 1.00

Low Low Low 1.00

Low Very low Very low 1.00

Moderate Very high High 0.50

Moderate High Moderate 0.75

Moderate Moderate Low 1.00

Moderate Low Very low 0.50

Moderate Very low Very low 1.00

High Very high Moderate 0.50

High High Low 0.75

High Moderate Low 0.50

High Low Very low 1.00

High Very low Very low 0.75

Very high Very high Low 0.50

Very high High Very low 0.75

Very high Moderate Very low 0.75

Very high Low Very low 1.00

Very high Very low Very low 1.00

available slots, that should be allocated. The crisp value for the number of slots allocated for
the lth NRT traffic source is given by:

NRT l = share_of _slotsl
N∑
l

share_of _slotsl

× (slots available for NRT traffic −N)+ 1

where N is the number of NRT traffic sources in the system, and the lth NRT traffic source is
guaranteed at least one slot. The number of slots available for NRT traffic sources is given by:

(1 − %RT)× number of slots in frame� .
The slot allocation to a user is the means by which token pool size is adjusted. As described,
token pool size is allocated as a combination of factors. It considers first the portion of the
channel available for NRT traffic. From this portion, N slots are first reserved to ensure a
minimum packet rate for all users. The remaining portion of the channel, when allocated to
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Figure 9. Effect of increasing ρd with %RT = 20; κ = 2.7.

users, will form the excess rate above the minimum packet rate which has been promised
to all users. In order to maximize the utilization of this “extra” channel capacity, token pool
allocations are made such that the extra channel capacity is allocated to users with better
effective rates. Excess channel capacity is allocated by allocating more slots to users with
better effective rates. This effectively increases the token pool size for users with good channel
access conditions.

4. Simulation Results

Access delay is defined as the delay which a packet experiences in getting from the source
end to the network interior. Average access delay is calculated by summing the delay over all
packets transmitted, and then dividing by the total number of packets transmitted. Figure 9
shows the effect of increasing NRT traffic load on average access delay. Differences in the
performance of the crisp allocator and the fixed rate system, as compared to the fuzzy alloca-
tor, are apparent. The fixed rate system does not employ repetition coding to compensate for
signal attenuation, and hence its very large access delay is expected. By increasing the path
loss exponent, the effects of a greater degree of clutter in the propagation path are explored.

Figure 10 shows the performance of the fuzzy allocator being significantly better than that
of the non-fuzzy resource control mechanisms. This improved performance becomes most
significant for regions in which the path loss exponent is representative of urban areas (that is
for path loss exponent κ greater than 2.5). In urban areas, user density is expected to be higher.
In order to enable frequency reuse, cell size is usually reduced. The likelihood of problematic
interference between users increases as user density increases. In small areas with high user
density, increasing a user’s signal power should be delayed as long as possible, in order to
reduce the extent of signal interference between users. Using a fuzzy allocator, fading effects
experienced in highly shadowed areas can be mitigated. This reduces the need for users to
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Figure 10. Effect of increasing path loss exponent on average access delay.

employ higher power signals, as with the same power level, a much lower access delay may
be achieved.

Packet efficiency is a measure of the number of retransmissions which an NRT traffic
source must make in order to have its packet received with sufficient power at the base station
end. For simulation purposes, packet efficiency is defined as:

number of packets received correctly by base station

number of packet transmissions from source

where the denominator includes retransmissions.
Packet efficiency is examined as the path loss exponent increases, as shown in Figure 11.

Packet efficiency is high when the path loss exponent is low. As the path loss exponent in-
creases, packet efficiency decreases. This trend is to be expected because an increasing path
loss exponent indicates increasing clutter in the propagation path. The result is more atten-
uation of signals arriving at the base station, and consequently more packet retransmissions
by the source. For a given message stream, the fuzzy allocator with its ability to calculate
effective repetition rates, reduces the number of times a user must retransmit packets. These
results imply that, should a fuzzy resource allocator be employed, more users could be ensured
access to resources, since each user would utilize resources more efficiently.

Channel utilization is a measure of the portion of channel resources which actually get
used for NRT traffic transmission. It is defined as the ratio of the number of packets received
correctly at the base station when NRT traffic sources are in their ON phase, to the total num-
ber of packet spaces (a function of the number of slots) allocated for NRT traffic transmission,
and is given by:

number of packets received correctly by base station

number of packet spaces allocated
.

Figure 12 shows channel utilization with changing %RT. The extent to which the channel is
utilized by NRT traffic sources is reduced when channel resources available to these users
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Figure 11. Effect of increasing path loss exponent on packet efficiency.

Figure 12. Effect of changing %RT with κ = 2.7.

diminish. As %RT increases, and resources become limited, the fuzzy allocator is able to
optimally assign limited resources to those users who are best capable of using these resources.
The overall number of allocations in which users are able to successfully transmit their packets
is thus increased, and channel utilization increases.

Figure 13 shows that channel utilization deteriorates as the path loss exponent increases.
This result is expected, because with a larger extent of clutter in the propagation path, more
retransmissions become necessary due to signal attenuation, and resolution of signals, even
with channel coding, becomes difficult. In the range of path loss exponent between 2 and 2.3,
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Figure 13. Effect of increasing path loss exponent on channel utilization.

the crisp and fixed rate controllers show better performance than that of the fuzzy controller.
This is expected as the lower range of path loss exponent represents a relatively uncluttered
propagation path. In such areas, a crisp or fixed decision may be made with a great degree
of accuracy. Urban area cellular is represented by path loss exponent values between 2.7 and
3.5, with 3.5 representing a highly shadowed area. With the path loss exponent representing
a highly shadowed area, the fuzzy allocator shows performance improvement over non-fuzzy
allocators. These results suggest that, with significant signal attenuation, the fuzzy allocator
requires fewer retransmissions, and uses channel resources more efficiently.

5. Conclusion

A fuzzy resource allocator was developed to provide optimal resource allocation for NRT
sources, given the higher priority resource requirements for RT sources. A crisply coded
adaptive resource allocator was used for comparison, along with a fixed resource allocation
allocator. The fuzzy allocator was shown to reduce both access delay and retransmissions for
NRT traffic. Channel utilization was also improved with the fuzzy resource allocator. The
simplicity, low implementation cost [7], and performance benefit, demonstrated suggest that
the fuzzy resource allocator would be a viable mechanism for optimal resource allocation.

The benefits of a fuzzy resource allocator, as described in this paper, are not only limited to
TDMA systems, but can be extended to third-generation (3G) systems. Through the efficient
allocation of time-slots, 3G systems employing code-division multiple access/time-division
duplex (CDMA/TDD) have shown to experience improvements in overall system capacity
[8]. Further research can be done in order to determine the benefits of employing a fuzzy
resource allocator in 3G systems.
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